terraform-provider-gitea/vendor/github.com/ProtonMail/go-crypto/openpgp/key_generation.go

390 lines
12 KiB
Go
Raw Normal View History

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package openpgp
import (
"crypto"
"crypto/rand"
"crypto/rsa"
goerrors "errors"
"io"
"math/big"
"time"
"github.com/ProtonMail/go-crypto/openpgp/ecdh"
"github.com/ProtonMail/go-crypto/openpgp/ecdsa"
"github.com/ProtonMail/go-crypto/openpgp/eddsa"
"github.com/ProtonMail/go-crypto/openpgp/errors"
"github.com/ProtonMail/go-crypto/openpgp/internal/algorithm"
"github.com/ProtonMail/go-crypto/openpgp/internal/ecc"
"github.com/ProtonMail/go-crypto/openpgp/packet"
)
// NewEntity returns an Entity that contains a fresh RSA/RSA keypair with a
// single identity composed of the given full name, comment and email, any of
// which may be empty but must not contain any of "()<>\x00".
// If config is nil, sensible defaults will be used.
func NewEntity(name, comment, email string, config *packet.Config) (*Entity, error) {
creationTime := config.Now()
keyLifetimeSecs := config.KeyLifetime()
// Generate a primary signing key
primaryPrivRaw, err := newSigner(config)
if err != nil {
return nil, err
}
primary := packet.NewSignerPrivateKey(creationTime, primaryPrivRaw)
if config != nil && config.V5Keys {
primary.UpgradeToV5()
}
e := &Entity{
PrimaryKey: &primary.PublicKey,
PrivateKey: primary,
Identities: make(map[string]*Identity),
Subkeys: []Subkey{},
}
err = e.addUserId(name, comment, email, config, creationTime, keyLifetimeSecs)
if err != nil {
return nil, err
}
// NOTE: No key expiry here, but we will not return this subkey in EncryptionKey()
// if the primary/master key has expired.
err = e.addEncryptionSubkey(config, creationTime, 0)
if err != nil {
return nil, err
}
return e, nil
}
func (t *Entity) AddUserId(name, comment, email string, config *packet.Config) error {
creationTime := config.Now()
keyLifetimeSecs := config.KeyLifetime()
return t.addUserId(name, comment, email, config, creationTime, keyLifetimeSecs)
}
func (t *Entity) addUserId(name, comment, email string, config *packet.Config, creationTime time.Time, keyLifetimeSecs uint32) error {
uid := packet.NewUserId(name, comment, email)
if uid == nil {
return errors.InvalidArgumentError("user id field contained invalid characters")
}
if _, ok := t.Identities[uid.Id]; ok {
return errors.InvalidArgumentError("user id exist")
}
primary := t.PrivateKey
isPrimaryId := len(t.Identities) == 0
selfSignature := createSignaturePacket(&primary.PublicKey, packet.SigTypePositiveCert, config)
selfSignature.CreationTime = creationTime
selfSignature.KeyLifetimeSecs = &keyLifetimeSecs
selfSignature.IsPrimaryId = &isPrimaryId
selfSignature.FlagsValid = true
selfSignature.FlagSign = true
selfSignature.FlagCertify = true
selfSignature.SEIPDv1 = true // true by default, see 5.8 vs. 5.14
selfSignature.SEIPDv2 = config.AEAD() != nil
// Set the PreferredHash for the SelfSignature from the packet.Config.
// If it is not the must-implement algorithm from rfc4880bis, append that.
hash, ok := algorithm.HashToHashId(config.Hash())
if !ok {
return errors.UnsupportedError("unsupported preferred hash function")
}
selfSignature.PreferredHash = []uint8{hash}
if config.Hash() != crypto.SHA256 {
selfSignature.PreferredHash = append(selfSignature.PreferredHash, hashToHashId(crypto.SHA256))
}
// Likewise for DefaultCipher.
selfSignature.PreferredSymmetric = []uint8{uint8(config.Cipher())}
if config.Cipher() != packet.CipherAES128 {
selfSignature.PreferredSymmetric = append(selfSignature.PreferredSymmetric, uint8(packet.CipherAES128))
}
// We set CompressionNone as the preferred compression algorithm because
// of compression side channel attacks, then append the configured
// DefaultCompressionAlgo if any is set (to signal support for cases
// where the application knows that using compression is safe).
selfSignature.PreferredCompression = []uint8{uint8(packet.CompressionNone)}
if config.Compression() != packet.CompressionNone {
selfSignature.PreferredCompression = append(selfSignature.PreferredCompression, uint8(config.Compression()))
}
// And for DefaultMode.
