add vendor

This commit is contained in:
Malar Invention
2022-04-03 09:37:16 +05:30
parent f96ba5f172
commit 00ebcd295e
2339 changed files with 705854 additions and 0 deletions

19
vendor/github.com/apparentlymart/go-cidr/LICENSE generated vendored Normal file
View File

@ -0,0 +1,19 @@
Copyright (c) 2015 Martin Atkins
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

218
vendor/github.com/apparentlymart/go-cidr/cidr/cidr.go generated vendored Normal file
View File

@ -0,0 +1,218 @@
// Package cidr is a collection of assorted utilities for computing
// network and host addresses within network ranges.
//
// It expects a CIDR-type address structure where addresses are divided into
// some number of prefix bits representing the network and then the remaining
// suffix bits represent the host.
//
// For example, it can help to calculate addresses for sub-networks of a
// parent network, or to calculate host addresses within a particular prefix.
//
// At present this package is prioritizing simplicity of implementation and
// de-prioritizing speed and memory usage. Thus caution is advised before
// using this package in performance-critical applications or hot codepaths.
// Patches to improve the speed and memory usage may be accepted as long as
// they do not result in a significant increase in code complexity.
package cidr
import (
"fmt"
"math/big"
"net"
)
// Subnet takes a parent CIDR range and creates a subnet within it
// with the given number of additional prefix bits and the given
// network number.
//
// For example, 10.3.0.0/16, extended by 8 bits, with a network number
// of 5, becomes 10.3.5.0/24 .
func Subnet(base *net.IPNet, newBits int, num int) (*net.IPNet, error) {
ip := base.IP
mask := base.Mask
parentLen, addrLen := mask.Size()
newPrefixLen := parentLen + newBits
if newPrefixLen > addrLen {
return nil, fmt.Errorf("insufficient address space to extend prefix of %d by %d", parentLen, newBits)
}
maxNetNum := uint64(1<<uint64(newBits)) - 1
if uint64(num) > maxNetNum {
return nil, fmt.Errorf("prefix extension of %d does not accommodate a subnet numbered %d", newBits, num)
}
return &net.IPNet{
IP: insertNumIntoIP(ip, big.NewInt(int64(num)), newPrefixLen),
Mask: net.CIDRMask(newPrefixLen, addrLen),
}, nil
}
// Host takes a parent CIDR range and turns it into a host IP address with
// the given host number.
//
// For example, 10.3.0.0/16 with a host number of 2 gives 10.3.0.2.
func Host(base *net.IPNet, num int) (net.IP, error) {
ip := base.IP
mask := base.Mask
bigNum := big.NewInt(int64(num))
parentLen, addrLen := mask.Size()
hostLen := addrLen - parentLen
maxHostNum := big.NewInt(int64(1))
maxHostNum.Lsh(maxHostNum, uint(hostLen))
maxHostNum.Sub(maxHostNum, big.NewInt(1))
numUint64 := big.NewInt(int64(bigNum.Uint64()))
if bigNum.Cmp(big.NewInt(0)) == -1 {
numUint64.Neg(bigNum)
numUint64.Sub(numUint64, big.NewInt(int64(1)))
bigNum.Sub(maxHostNum, numUint64)
}
if numUint64.Cmp(maxHostNum) == 1 {
return nil, fmt.Errorf("prefix of %d does not accommodate a host numbered %d", parentLen, num)
}
var bitlength int
if ip.To4() != nil {
bitlength = 32
} else {
bitlength = 128
}
return insertNumIntoIP(ip, bigNum, bitlength), nil
}
// AddressRange returns the first and last addresses in the given CIDR range.
func AddressRange(network *net.IPNet) (net.IP, net.IP) {
// the first IP is easy
firstIP := network.IP
// the last IP is the network address OR NOT the mask address
prefixLen, bits := network.Mask.Size()
if prefixLen == bits {
// Easy!
// But make sure that our two slices are distinct, since they
// would be in all other cases.
lastIP := make([]byte, len(firstIP))
copy(lastIP, firstIP)
return firstIP, lastIP
}
firstIPInt, bits := ipToInt(firstIP)
hostLen := uint(bits) - uint(prefixLen)
lastIPInt := big.NewInt(1)
lastIPInt.Lsh(lastIPInt, hostLen)
lastIPInt.Sub(lastIPInt, big.NewInt(1))
lastIPInt.Or(lastIPInt, firstIPInt)
return firstIP, intToIP(lastIPInt, bits)
}
// AddressCount returns the number of distinct host addresses within the given
