add vendor

This commit is contained in:
Malar Invention
2022-04-03 09:37:16 +05:30
parent f96ba5f172
commit 00ebcd295e
2339 changed files with 705854 additions and 0 deletions

16
vendor/github.com/mitchellh/cli/.travis.yml generated vendored Normal file
View File

@@ -0,0 +1,16 @@
sudo: false
language: go
env:
- GO111MODULE=on
go:
- "1.14"
- "1.15"
branches:
only:
- master
script: make updatedeps test testrace

354
vendor/github.com/mitchellh/cli/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,354 @@
Mozilla Public License, version 2.0
1. Definitions
1.1. “Contributor”
means each individual or legal entity that creates, contributes to the
creation of, or owns Covered Software.
1.2. “Contributor Version”
means the combination of the Contributions of others (if any) used by a
Contributor and that particular Contributors Contribution.
1.3. “Contribution”
means Covered Software of a particular Contributor.
1.4. “Covered Software”
means Source Code Form to which the initial Contributor has attached the
notice in Exhibit A, the Executable Form of such Source Code Form, and
Modifications of such Source Code Form, in each case including portions
thereof.
1.5. “Incompatible With Secondary Licenses”
means
a. that the initial Contributor has attached the notice described in
Exhibit B to the Covered Software; or
b. that the Covered Software was made available under the terms of version
1.1 or earlier of the License, but not also under the terms of a
Secondary License.
1.6. “Executable Form”
means any form of the work other than Source Code Form.
1.7. “Larger Work”
means a work that combines Covered Software with other material, in a separate
file or files, that is not Covered Software.
1.8. “License”
means this document.
1.9. “Licensable”
means having the right to grant, to the maximum extent possible, whether at the
time of the initial grant or subsequently, any and all of the rights conveyed by
this License.
1.10. “Modifications”
means any of the following:
a. any file in Source Code Form that results from an addition to, deletion
from, or modification of the contents of Covered Software; or
b. any new file in Source Code Form that contains any Covered Software.
1.11. “Patent Claims” of a Contributor
means any patent claim(s), including without limitation, method, process,
and apparatus claims, in any patent Licensable by such Contributor that
would be infringed, but for the grant of the License, by the making,
using, selling, offering for sale, having made, import, or transfer of
either its Contributions or its Contributor Version.
1.12. “Secondary License”
means either the GNU General Public License, Version 2.0, the GNU Lesser
General Public License, Version 2.1, the GNU Affero General Public
License, Version 3.0, or any later versions of those licenses.
1.13. “Source Code Form”
means the form of the work preferred for making modifications.
1.14. “You” (or “Your”)
means an individual or a legal entity exercising rights under this
License. For legal entities, “You” includes any entity that controls, is
controlled by, or is under common control with You. For purposes of this
definition, “control” means (a) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or
otherwise, or (b) ownership of more than fifty percent (50%) of the
outstanding shares or beneficial ownership of such entity.
2. License Grants and Conditions
2.1. Grants
Each Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:
a. under intellectual property rights (other than patent or trademark)
Licensable by such Contributor to use, reproduce, make available,
modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or as
part of a Larger Work; and
b. under Patent Claims of such Contributor to make, use, sell, offer for
sale, have made, import, and otherwise transfer either its Contributions
or its Contributor Version.
2.2. Effective Date
The licenses granted in Section 2.1 with respect to any Contribution become
effective for each Contribution on the date the Contributor first distributes
such Contribution.
2.3. Limitations on Grant Scope
The licenses granted in this Section 2 are the only rights granted under this
License. No additional rights or licenses will be implied from the distribution
or licensing of Covered Software under this License. Notwithstanding Section
2.1(b) above, no patent license is granted by a Contributor:
a. for any code that a Contributor has removed from Covered Software; or
b. for infringements caused by: (i) Your and any other third partys
modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or
c. under Patent Claims infringed by Covered Software in the absence of its
Contributions.
This License does not grant any rights in the trademarks, service marks, or
logos of any Contributor (except as may be necessary to comply with the
notice requirements in Section 3.4).
2.4. Subsequent Licenses
No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this License
(see Section 10.2) or under the terms of a Secondary License (if permitted
under the terms of Section 3.3).
2.5. Representation
Each Contributor represents that the Contributor believes its Contributions
are its original creation(s) or it has sufficient rights to grant the
rights to its Contributions conveyed by this License.
2.6. Fair Use
This License is not intended to limit any rights You have under applicable
copyright doctrines of fair use, fair dealing, or other equivalents.
2.7. Conditions
Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in
Section 2.1.
3. Responsibilities
3.1. Distribution of Source Form
All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under the
terms of this License. You must inform recipients that the Source Code Form
of the Covered Software is governed by the terms of this License, and how
they can obtain a copy of this License. You may not attempt to alter or
restrict the recipients rights in the Source Code Form.
3.2. Distribution of Executable Form
If You distribute Covered Software in Executable Form then:
a. such Covered Software must also be made available in Source Code Form,
as described in Section 3.1, and You must inform recipients of the
Executable Form how they can obtain a copy of such Source Code Form by
reasonable means in a timely manner, at a charge no more than the cost
of distribution to the recipient; and
b. You may distribute such Executable Form under the terms of this License,
or sublicense it under different terms, provided that the license for
the Executable Form does not attempt to limit or alter the recipients
rights in the Source Code Form under this License.
3.3. Distribution of a Larger Work
You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for the
Covered Software. If the Larger Work is a combination of Covered Software
with a work governed by one or more Secondary Licenses, and the Covered
Software is not Incompatible With Secondary Licenses, this License permits
You to additionally distribute such Covered Software under the terms of
such Secondary License(s), so that the recipient of the Larger Work may, at
their option, further distribute the Covered Software under the terms of
either this License or such Secondary License(s).
3.4. Notices
You may not remove or alter the substance of any license notices (including
copyright notices, patent notices, disclaimers of warranty, or limitations
of liability) contained within the Source Code Form of the Covered
Software, except that You may alter any license notices to the extent
required to remedy known factual inaccuracies.
3.5. Application of Additional Terms
You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on behalf
of any Contributor. You must make it absolutely clear that any such
warranty, support, indemnity, or liability obligation is offered by You
alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction.
4. Inability to Comply Due to Statute or Regulation
If it is impossible for You to comply with any of the terms of this License
with respect to some or all of the Covered Software due to statute, judicial
order, or regulation then You must: (a) comply with the terms of this License
to the maximum extent possible; and (b) describe the limitations and the code
they affect. Such description must be placed in a text file included with all
distributions of the Covered Software under this License. Except to the
extent prohibited by statute or regulation, such description must be
sufficiently detailed for a recipient of ordinary skill to be able to
understand it.
5. Termination
5.1. The rights granted under this License will terminate automatically if You
fail to comply with any of its terms. However, if You become compliant,
then the rights granted under this License from a particular Contributor
are reinstated (a) provisionally, unless and until such Contributor
explicitly and finally terminates Your grants, and (b) on an ongoing basis,
if such Contributor fails to notify You of the non-compliance by some
reasonable means prior to 60 days after You have come back into compliance.
Moreover, Your grants from a particular Contributor are reinstated on an
ongoing basis if such Contributor notifies You of the non-compliance by
some reasonable means, this is the first time You have received notice of
non-compliance with this License from such Contributor, and You become
compliant prior to 30 days after Your receipt of the notice.
5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions, counter-claims,
and cross-claims) alleging that a Contributor Version directly or
indirectly infringes any patent, then the rights granted to You by any and
all Contributors for the Covered Software under Section 2.1 of this License
shall terminate.
5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user
license agreements (excluding distributors and resellers) which have been
validly granted by You or Your distributors under this License prior to
termination shall survive termination.
6. Disclaimer of Warranty
Covered Software is provided under this License on an “as is” basis, without
warranty of any kind, either expressed, implied, or statutory, including,
without limitation, warranties that the Covered Software is free of defects,
merchantable, fit for a particular purpose or non-infringing. The entire
risk as to the quality and performance of the Covered Software is with You.
Should any Covered Software prove defective in any respect, You (not any
Contributor) assume the cost of any necessary servicing, repair, or
correction. This disclaimer of warranty constitutes an essential part of this
License. No use of any Covered Software is authorized under this License
except under this disclaimer.
7. Limitation of Liability
Under no circumstances and under no legal theory, whether tort (including
negligence), contract, or otherwise, shall any Contributor, or anyone who
distributes Covered Software as permitted above, be liable to You for any
direct, indirect, special, incidental, or consequential damages of any
character including, without limitation, damages for lost profits, loss of
goodwill, work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses, even if such party shall have been
informed of the possibility of such damages. This limitation of liability
shall not apply to liability for death or personal injury resulting from such
partys negligence to the extent applicable law prohibits such limitation.
Some jurisdictions do not allow the exclusion or limitation of incidental or
consequential damages, so this exclusion and limitation may not apply to You.
8. Litigation
Any litigation relating to this License may be brought only in the courts of
a jurisdiction where the defendant maintains its principal place of business
and such litigation shall be governed by laws of that jurisdiction, without
reference to its conflict-of-law provisions. Nothing in this Section shall
prevent a partys ability to bring cross-claims or counter-claims.
9. Miscellaneous
This License represents the complete agreement concerning the subject matter
hereof. If any provision of this License is held to be unenforceable, such
provision shall be reformed only to the extent necessary to make it
enforceable. Any law or regulation which provides that the language of a
contract shall be construed against the drafter shall not be used to construe
this License against a Contributor.
10. Versions of the License
10.1. New Versions
Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.
10.2. Effect of New Versions
You may distribute the Covered Software under the terms of the version of
the License under which You originally received the Covered Software, or
under the terms of any subsequent version published by the license
steward.
10.3. Modified Versions
If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a modified
version of this License if you rename the license and remove any
references to the name of the license steward (except to note that such
modified license differs from this License).
10.4. Distributing Source Code Form that is Incompatible With Secondary Licenses
If You choose to distribute Source Code Form that is Incompatible With
Secondary Licenses under the terms of this version of the License, the
notice described in Exhibit B of this License must be attached.
Exhibit A - Source Code Form License Notice
This Source Code Form is subject to the
terms of the Mozilla Public License, v.
2.0. If a copy of the MPL was not
distributed with this file, You can
obtain one at
http://mozilla.org/MPL/2.0/.
If it is not possible or desirable to put the notice in a particular file, then
You may include the notice in a location (such as a LICENSE file in a relevant
directory) where a recipient would be likely to look for such a notice.
You may add additional accurate notices of copyright ownership.
Exhibit B - “Incompatible With Secondary Licenses” Notice
This Source Code Form is “Incompatible
With Secondary Licenses”, as defined by
the Mozilla Public License, v. 2.0.