modes := []uint8{uint8(config.AEAD().Mode())}
if config.AEAD().Mode() != packet.AEADModeOCB {
modes = append(modes, uint8(packet.AEADModeOCB))
}
// For preferred (AES256, GCM), we'll generate (AES256, GCM), (AES256, OCB), (AES128, GCM), (AES128, OCB)
for _, cipher := range selfSignature.PreferredSymmetric {
for _, mode := range modes {
selfSignature.PreferredCipherSuites = append(selfSignature.PreferredCipherSuites, [2]uint8{cipher, mode})
}
}
// User ID binding signature
err := selfSignature.SignUserId(uid.Id, &primary.PublicKey, primary, config)
if err != nil {
return err
}
t.Identities[uid.Id] = &Identity{
Name: uid.Id,
UserId: uid,
SelfSignature: selfSignature,
Signatures: []*packet.Signature{selfSignature},
}
return nil
}
// AddSigningSubkey adds a signing keypair as a subkey to the Entity.
// If config is nil, sensible defaults will be used.
func (e *Entity) AddSigningSubkey(config *packet.Config) error {
creationTime := config.Now()
keyLifetimeSecs := config.KeyLifetime()
subPrivRaw, err := newSigner(config)
if err != nil {
return err
}
sub := packet.NewSignerPrivateKey(creationTime, subPrivRaw)
sub.IsSubkey = true
if config != nil && config.V5Keys {
sub.UpgradeToV5()
}
subkey := Subkey{
PublicKey: &sub.PublicKey,
PrivateKey: sub,
}
subkey.Sig = createSignaturePacket(e.PrimaryKey, packet.SigTypeSubkeyBinding, config)
subkey.Sig.CreationTime = creationTime
subkey.Sig.KeyLifetimeSecs = &keyLifetimeSecs
subkey.Sig.FlagsValid = true
subkey.Sig.FlagSign = true
subkey.Sig.EmbeddedSignature = createSignaturePacket(subkey.PublicKey, packet.SigTypePrimaryKeyBinding, config)
subkey.Sig.EmbeddedSignature.CreationTime = creationTime
err = subkey.Sig.EmbeddedSignature.CrossSignKey(subkey.PublicKey, e.PrimaryKey, subkey.PrivateKey, config)
if err != nil {
return err
}
err = subkey.Sig.SignKey(subkey.PublicKey, e.PrivateKey, config)
if err != nil {
return err
}
e.Subkeys = append(e.Subkeys, subkey)
return nil
}
// AddEncryptionSubkey adds an encryption keypair as a subkey to the Entity.
// If config is nil, sensible defaults will be used.
func (e *Entity) AddEncryptionSubkey(config *packet.Config) error {
creationTime := config.Now()
keyLifetimeSecs := config.KeyLifetime()
return e.addEncryptionSubkey(config, creationTime, keyLifetimeSecs)
}
func (e *Entity) addEncryptionSubkey(config *packet.Config, creationTime time.Time, keyLifetimeSecs uint32) error {
subPrivRaw, err := newDecrypter(config)
if err != nil {
return err
}
sub := packet.NewDecrypterPrivateKey(creationTime, subPrivRaw)
sub.IsSubkey = true
if config != nil && config.V5Keys {
sub.UpgradeToV5()
}
subkey := Subkey{
PublicKey: &sub.PublicKey,
PrivateKey: sub,
}
subkey.Sig = createSignaturePacket(e.PrimaryKey, packet.SigTypeSubkeyBinding, config)
subkey.Sig.CreationTime = creationTime
subkey.Sig.KeyLifetimeSecs = &keyLifetimeSecs
subkey.Sig.FlagsValid = true
subkey.Sig.FlagEncryptStorage = true
subkey.Sig.FlagEncryptCommunications = true
err = subkey.Sig.SignKey(subkey.PublicKey, e.PrivateKey, config)
if err != nil {
return err
}
e.Subkeys = append(e.Subkeys, subkey)
return nil
}
// Generates a signing key
func newSigner(config *packet.Config) (signer interface{}, err error) {
switch config.PublicKeyAlgorithm() {
case packet.PubKeyAlgoRSA:
bits := config.RSAModulusBits()
if bits < 1024 {
return nil, errors.InvalidArgumentError("bits must be >= 1024")
}
if config != nil && len(config.RSAPrimes) >= 2 {
primes := config.RSAPrimes[0:2]
config.RSAPrimes = config.RSAPrimes[2:]
return generateRSAKeyWithPrimes(config.Random(), 2, bits, primes)
}
return rsa.GenerateKey(config.Random(), bits)
case packet.PubKeyAlgoEdDSA:
curve := ecc.FindEdDSAByGenName(string(config.CurveName()))
if curve == nil {