// CIDR range.
//
// Since the result is a uint64, this function returns meaningful information
// only for IPv4 ranges and IPv6 ranges with a prefix size of at least 65.
func AddressCount(network *net.IPNet) uint64 {
prefixLen, bits := network.Mask.Size()
return 1 << (uint64(bits) - uint64(prefixLen))
}
//VerifyNoOverlap takes a list subnets and supernet (CIDRBlock) and verifies
//none of the subnets overlap and all subnets are in the supernet
//it returns an error if any of those conditions are not satisfied
func VerifyNoOverlap(subnets []*net.IPNet, CIDRBlock *net.IPNet) error {
firstLastIP := make([][]net.IP, len(subnets))
for i, s := range subnets {
first, last := AddressRange(s)
firstLastIP[i] = []net.IP{first, last}
}
for i, s := range subnets {
if !CIDRBlock.Contains(firstLastIP[i][0]) || !CIDRBlock.Contains(firstLastIP[i][1]) {
return fmt.Errorf("%s does not fully contain %s", CIDRBlock.String(), s.String())
}
for j := 0; j < len(subnets); j++ {
if i == j {
continue
}
first := firstLastIP[j][0]
last := firstLastIP[j][1]
if s.Contains(first) || s.Contains(last) {
return fmt.Errorf("%s overlaps with %s", subnets[j].String(), s.String())
}
}
}
return nil
}
// PreviousSubnet returns the subnet of the desired mask in the IP space
// just lower than the start of IPNet provided. If the IP space rolls over
// then the second return value is true
func PreviousSubnet(network *net.IPNet, prefixLen int) (*net.IPNet, bool) {
startIP := checkIPv4(network.IP)
previousIP := make(net.IP, len(startIP))
copy(previousIP, startIP)
cMask := net.CIDRMask(prefixLen, 8*len(previousIP))
previousIP = Dec(previousIP)
previous := &net.IPNet{IP: previousIP.Mask(cMask), Mask: cMask}
if startIP.Equal(net.IPv4zero) || startIP.Equal(net.IPv6zero) {
return previous, true
}
return previous, false
}
// NextSubnet returns the next available subnet of the desired mask size
// starting for the maximum IP of the offset subnet
// If the IP exceeds the maxium IP then the second return value is true
func NextSubnet(network *net.IPNet, prefixLen int) (*net.IPNet, bool) {
_, currentLast := AddressRange(network)
mask := net.CIDRMask(prefixLen, 8*len(currentLast))
currentSubnet := &net.IPNet{IP: currentLast.Mask(mask), Mask: mask}
_, last := AddressRange(currentSubnet)
last = Inc(last)
next := &net.IPNet{IP: last.Mask(mask), Mask: mask}
if last.Equal(net.IPv4zero) || last.Equal(net.IPv6zero) {
return next, true
}
return next, false
}
//Inc increases the IP by one this returns a new []byte for the IP
func Inc(IP net.IP) net.IP {
IP = checkIPv4(IP)
incIP := make([]byte, len(IP))
copy(incIP, IP)
for j := len(incIP) - 1; j >= 0; j-- {
incIP[j]++
if incIP[j] > 0 {
break
}
}
return incIP
}
//Dec decreases the IP by one this returns a new []byte for the IP
func Dec(IP net.IP) net.IP {
IP = checkIPv4(IP)
decIP := make([]byte, len(IP))
copy(decIP, IP)
decIP = checkIPv4(decIP)
for j := len(decIP) - 1; j >= 0; j-- {
decIP[j]--
if decIP[j] < 255 {
break
}
}
return decIP
}
func checkIPv4(ip net.IP) net.IP {
// Go for some reason allocs IPv6len for IPv4 so we have to correct it
if v4 := ip.To4(); v4 != nil {
return v4
}
return ip
}

View File

@ -0,0 +1,37 @@
package cidr
import (
"fmt"
"math/big"
"net"
)
func ipToInt(ip net.IP) (*big.Int, int) {
val := &big.Int{}
val.SetBytes([]byte(ip))
if len(ip) == net.IPv4len {
return val, 32
} else if len(ip) == net.IPv6len {
return val, 128
} else {
panic(fmt.Errorf("Unsupported address length %d", len(ip)))
}
}
func intToIP(ipInt *big.Int, bits int) net.IP {
ipBytes := ipInt.Bytes()
ret := make([]byte, bits/8)
// Pack our IP bytes into the end of the return array,
// since big.Int.Bytes() removes front zero padding.
for i := 1; i <= len(ipBytes); i++ {
ret[len(ret)-i] = ipBytes[len(ipBytes)-i]
}
return net.IP(ret)
}
func insertNumIntoIP(ip net.IP, bigNum *big.Int, prefixLen int) net.IP {
ipInt, totalBits := ipToInt(ip)
bigNum.Lsh(bigNum, uint(totalBits-prefixLen))
ipInt.Or(ipInt, bigNum)
return intToIP(ipInt, totalBits)
}