17
vendor/github.com/mitchellh/cli/Makefile generated vendored Normal file
View File

@@ -0,0 +1,17 @@
TEST?=./...
default: test
# test runs the test suite and vets the code
test:
go list $(TEST) | xargs -n1 go test -timeout=60s -parallel=10 $(TESTARGS)
# testrace runs the race checker
testrace:
go list $(TEST) | xargs -n1 go test -race $(TESTARGS)
# updatedeps installs all the dependencies to run and build
updatedeps:
go mod download
.PHONY: test testrace updatedeps

67
vendor/github.com/mitchellh/cli/README.md generated vendored Normal file
View File

@@ -0,0 +1,67 @@
# Go CLI Library [![GoDoc](https://godoc.org/github.com/mitchellh/cli?status.png)](https://godoc.org/github.com/mitchellh/cli)
cli is a library for implementing powerful command-line interfaces in Go.
cli is the library that powers the CLI for
[Packer](https://github.com/mitchellh/packer),
[Serf](https://github.com/hashicorp/serf),
[Consul](https://github.com/hashicorp/consul),
[Vault](https://github.com/hashicorp/vault),
[Terraform](https://github.com/hashicorp/terraform), and
[Nomad](https://github.com/hashicorp/nomad).
## Features
* Easy sub-command based CLIs: `cli foo`, `cli bar`, etc.
* Support for nested subcommands such as `cli foo bar`.
* Optional support for default subcommands so `cli` does something
other than error.
* Support for shell autocompletion of subcommands, flags, and arguments
with callbacks in Go. You don't need to write any shell code.
* Automatic help generation for listing subcommands
* Automatic help flag recognition of `-h`, `--help`, etc.
* Automatic version flag recognition of `-v`, `--version`.
* Helpers for interacting with the terminal, such as outputting information,
asking for input, etc. These are optional, you can always interact with the
terminal however you choose.
* Use of Go interfaces/types makes augmenting various parts of the library a
piece of cake.
## Example
Below is a simple example of creating and running a CLI
```go
package main
import (
"log"
"os"
"github.com/mitchellh/cli"
)
func main() {
c := cli.NewCLI("app", "1.0.0")
c.Args = os.Args[1:]
c.Commands = map[string]cli.CommandFactory{
"foo": fooCommandFactory,
"bar": barCommandFactory,
}
exitStatus, err := c.Run()
if err != nil {
log.Println(err)
}
os.Exit(exitStatus)
}
```

43
vendor/github.com/mitchellh/cli/autocomplete.go generated vendored Normal file
View File

@@ -0,0 +1,43 @@
package cli
import (
"github.com/posener/complete/cmd/install"
)
// autocompleteInstaller is an interface to be implemented to perform the
// autocomplete installation and uninstallation with a CLI.
//
// This interface is not exported because it only exists for unit tests
// to be able to test that the installation is called properly.
type autocompleteInstaller interface {
Install(string) error
Uninstall(string) error
}
// realAutocompleteInstaller uses the real install package to do the
// install/uninstall.
type realAutocompleteInstaller struct{}
func (i *realAutocompleteInstaller) Install(cmd string) error {
return install.Install(cmd)
}
func (i *realAutocompleteInstaller) Uninstall(cmd string) error {
return install.Uninstall(cmd)
}
// mockAutocompleteInstaller is used for tests to record the install/uninstall.
type mockAutocompleteInstaller struct {
InstallCalled bool
UninstallCalled bool
}
func (i *mockAutocompleteInstaller) Install(cmd string) error {
i.InstallCalled = true
return nil
}
func (i *mockAutocompleteInstaller) Uninstall(cmd string) error {
i.UninstallCalled = true
return nil
}

741
vendor/github.com/mitchellh/cli/cli.go generated vendored Normal file
View File