return nil, errors.InvalidArgumentError("unsupported curve")
}
priv, err := eddsa.GenerateKey(config.Random(), curve)
if err != nil {
return nil, err
}
return priv, nil
case packet.PubKeyAlgoECDSA:
curve := ecc.FindECDSAByGenName(string(config.CurveName()))
if curve == nil {
return nil, errors.InvalidArgumentError("unsupported curve")
}
priv, err := ecdsa.GenerateKey(config.Random(), curve)
if err != nil {
return nil, err
}
return priv, nil
default:
return nil, errors.InvalidArgumentError("unsupported public key algorithm")
}
}
// Generates an encryption/decryption key
func newDecrypter(config *packet.Config) (decrypter interface{}, err error) {
switch config.PublicKeyAlgorithm() {
case packet.PubKeyAlgoRSA:
bits := config.RSAModulusBits()
if bits < 1024 {
return nil, errors.InvalidArgumentError("bits must be >= 1024")
}
if config != nil && len(config.RSAPrimes) >= 2 {
primes := config.RSAPrimes[0:2]
config.RSAPrimes = config.RSAPrimes[2:]
return generateRSAKeyWithPrimes(config.Random(), 2, bits, primes)
}
return rsa.GenerateKey(config.Random(), bits)
case packet.PubKeyAlgoEdDSA, packet.PubKeyAlgoECDSA:
fallthrough // When passing EdDSA or ECDSA, we generate an ECDH subkey
case packet.PubKeyAlgoECDH:
var kdf = ecdh.KDF{
Hash: algorithm.SHA512,
Cipher: algorithm.AES256,
}
curve := ecc.FindECDHByGenName(string(config.CurveName()))
if curve == nil {
return nil, errors.InvalidArgumentError("unsupported curve")
}
return ecdh.GenerateKey(config.Random(), curve, kdf)
default:
return nil, errors.InvalidArgumentError("unsupported public key algorithm")
}
}
var bigOne = big.NewInt(1)
// generateRSAKeyWithPrimes generates a multi-prime RSA keypair of the
// given bit size, using the given random source and prepopulated primes.
func generateRSAKeyWithPrimes(random io.Reader, nprimes int, bits int, prepopulatedPrimes []*big.Int) (*rsa.PrivateKey, error) {
priv := new(rsa.PrivateKey)
priv.E = 65537
if nprimes < 2 {
return nil, goerrors.New("generateRSAKeyWithPrimes: nprimes must be >= 2")
}
if bits < 1024 {
return nil, goerrors.New("generateRSAKeyWithPrimes: bits must be >= 1024")
}
primes := make([]*big.Int, nprimes)
NextSetOfPrimes:
for {
todo := bits
// crypto/rand should set the top two bits in each prime.
// Thus each prime has the form
// p_i = 2^bitlen(p_i) × 0.11... (in base 2).
// And the product is:
// P = 2^todo × α
// where α is the product of nprimes numbers of the form 0.11...
//
// If α < 1/2 (which can happen for nprimes > 2), we need to
// shift todo to compensate for lost bits: the mean value of 0.11...
// is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2
// will give good results.
if nprimes >= 7 {
todo += (nprimes - 2) / 5
}
for i := 0; i < nprimes; i++ {
var err error
if len(prepopulatedPrimes) == 0 {
primes[i], err = rand.Prime(random, todo/(nprimes-i))
if err != nil {
return nil, err
}
} else {
primes[i] = prepopulatedPrimes[0]
prepopulatedPrimes = prepopulatedPrimes[1:]
}
todo -= primes[i].BitLen()
}
// Make sure that primes is pairwise unequal.
for i, prime := range primes {
for j := 0; j < i; j++ {
if prime.Cmp(primes[j]) == 0 {
continue NextSetOfPrimes
}
}
}
n := new(big.Int).Set(bigOne)
totient := new(big.Int).Set(bigOne)
pminus1 := new(big.Int)
for _, prime := range primes {
n.Mul(n, prime)
pminus1.Sub(prime, bigOne)
totient.Mul(totient, pminus1)
}
if n.BitLen() != bits {
// This should never happen for nprimes == 2 because
// crypto/rand should set the top two bits in each prime.
// For nprimes > 2 we hope it does not happen often.
continue NextSetOfPrimes
}
priv.D = new(big.Int)
e := big.NewInt(int64(priv.E))
ok := priv.D.ModInverse(e, totient)
if ok != nil {
priv.Primes = primes
priv.N = n
break
}
}
priv.Precompute()
return priv, nil
}