@@ -0,0 +1,741 @@
package cli
import (
"fmt"
"io"
"io/ioutil"
"os"
"regexp"
"sort"
"strings"
"sync"
"text/template"
"github.com/Masterminds/sprig"
"github.com/armon/go-radix"
"github.com/posener/complete"
)
// CLI contains the state necessary to run subcommands and parse the
// command line arguments.
//
// CLI also supports nested subcommands, such as "cli foo bar". To use
// nested subcommands, the key in the Commands mapping below contains the
// full subcommand. In this example, it would be "foo bar".
//
// If you use a CLI with nested subcommands, some semantics change due to
// ambiguities:
//
// * We use longest prefix matching to find a matching subcommand. This
// means if you register "foo bar" and the user executes "cli foo qux",
// the "foo" command will be executed with the arg "qux". It is up to
// you to handle these args. One option is to just return the special
// help return code `RunResultHelp` to display help and exit.
//
// * The help flag "-h" or "-help" will look at all args to determine
// the help function. For example: "otto apps list -h" will show the
// help for "apps list" but "otto apps -h" will show it for "apps".
// In the normal CLI, only the first subcommand is used.
//
// * The help flag will list any subcommands that a command takes
// as well as the command's help itself. If there are no subcommands,
// it will note this. If the CLI itself has no subcommands, this entire
// section is omitted.
//
// * Any parent commands that don't exist are automatically created as
// no-op commands that just show help for other subcommands. For example,
// if you only register "foo bar", then "foo" is automatically created.
//
type CLI struct {
// Args is the list of command-line arguments received excluding
// the name of the app. For example, if the command "./cli foo bar"
// was invoked, then Args should be []string{"foo", "bar"}.
Args []string
// Commands is a mapping of subcommand names to a factory function
// for creating that Command implementation. If there is a command
// with a blank string "", then it will be used as the default command
// if no subcommand is specified.
//
// If the key has a space in it, this will create a nested subcommand.
// For example, if the key is "foo bar", then to access it our CLI
// must be accessed with "./cli foo bar". See the docs for CLI for
// notes on how this changes some other behavior of the CLI as well.
//
// The factory should be as cheap as possible, ideally only allocating
// a struct. The factory may be called multiple times in the course
// of a command execution and certain events such as help require the
// instantiation of all commands. Expensive initialization should be
// deferred to function calls within the interface implementation.
Commands map[string]CommandFactory
// HiddenCommands is a list of commands that are "hidden". Hidden
// commands are not given to the help function callback and do not
// show up in autocomplete. The values in the slice should be equivalent
// to the keys in the command map.
HiddenCommands []string
// Name defines the name of the CLI.
Name string
// Version of the CLI.
Version string
// Autocomplete enables or disables subcommand auto-completion support.
// This is enabled by default when NewCLI is called. Otherwise, this
// must enabled explicitly.
//
// Autocomplete requires the "Name" option to be set on CLI. This name
// should be set exactly to the binary name that is autocompleted.
//
// Autocompletion is supported via the github.com/posener/complete
// library. This library supports bash, zsh and fish. To add support
// for other shells, please see that library.
//
// AutocompleteInstall and AutocompleteUninstall are the global flag
// names for installing and uninstalling the autocompletion handlers
// for the user's shell. The flag should omit the hyphen(s) in front of
// the value. Both single and double hyphens will automatically be supported
// for the flag name. These default to `autocomplete-install` and
// `autocomplete-uninstall` respectively.
//
// AutocompleteNoDefaultFlags is a boolean which controls if the default auto-
// complete flags like -help and -version are added to the output.
//
// AutocompleteGlobalFlags are a mapping of global flags for
// autocompletion. The help and version flags are automatically added.
Autocomplete bool
AutocompleteInstall string
AutocompleteUninstall string
AutocompleteNoDefaultFlags bool
AutocompleteGlobalFlags complete.Flags
autocompleteInstaller autocompleteInstaller // For tests
// HelpFunc is the function called to generate the generic help
// text that is shown if help must be shown for the CLI that doesn't
// pertain to a specific command.
HelpFunc HelpFunc
// HelpWriter is used to print help text and version when requested.
// Defaults to os.Stderr for backwards compatibility.
// It is recommended that you set HelpWriter to os.Stdout, and
// ErrorWriter to os.Stderr.
HelpWriter io.Writer
// ErrorWriter used to output errors when a command can not be run.
// Defaults to the value of HelpWriter for backwards compatibility.
// It is recommended that you set HelpWriter to os.Stdout, and
// ErrorWriter to os.Stderr.
ErrorWriter io.Writer
//---------------------------------------------------------------
// Internal fields set automatically
once sync.Once
autocomplete *complete.Complete
commandTree *radix.Tree
commandNested bool
commandHidden map[string]struct{}
subcommand string
subcommandArgs []string
topFlags []string
// These are true when special global flags are set. We can/should
// probably use a bitset for this one day.
isHelp bool
isVersion bool
isAutocompleteInstall bool
isAutocompleteUninstall bool
}
// NewClI returns a new CLI instance with sensible defaults.
func NewCLI(app, version string) *CLI {
return &CLI{
Name: app,
Version: version,
HelpFunc: BasicHelpFunc(app),
Autocomplete: true,
}
}
// IsHelp returns whether or not the help flag is present within the
// arguments.
func (c *CLI) IsHelp() bool {
c.once.Do(c.init)
return c.isHelp
}
// IsVersion returns whether or not the version flag is present within the
// arguments.
func (c *CLI) IsVersion() bool {
c.once.Do(c.init)
return c.isVersion
}
// Run runs the actual CLI based on the arguments given.
func (c *CLI) Run() (int, error) {
c.once.Do(c.init)
// If this is a autocompletion request, satisfy it. This must be called
// first before anything else since its possible to be autocompleting
// -help or -version or other flags and we want to show completions
// and not actually write the help or version.
if c.Autocomplete && c.autocomplete.Complete() {
return 0, nil
}
// Just show the version and exit if instructed.
if c.IsVersion() && c.Version != "" {
c.HelpWriter.Write([]byte(c.Version + "\n"))
return 0, nil
}
// Just print the help when only '-h' or '--help' is passed.
if c.IsHelp() && c.Subcommand() == "" {
c.HelpWriter.Write([]byte(c.HelpFunc(c.helpCommands(c.Subcommand())) + "\n"))
return 0, nil
}
// If we're attempting to install or uninstall autocomplete then handle
if c.Autocomplete {
// Autocomplete requires the "Name" to be set so that we know what
// command to setup the autocomplete on.
if c.Name == "" {
return 1, fmt.Errorf(
"internal error: CLI.Name must be specified for autocomplete to work")
}
// If both install and uninstall flags are specified, then error
if c.isAutocompleteInstall && c.isAutocompleteUninstall {
return 1, fmt.Errorf(
"Either the autocomplete install or uninstall flag may " +
"be specified, but not both.")
}
// If the install flag is specified, perform the install or uninstall
if c.isAutocompleteInstall {
if err := c.autocompleteInstaller.Install(c.Name); err != nil {
return 1, err
}
return 0, nil
}
if c.isAutocompleteUninstall {
if err := c.autocompleteInstaller.Uninstall(c.Name); err != nil {
return 1, err
}
return 0, nil
}
}
// Attempt to get the factory function for creating the command
// implementation. If the command is invalid or blank, it is an error.
raw, ok := c.commandTree.Get(c.Subcommand())
if !ok {
c.ErrorWriter.Write([]byte(c.HelpFunc(c.helpCommands(c.subcommandParent())) + "\n"))
return 127, nil
}
command, err := raw.(CommandFactory)()
if err != nil {
return 1, err
}
// If we've been instructed to just print the help, then print it
if c.IsHelp() {
c.commandHelp(c.HelpWriter, command)
return 0, nil
}
// If there is an invalid flag, then error
if len(c.topFlags) > 0 {
c.ErrorWriter.Write([]byte(
"Invalid flags before the subcommand. If these flags are for\n" +
"the subcommand, please put them after the subcommand.\n\n"))
c.commandHelp(c.ErrorWriter, command)
return 1, nil
}
code := command.Run(c.SubcommandArgs())
if code == RunResultHelp {
// Requesting help
c.commandHelp(c.ErrorWriter, command)
return 1, nil
}
return code, nil
}
// Subcommand returns the subcommand that the CLI would execute. For
// example, a CLI from "--version version --help" would return a Subcommand
// of "version"
func (c *CLI) Subcommand() string {
c.once.Do(c.init)
return c.subcommand
}
// SubcommandArgs returns the arguments that will be passed to the
// subcommand.
func (c *CLI) SubcommandArgs() []string {
c.once.Do(c.init)
return c.subcommandArgs
}
// subcommandParent returns the parent of this subcommand, if there is one.
// If there isn't on, "" is returned.
func (c *CLI) subcommandParent() string {
// Get the subcommand, if it is "" alread just return
sub := c.Subcommand()
if sub == "" {
return sub
}
// Clear any trailing spaces and find the last space
sub = strings.TrimRight(sub, " ")
idx := strings.LastIndex(sub, " ")
if idx == -1 {
// No space means our parent is root
return ""
}
return sub[:idx]
}
func (c *CLI) init() {
if c.HelpFunc == nil {
c.HelpFunc = BasicHelpFunc("app")
if c.Name != "" {
c.HelpFunc = BasicHelpFunc(c.Name)
}
}
if c.HelpWriter == nil {
c.HelpWriter = os.Stderr
}
if c.ErrorWriter == nil {
c.ErrorWriter = c.HelpWriter
}
// Build our hidden commands
if len(c.HiddenCommands) > 0 {
c.commandHidden = make(map[string]struct{})
for _, h := range c.HiddenCommands {
c.commandHidden[h] = struct{}{}
}
}
// Build our command tree
c.commandTree = radix.New()
c.commandNested = false
for k, v := range c.Commands {
k = strings.TrimSpace(k)
c.commandTree.Insert(k, v)
if strings.ContainsRune(k, ' ') {
c.commandNested = true
}
}
// Go through the key and fill in any missing parent commands
if c.commandNested {
var walkFn radix.WalkFn
toInsert := make(map[string]struct{})
walkFn = func(k string, raw interface{}) bool {
idx := strings.LastIndex(k, " ")
if idx == -1 {
// If there is no space, just ignore top level commands
return false
}
// Trim up to that space so we can get the expected parent
k = k[:idx]
if _, ok := c.commandTree.Get(k); ok {
// Yay we have the parent!
return false
}
// We're missing the parent, so let's insert this
toInsert[k] = struct{}{}
// Call the walk function recursively so we check this one too
return walkFn(k, nil)
}
// Walk!
c.commandTree.Walk(walkFn)
// Insert any that we're missing
for k := range toInsert {
var f CommandFactory = func() (Command, error) {
return &MockCommand{
HelpText: "This command is accessed by using one of the subcommands below.",
RunResult: RunResultHelp,
}, nil
}
c.commandTree.Insert(k, f)
}
}
// Setup autocomplete if we have it enabled. We have to do this after
// the command tree is setup so we can use the radix tree to easily find
// all subcommands.
if c.Autocomplete {
c.initAutocomplete()
}
// Process the args
c.processArgs()
}
func (c *CLI) initAutocomplete() {
if c.AutocompleteInstall == "" {
c.AutocompleteInstall = defaultAutocompleteInstall
}
if c.AutocompleteUninstall == "" {
c.AutocompleteUninstall = defaultAutocompleteUninstall
}
if c.autocompleteInstaller == nil {
c.autocompleteInstaller = &realAutocompleteInstaller{}
}
// We first set c.autocomplete to a noop autocompleter that outputs
// to nul so that we can detect if we're autocompleting or not. If we're
// not, then we do nothing. This saves a LOT of compute cycles since
// initAutoCompleteSub has to walk every command.
c.autocomplete = complete.New(c.Name, complete.Command{})
c.autocomplete.Out = ioutil.Discard
if !c.autocomplete.Complete() {
return
}
// Build the root command
cmd := c.initAutocompleteSub("")
// For the root, we add the global flags to the "Flags". This way
// they don't show up on every command.
if !c.AutocompleteNoDefaultFlags {
cmd.Flags = map[string]complete.Predictor{
"-" + c.AutocompleteInstall: complete.PredictNothing,
"-" + c.AutocompleteUninstall: complete.PredictNothing,
"-help": complete.PredictNothing,
"-version": complete.PredictNothing,
}
}
cmd.GlobalFlags = c.AutocompleteGlobalFlags
c.autocomplete = complete.New(c.Name, cmd)
}
// initAutocompleteSub creates the complete.Command for a subcommand with
// the given prefix. This will continue recursively for all subcommands.
// The prefix "" (empty string) can be used for the root command.
func (c *CLI) initAutocompleteSub(prefix string) complete.Command {
var cmd complete.Command
walkFn := func(k string, raw interface{}) bool {
// Ignore the empty key which can be present for default commands.
if k == "" {
return false
}
// Keep track of the full key so that we can nest further if necessary
fullKey := k
if len(prefix) > 0 {
// If we have a prefix, trim the prefix + 1 (for the space)
// Example: turns "sub one" to "one" with prefix "sub"
k = k[len(prefix)+1:]
}
if idx := strings.Index(k, " "); idx >= 0 {
// If there is a space, we trim up to the space. This turns
// "sub sub2 sub3" into "sub". The prefix trim above will
// trim our current depth properly.
k = k[:idx]
}
if _, ok := cmd.Sub[k]; ok {
// If we already tracked this subcommand then ignore
return false
}
// If the command is hidden, don't record it at all
if _, ok := c.commandHidden[fullKey]; ok {
return false
}
if cmd.Sub == nil {
cmd.Sub = complete.Commands(make(map[string]complete.Command))
}
subCmd := c.initAutocompleteSub(fullKey)
// Instantiate the command so that we can check if the command is
// a CommandAutocomplete implementation. If there is an error
// creating the command, we just ignore it since that will be caught
// later.
impl, err := raw.(CommandFactory)()
if err != nil {
impl = nil
}
// Check if it implements ComandAutocomplete. If so, setup the autocomplete
if c, ok := impl.(CommandAutocomplete); ok {
subCmd.Args = c.AutocompleteArgs()
subCmd.Flags = c.AutocompleteFlags()
}
cmd.Sub[k] = subCmd
return false
}
walkPrefix := prefix
if walkPrefix != "" {
walkPrefix += " "
}
c.commandTree.WalkPrefix(walkPrefix, walkFn)
return cmd
}
func (c *CLI) commandHelp(out io.Writer, command Command) {
// Get the template to use
tpl := strings.TrimSpace(defaultHelpTemplate)
if t, ok := command.(CommandHelpTemplate); ok {
tpl = t.HelpTemplate()
}
if !strings.HasSuffix(tpl, "\n") {
tpl += "\n"
}
// Parse it
t, err := template.New("root").Funcs(sprig.TxtFuncMap()).Parse(tpl)
if err != nil {
t = template.Must(template.New("root").Parse(fmt.Sprintf(
"Internal error! Failed to parse command help template: %s\n", err)))
}
// Template data
data := map[string]interface{}{
"Name": c.Name,
"SubcommandName": c.Subcommand(),
"Help": command.Help(),
}
// Build subcommand list if we have it
var subcommandsTpl []map[string]interface{}
if c.commandNested {
// Get the matching keys
subcommands := c.helpCommands(c.Subcommand())
keys := make([]string, 0, len(subcommands))
for k := range subcommands {
keys = append(keys, k)
}
// Sort the keys
sort.Strings(keys)
// Figure out the padding length
var longest int
for _, k := range keys {
if v := len(k); v > longest {
longest = v
}
}
// Go through and create their structures
subcommandsTpl = make([]map[string]interface{}, 0, len(subcommands))
for _, k := range keys {
// Get the command
raw, ok := subcommands[k]
if !ok {
c.ErrorWriter.Write([]byte(fmt.Sprintf(
"Error getting subcommand %q", k)))
}
sub, err := raw()
if err != nil {
c.ErrorWriter.Write([]byte(fmt.Sprintf(
"Error instantiating %q: %s", k, err)))
}
// Find the last space and make sure we only include that last part
name := k
if idx := strings.LastIndex(k, " "); idx > -1 {
name = name[idx+1:]
}
subcommandsTpl = append(subcommandsTpl, map[string]interface{}{
"Name": name,
"NameAligned": name + strings.Repeat(" ", longest-len(k)),
"Help": sub.Help(),
"Synopsis": sub.Synopsis(),
})
}
}
data["Subcommands"] = subcommandsTpl
// Write
err = t.Execute(out, data)
if err == nil {
return
}
// An error, just output...
c.ErrorWriter.Write([]byte(fmt.Sprintf(
"Internal error rendering help: %s", err)))
}
// helpCommands returns the subcommands for the HelpFunc argument.
// This will only contain immediate subcommands.
func (c *CLI) helpCommands(prefix string) map[string]CommandFactory {
// If our prefix isn't empty, make sure it ends in ' '
if prefix != "" && prefix[len(prefix)-1] != ' ' {
prefix += " "
}
// Get all the subkeys of this command
var keys []string
c.commandTree.WalkPrefix(prefix, func(k string, raw interface{}) bool {
// Ignore any sub-sub keys, i.e. "foo bar baz" when we want "foo bar"
if !strings.Contains(k[len(prefix):], " ") {
keys = append(keys, k)
}
return false
})
// For each of the keys return that in the map
result := make(map[string]CommandFactory, len(keys))
for _, k := range keys {
raw, ok := c.commandTree.Get(k)
if !ok {
// We just got it via WalkPrefix above, so we just panic
panic("not found: " + k)
}
// If this is a hidden command, don't show it
if _, ok := c.commandHidden[k]; ok {
continue
}
result[k] = raw.(CommandFactory)
}
return result
}
func (c *CLI) processArgs() {
for i, arg := range c.Args {
if arg == "--" {
break
}
// Check for help flags.
if arg == "-h" || arg == "-help" || arg == "--help" {
c.isHelp = true
continue
}
// Check for autocomplete flags
if c.Autocomplete {
if arg == "-"+c.AutocompleteInstall || arg == "--"+c.AutocompleteInstall {
c.isAutocompleteInstall = true
continue
}
if arg == "-"+c.AutocompleteUninstall || arg == "--"+c.AutocompleteUninstall {
c.isAutocompleteUninstall = true
continue
}
}
if c.subcommand == "" {
// Check for version flags if not in a subcommand.
if arg == "-v" || arg == "-version" || arg == "--version" {
c.isVersion = true
continue
}
if arg != "" && arg[0] == '-' {
// Record the arg...
c.topFlags = append(c.topFlags, arg)
}
}
// If we didn't find a subcommand yet and this is the first non-flag
// argument, then this is our subcommand.
if c.subcommand == "" && arg != "" && arg[0] != '-' {
c.subcommand = arg
if c.commandNested {
// If the command has a space in it, then it is invalid.
// Set a blank command so that it fails.
if strings.ContainsRune(arg, ' ') {
c.subcommand = ""
return
}
// Determine the argument we look to to end subcommands.
// We look at all arguments until one has a space. This
// disallows commands like: ./cli foo "bar baz". An argument
// with a space is always an argument.
j := 0
for k, v := range c.Args[i:] {
if strings.ContainsRune(v, ' ') {
break
}
j = i + k + 1
}
// Nested CLI, the subcommand is actually the entire
// arg list up to a flag that is still a valid subcommand.
searchKey := strings.Join(c.Args[i:j], " ")
k, _, ok := c.commandTree.LongestPrefix(searchKey)
if ok {
// k could be a prefix that doesn't contain the full
// command such as "foo" instead of "foobar", so we
// need to verify that we have an entire key. To do that,
// we look for an ending in a space or an end of string.
reVerify := regexp.MustCompile(regexp.QuoteMeta(k) + `( |$)`)
if reVerify.MatchString(searchKey) {
c.subcommand = k
i += strings.Count(k, " ")
}
}
}
// The remaining args the subcommand arguments
c.subcommandArgs = c.Args[i+1:]
}
}
// If we never found a subcommand and support a default command, then
// switch to using that.
if c.subcommand == "" {
if _, ok := c.Commands[""]; ok {
args := c.topFlags
args = append(args, c.subcommandArgs...)
c.topFlags = nil
c.subcommandArgs = args
}
}
}
// defaultAutocompleteInstall and defaultAutocompleteUninstall are the
// default values for the autocomplete install and uninstall flags.
const defaultAutocompleteInstall = "autocomplete-install"
const defaultAutocompleteUninstall = "autocomplete-uninstall"
const defaultHelpTemplate = `
{{.Help}}{{if gt (len .Subcommands) 0}}
Subcommands:
{{- range $value := .Subcommands }}
{{ $value.NameAligned }} {{ $value.Synopsis }}{{ end }}
{{- end }}
`

67
vendor/github.com/mitchellh/cli/command.go generated vendored Normal file
View File

@@ -0,0 +1,67 @@
package cli
import (
"github.com/posener/complete"
)
const (
// RunResultHelp is a value that can be returned from Run to signal
// to the CLI to render the help output.
RunResultHelp = -18511
)
// A command is a runnable sub-command of a CLI.
type Command interface {
// Help should return long-form help text that includes the command-line
// usage, a brief few sentences explaining the function of the command,
// and the complete list of flags the command accepts.
Help() string
// Run should run the actual command with the given CLI instance and
// command-line arguments. It should return the exit status when it is
// finished.
//
// There are a handful of special exit codes this can return documented
// above that change behavior.
Run(args []string) int
// Synopsis should return a one-line, short synopsis of the command.
// This should be less than 50 characters ideally.
Synopsis() string
}
// CommandAutocomplete is an extension of Command that enables fine-grained
// autocompletion. Subcommand autocompletion will work even if this interface
// is not implemented. By implementing this interface, more advanced
// autocompletion is enabled.
type CommandAutocomplete interface {
// AutocompleteArgs returns the argument predictor for this command.
// If argument completion is not supported, this should return
// complete.PredictNothing.
AutocompleteArgs() complete.Predictor
// AutocompleteFlags returns a mapping of supported flags and autocomplete
// options for this command. The map key for the Flags map should be the
// complete flag such as "-foo" or "--foo".
AutocompleteFlags() complete.Flags
}
// CommandHelpTemplate is an extension of Command that also has a function
// for returning a template for the help rather than the help itself. In
// this scenario, both Help and HelpTemplate should be implemented.
//
// If CommandHelpTemplate isn't implemented, the Help is output as-is.
type CommandHelpTemplate interface {
// HelpTemplate is the template in text/template format to use for
// displaying the Help. The keys available are:
//
// * ".Help" - The help text itself
// * ".Subcommands"
//
HelpTemplate() string
}
// CommandFactory is a type of function that is a factory for commands.
// We need a factory because we may need to setup some state on the
// struct that implements the command itself.
type CommandFactory func() (Command, error)

63
vendor/github.com/mitchellh/cli/command_mock.go generated vendored Normal file
View File

@@ -0,0 +1,63 @@
package cli
import (
"github.com/posener/complete"
)
// MockCommand is an implementation of Command that can be used for tests.
// It is publicly exported from this package in case you want to use it
// externally.
type MockCommand struct {
// Settable
HelpText string
RunResult int
SynopsisText string
// Set by the command
RunCalled bool
RunArgs []string
}
func (c *MockCommand) Help() string {
return c.HelpText
}
func (c *MockCommand) Run(args []string) int {
c.RunCalled = true
c.RunArgs = args
return c.RunResult
}
func (c *MockCommand) Synopsis() string {
return c.SynopsisText
}
// MockCommandAutocomplete is an implementation of CommandAutocomplete.
type MockCommandAutocomplete struct {
MockCommand
// Settable
AutocompleteArgsValue complete.Predictor
AutocompleteFlagsValue complete.Flags
}
func (c *MockCommandAutocomplete) AutocompleteArgs() complete.Predictor {
return c.AutocompleteArgsValue
}
func (c *MockCommandAutocomplete) AutocompleteFlags() complete.Flags {
return c.AutocompleteFlagsValue
}
// MockCommandHelpTemplate is an implementation of CommandHelpTemplate.
type MockCommandHelpTemplate struct {
MockCommand
// Settable
HelpTemplateText string
}
func (c *MockCommandHelpTemplate) HelpTemplate() string {
return c.HelpTemplateText
}

79
vendor/github.com/mitchellh/cli/help.go generated vendored Normal file
View File

@@ -0,0 +1,79 @@
package cli
import (
"bytes"
"fmt"
"log"
"sort"
"strings"
)
// HelpFunc is the type of the function that is responsible for generating
// the help output when the CLI must show the general help text.
type HelpFunc func(map[string]CommandFactory) string
// BasicHelpFunc generates some basic help output that is usually good enough
// for most CLI applications.
func BasicHelpFunc(app string) HelpFunc {
return func(commands map[string]CommandFactory) string {
var buf bytes.Buffer
buf.WriteString(fmt.Sprintf(
"Usage: %s [--version] [--help] <command> [<args>]\n\n",
app))
buf.WriteString("Available commands are:\n")
// Get the list of keys so we can sort them, and also get the maximum
// key length so they can be aligned properly.
keys := make([]string, 0, len(commands))
maxKeyLen := 0
for key := range commands {
if len(key) > maxKeyLen {
maxKeyLen = len(key)
}
keys = append(keys, key)
}
sort.Strings(keys)
for _, key := range keys {
commandFunc, ok := commands[key]
if !ok {
// This should never happen since we JUST built the list of
// keys.
panic("command not found: " + key)
}
command, err := commandFunc()
if err != nil {
log.Printf("[ERR] cli: Command '%s' failed to load: %s",
key, err)
continue
}
key = fmt.Sprintf("%s%s", key, strings.Repeat(" ", maxKeyLen-len(key)))
buf.WriteString(fmt.Sprintf(" %s %s\n", key, command.Synopsis()))
}
return buf.String()
}
}
// FilteredHelpFunc will filter the commands to only include the keys
// in the include parameter.
func FilteredHelpFunc(include []string, f HelpFunc) HelpFunc {
return func(commands map[string]CommandFactory) string {
set := make(map[string]struct{})
for _, k := range include {
set[k] = struct{}{}
}
filtered := make(map[string]CommandFactory)
for k, f := range commands {
if _, ok := set[k]; ok {
filtered[k] = f
}
}
return f(filtered)
}
}

187
vendor/github.com/mitchellh/cli/ui.go generated vendored Normal file
View File

@@ -0,0 +1,187 @@
package cli
import (
"bufio"
"errors"
"fmt"
"io"
"os"
"os/signal"
"strings"
"github.com/bgentry/speakeasy"
"github.com/mattn/go-isatty"
)
// Ui is an interface for interacting with the terminal, or "interface"
// of a CLI. This abstraction doesn't have to be used, but helps provide
// a simple, layerable way to manage user interactions.
type Ui interface {
// Ask asks the user for input using the given query. The response is
// returned as the given string, or an error.
Ask(string) (string, error)
// AskSecret asks the user for input using the given query, but does not echo
// the keystrokes to the terminal.
AskSecret(string) (string, error)
// Output is called for normal standard output.
Output(string)
// Info is called for information related to the previous output.
// In general this may be the exact same as Output, but this gives
// Ui implementors some flexibility with output formats.
Info(string)
// Error is used for any error messages that might appear on standard
// error.
Error(string)
// Warn is used for any warning messages that might appear on standard
// error.
Warn(string)
}
// BasicUi is an implementation of Ui that just outputs to the given
// writer. This UI is not threadsafe by default, but you can wrap it
// in a ConcurrentUi to make it safe.
type BasicUi struct {
Reader io.Reader
Writer io.Writer
ErrorWriter io.Writer
}
func (u *BasicUi) Ask(query string) (string, error) {
return u.ask(query, false)
}
func (u *BasicUi) AskSecret(query string) (string, error) {
return u.ask(query, true)
}
func (u *BasicUi) ask(query string, secret bool) (string, error) {
if _, err := fmt.Fprint(u.Writer, query+" "); err != nil {
return "", err
}
// Register for interrupts so that we can catch it and immediately
// return...
sigCh := make(chan os.Signal, 1)
signal.Notify(sigCh, os.Interrupt)
defer signal.Stop(sigCh)
// Ask for input in a go-routine so that we can ignore it.
errCh := make(chan error, 1)
lineCh := make(chan string, 1)
go func() {
var line string
var err error
if secret && isatty.IsTerminal(os.Stdin.Fd()) {
line, err = speakeasy.Ask("")
} else {
r := bufio.NewReader(u.Reader)
line, err = r.ReadString('\n')
}
if err != nil {
errCh <- err
return
}
lineCh <- strings.TrimRight(line, "\r\n")
}()
select {
case err := <-errCh:
return "", err
case line := <-lineCh:
return line, nil
case <-sigCh:
// Print a newline so that any further output starts properly
// on a new line.
fmt.Fprintln(u.Writer)
return "", errors.New("interrupted")
}
}
func (u *BasicUi) Error(message string) {
w := u.Writer
if u.ErrorWriter != nil {
w = u.ErrorWriter
}
fmt.Fprint(w, message)
fmt.Fprint(w, "\n")
}
func (u *BasicUi) Info(message string) {
u.Output(message)
}
func (u *BasicUi) Output(message string) {
fmt.Fprint(u.Writer, message)
fmt.Fprint(u.Writer, "\n")
}
func (u *BasicUi) Warn(message string) {
u.Error(message)
}
// PrefixedUi is an implementation of Ui that prefixes messages.
type PrefixedUi struct {
AskPrefix string
AskSecretPrefix string
OutputPrefix string
InfoPrefix string
ErrorPrefix string
WarnPrefix string
Ui Ui
}
func (u *PrefixedUi) Ask(query string) (string, error) {
if query != "" {
query = fmt.Sprintf("%s%s", u.AskPrefix, query)
}
return u.Ui.Ask(query)
}
func (u *PrefixedUi) AskSecret(query string) (string, error) {
if query != "" {
query = fmt.Sprintf("%s%s", u.AskSecretPrefix, query)
}
return u.Ui.AskSecret(query)
}
func (u *PrefixedUi) Error(message string) {
if message != "" {
message = fmt.Sprintf("%s%s", u.ErrorPrefix, message)
}
u.Ui.Error(message)
}
func (u *PrefixedUi) Info(message string) {
if message != "" {
message = fmt.Sprintf("%s%s", u.InfoPrefix, message)
}
u.Ui.Info(message)
}
func (u *PrefixedUi) Output(message string) {
if message != "" {
message = fmt.Sprintf("%s%s", u.OutputPrefix, message)
}
u.Ui.Output(message)
}
func (u *PrefixedUi) Warn(message string) {
if message != "" {
message = fmt.Sprintf("%s%s", u.WarnPrefix, message)
}
u.Ui.Warn(message)
}

73
vendor/github.com/mitchellh/cli/ui_colored.go generated vendored Normal file
View File

@@ -0,0 +1,73 @@
package cli
import (
"github.com/fatih/color"
)
const (
noColor = -1
)
// UiColor is a posix shell color code to use.
type UiColor struct {
Code int
Bold bool
}
// A list of colors that are useful. These are all non-bolded by default.
var (
UiColorNone UiColor = UiColor{noColor, false}
UiColorRed = UiColor{int(color.FgHiRed), false}
UiColorGreen = UiColor{int(color.FgHiGreen), false}
UiColorYellow = UiColor{int(color.FgHiYellow), false}
UiColorBlue = UiColor{int(color.FgHiBlue), false}
UiColorMagenta = UiColor{int(color.FgHiMagenta), false}
UiColorCyan = UiColor{int(color.FgHiCyan), false}
)
// ColoredUi is a Ui implementation that colors its output according
// to the given color schemes for the given type of output.
type ColoredUi struct {
OutputColor UiColor
InfoColor UiColor
ErrorColor UiColor
WarnColor UiColor
Ui Ui
}
func (u *ColoredUi) Ask(query string) (string, error) {
return u.Ui.Ask(u.colorize(query, u.OutputColor))
}
func (u *ColoredUi) AskSecret(query string) (string, error) {
return u.Ui.AskSecret(u.colorize(query, u.OutputColor))
}
func (u *ColoredUi) Output(message string) {
u.Ui.Output(u.colorize(message, u.OutputColor))
}
func (u *ColoredUi) Info(message string) {
u.Ui.Info(u.colorize(message, u.InfoColor))
}
func (u *ColoredUi) Error(message string) {
u.Ui.Error(u.colorize(message, u.ErrorColor))
}
func (u *ColoredUi) Warn(message string) {
u.Ui.Warn(u.colorize(message, u.WarnColor))
}
func (u *ColoredUi) colorize(message string, uc UiColor) string {
if uc.Code == noColor {
return message
}
attr := []color.Attribute{color.Attribute(uc.Code)}
if uc.Bold {
attr = append(attr, color.Bold)
}
return color.New(attr...).SprintFunc()(message)
}

54
vendor/github.com/mitchellh/cli/ui_concurrent.go generated vendored Normal file
View File

@@ -0,0 +1,54 @@
package cli
import (
"sync"
)
// ConcurrentUi is a wrapper around a Ui interface (and implements that
// interface) making the underlying Ui concurrency safe.
type ConcurrentUi struct {
Ui Ui
l sync.Mutex
}
func (u *ConcurrentUi) Ask(query string) (string, error) {
u.l.Lock()
defer u.l.Unlock()
return u.Ui.Ask(query)
}
func (u *ConcurrentUi) AskSecret(query string) (string, error) {
u.l.Lock()
defer u.l.Unlock()
return u.Ui.AskSecret(query)
}
func (u *ConcurrentUi) Error(message string) {
u.l.Lock()
defer u.l.Unlock()
u.Ui.Error(message)
}
func (u *ConcurrentUi) Info(message string) {
u.l.Lock()
defer u.l.Unlock()
u.Ui.Info(message)
}
func (u *ConcurrentUi) Output(message string) {
u.l.Lock()
defer u.l.Unlock()
u.Ui.Output(message)
}
func (u *ConcurrentUi) Warn(message string) {
u.l.Lock()
defer u.l.Unlock()
u.Ui.Warn(message)
}

116
vendor/github.com/mitchellh/cli/ui_mock.go generated vendored Normal file
View File

@@ -0,0 +1,116 @@
package cli
import (
"bufio"
"bytes"
"fmt"
"io"
"strings"
"sync"
)
// NewMockUi returns a fully initialized MockUi instance
// which is safe for concurrent use.
func NewMockUi() *MockUi {
m := new(MockUi)
m.once.Do(m.init)
return m
}
// MockUi is a mock UI that is used for tests and is exported publicly
// for use in external tests if needed as well. Do not instantite this
// directly since the buffers will be initialized on the first write. If
// there is no write then you will get a nil panic. Please use the
// NewMockUi() constructor function instead. You can fix your code with
//
// sed -i -e 's/new(cli.MockUi)/cli.NewMockUi()/g' *_test.go
type MockUi struct {
InputReader io.Reader
ErrorWriter *syncBuffer
OutputWriter *syncBuffer
once sync.Once
}
func (u *MockUi) Ask(query string) (string, error) {
u.once.Do(u.init)
var result string
fmt.Fprint(u.OutputWriter, query)
r := bufio.NewReader(u.InputReader)
line, err := r.ReadString('\n')
if err != nil {
return "", err
}
result = strings.TrimRight(line, "\r\n")
return result, nil
}
func (u *MockUi) AskSecret(query string) (string, error) {
return u.Ask(query)
}
func (u *MockUi) Error(message string) {
u.once.Do(u.init)
fmt.Fprint(u.ErrorWriter, message)
fmt.Fprint(u.ErrorWriter, "\n")
}
func (u *MockUi) Info(message string) {
u.Output(message)
}
func (u *MockUi) Output(message string) {
u.once.Do(u.init)
fmt.Fprint(u.OutputWriter, message)
fmt.Fprint(u.OutputWriter, "\n")
}
func (u *MockUi) Warn(message string) {
u.once.Do(u.init)
fmt.Fprint(u.ErrorWriter, message)
fmt.Fprint(u.ErrorWriter, "\n")
}
func (u *MockUi) init() {
u.ErrorWriter = new(syncBuffer)
u.OutputWriter = new(syncBuffer)
}
type syncBuffer struct {
sync.RWMutex
b bytes.Buffer
}
func (b *syncBuffer) Write(data []byte) (int, error) {
b.Lock()
defer b.Unlock()
return b.b.Write(data)
}
func (b *syncBuffer) Read(data []byte) (int, error) {
b.RLock()
defer b.RUnlock()
return b.b.Read(data)
}
func (b *syncBuffer) Reset() {
b.Lock()
b.b.Reset()
b.Unlock()
}
func (b *syncBuffer) String() string {
return string(b.Bytes())
}
func (b *syncBuffer) Bytes() []byte {
b.RLock()
data := b.b.Bytes()
b.RUnlock()
return data
}

18
vendor/github.com/mitchellh/cli/ui_writer.go generated vendored Normal file
View File

@@ -0,0 +1,18 @@
package cli
// UiWriter is an io.Writer implementation that can be used with
// loggers that writes every line of log output data to a Ui at the
// Info level.
type UiWriter struct {
Ui Ui
}
func (w *UiWriter) Write(p []byte) (n int, err error) {
n = len(p)
if n > 0 && p[n-1] == '\n' {
p = p[:n-1]
}
w.Ui.Info(string(p))
return n, nil
}

15
vendor/github.com/mitchellh/colorstring/.travis.yml generated vendored Normal file
View File

@@ -0,0 +1,15 @@
language: go
go:
- 1.0
- 1.1
- 1.2
- 1.3
- tip
script:
- go test
matrix:
allow_failures:
- go: tip

21
vendor/github.com/mitchellh/colorstring/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2014 Mitchell Hashimoto
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

30
vendor/github.com/mitchellh/colorstring/README.md generated vendored Normal file
View File

@@ -0,0 +1,30 @@
# colorstring [![Build Status](https://travis-ci.org/mitchellh/colorstring.svg)](https://travis-ci.org/mitchellh/colorstring)
colorstring is a [Go](http://www.golang.org) library for outputting colored
strings to a console using a simple inline syntax in your string to specify
the color to print as.
For example, the string `[blue]hello [red]world` would output the text
"hello world" in two colors. The API of colorstring allows for easily disabling
colors, adding aliases, etc.
## Installation
Standard `go get`:
```
$ go get github.com/mitchellh/colorstring
```
## Usage & Example
For usage and examples see the [Godoc](http://godoc.org/github.com/mitchellh/colorstring).
Usage is easy enough:
```go
colorstring.Println("[blue]Hello [red]World!")
```
Additionally, the `Colorize` struct can be used to set options such as
custom colors, color disabling, etc.

244
vendor/github.com/mitchellh/colorstring/colorstring.go generated vendored Normal file
View File

@@ -0,0 +1,244 @@
// colorstring provides functions for colorizing strings for terminal
// output.
package colorstring
import (
"bytes"
"fmt"
"io"
"regexp"
"strings"
)
// Color colorizes your strings using the default settings.
//
// Strings given to Color should use the syntax `[color]` to specify the
// color for text following. For example: `[blue]Hello` will return "Hello"
// in blue. See DefaultColors for all the supported colors and attributes.
//
// If an unrecognized color is given, it is ignored and assumed to be part
// of the string. For example: `[hi]world` will result in "[hi]world".
//
// A color reset is appended to the end of every string. This will reset
// the color of following strings when you output this text to the same
// terminal session.
//
// If you want to customize any of this behavior, use the Colorize struct.
func Color(v string) string {
return def.Color(v)
}
// ColorPrefix returns the color sequence that prefixes the given text.
//
// This is useful when wrapping text if you want to inherit the color
// of the wrapped text. For example, "[green]foo" will return "[green]".
// If there is no color sequence, then this will return "".
func ColorPrefix(v string) string {
return def.ColorPrefix(v)
}
// Colorize colorizes your strings, giving you the ability to customize
// some of the colorization process.
//
// The options in Colorize can be set to customize colorization. If you're
// only interested in the defaults, just use the top Color function directly,
// which creates a default Colorize.
type Colorize struct {
// Colors maps a color string to the code for that color. The code
// is a string so that you can use more complex colors to set foreground,
// background, attributes, etc. For example, "boldblue" might be
// "1;34"
Colors map[string]string
// If true, color attributes will be ignored. This is useful if you're
// outputting to a location that doesn't support colors and you just
// want the strings returned.
Disable bool
// Reset, if true, will reset the color after each colorization by
// adding a reset code at the end.
Reset bool
}
// Color colorizes a string according to the settings setup in the struct.
//
// For more details on the syntax, see the top-level Color function.
func (c *Colorize) Color(v string) string {
matches := parseRe.FindAllStringIndex(v, -1)
if len(matches) == 0 {
return v
}
result := new(bytes.Buffer)
colored := false
m := []int{0, 0}
for _, nm := range matches {
// Write the text in between this match and the last
result.WriteString(v[m[1]:nm[0]])
m = nm
var replace string
if code, ok := c.Colors[v[m[0]+1:m[1]-1]]; ok {
colored = true
if !c.Disable {
replace = fmt.Sprintf("\033[%sm", code)
}
} else {
replace = v[m[0]:m[1]]
}
result.WriteString(replace)
}
result.WriteString(v[m[1]:])
if colored && c.Reset && !c.Disable {
// Write the clear byte at the end
result.WriteString("\033[0m")
}
return result.String()
}
// ColorPrefix returns the first color sequence that exists in this string.
//
// For example: "[green]foo" would return "[green]". If no color sequence
// exists, then "" is returned. This is especially useful when wrapping
// colored texts to inherit the color of the wrapped text.
func (c *Colorize) ColorPrefix(v string) string {
return prefixRe.FindString(strings.TrimSpace(v))
}
// DefaultColors are the default colors used when colorizing.
//
// If the color is surrounded in underscores, such as "_blue_", then that
// color will be used for the background color.
var DefaultColors map[string]string
func init() {
DefaultColors = map[string]string{
// Default foreground/background colors
"default": "39",
"_default_": "49",
// Foreground colors
"black": "30",
"red": "31",
"green": "32",
"yellow": "33",
"blue": "34",
"magenta": "35",
"cyan": "36",
"light_gray": "37",
"dark_gray": "90",
"light_red": "91",
"light_green": "92",
"light_yellow": "93",
"light_blue": "94",
"light_magenta": "95",
"light_cyan": "96",
"white": "97",
// Background colors
"_black_": "40",
"_red_": "41",
"_green_": "42",
"_yellow_": "43",
"_blue_": "44",
"_magenta_": "45",
"_cyan_": "46",
"_light_gray_": "47",
"_dark_gray_": "100",
"_light_red_": "101",
"_light_green_": "102",
"_light_yellow_": "103",
"_light_blue_": "104",
"_light_magenta_": "105",
"_light_cyan_": "106",
"_white_": "107",
// Attributes
"bold": "1",
"dim": "2",
"underline": "4",
"blink_slow": "5",
"blink_fast": "6",
"invert": "7",
"hidden": "8",
// Reset to reset everything to their defaults
"reset": "0",
"reset_bold": "21",
}
def = Colorize{
Colors: DefaultColors,
Reset: true,
}
}
var def Colorize
var parseReRaw = `\[[a-z0-9_-]+\]`
var parseRe = regexp.MustCompile(`(?i)` + parseReRaw)
var prefixRe = regexp.MustCompile(`^(?i)(` + parseReRaw + `)+`)
// Print is a convenience wrapper for fmt.Print with support for color codes.
//
// Print formats using the default formats for its operands and writes to
// standard output with support for color codes. Spaces are added between
// operands when neither is a string. It returns the number of bytes written
// and any write error encountered.
func Print(a string) (n int, err error) {
return fmt.Print(Color(a))
}
// Println is a convenience wrapper for fmt.Println with support for color
// codes.
//
// Println formats using the default formats for its operands and writes to
// standard output with support for color codes. Spaces are always added
// between operands and a newline is appended. It returns the number of bytes
// written and any write error encountered.
func Println(a string) (n int, err error) {
return fmt.Println(Color(a))
}
// Printf is a convenience wrapper for fmt.Printf with support for color codes.
//
// Printf formats according to a format specifier and writes to standard output
// with support for color codes. It returns the number of bytes written and any
// write error encountered.
func Printf(format string, a ...interface{}) (n int, err error) {
return fmt.Printf(Color(format), a...)
}
// Fprint is a convenience wrapper for fmt.Fprint with support for color codes.
//
// Fprint formats using the default formats for its operands and writes to w
// with support for color codes. Spaces are added between operands when neither
// is a string. It returns the number of bytes written and any write error
// encountered.
func Fprint(w io.Writer, a string) (n int, err error) {
return fmt.Fprint(w, Color(a))
}
// Fprintln is a convenience wrapper for fmt.Fprintln with support for color
// codes.
//
// Fprintln formats using the default formats for its operands and writes to w
// with support for color codes. Spaces are always added between operands and a
// newline is appended. It returns the number of bytes written and any write
// error encountered.
func Fprintln(w io.Writer, a string) (n int, err error) {
return fmt.Fprintln(w, Color(a))
}
// Fprintf is a convenience wrapper for fmt.Fprintf with support for color
// codes.
//
// Fprintf formats according to a format specifier and writes to w with support
// for color codes. It returns the number of bytes written and any write error
// encountered.
func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) {
return fmt.Fprintf(w, Color(format), a...)
}

21
vendor/github.com/mitchellh/copystructure/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2014 Mitchell Hashimoto
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

21
vendor/github.com/mitchellh/copystructure/README.md generated vendored Normal file
View File

@@ -0,0 +1,21 @@
# copystructure
copystructure is a Go library for deep copying values in Go.
This allows you to copy Go values that may contain reference values
such as maps, slices, or pointers, and copy their data as well instead
of just their references.
## Installation
Standard `go get`:
```
$ go get github.com/mitchellh/copystructure
```
## Usage & Example
For usage and examples see the [Godoc](http://godoc.org/github.com/mitchellh/copystructure).
The `Copy` function has examples associated with it there.

View File

@@ -0,0 +1,15 @@
package copystructure
import (
"reflect"
"time"
)
func init() {
Copiers[reflect.TypeOf(time.Time{})] = timeCopier
}
func timeCopier(v interface{}) (interface{}, error) {
// Just... copy it.
return v.(time.Time), nil
}

View File

@@ -0,0 +1,631 @@
package copystructure
import (
"errors"
"reflect"
"sync"
"github.com/mitchellh/reflectwalk"
)
const tagKey = "copy"
// Copy returns a deep copy of v.
//
// Copy is unable to copy unexported fields in a struct (lowercase field names).
// Unexported fields can't be reflected by the Go runtime and therefore
// copystructure can't perform any data copies.
//
// For structs, copy behavior can be controlled with struct tags. For example:
//
// struct {
// Name string
// Data *bytes.Buffer `copy:"shallow"`
// }
//
// The available tag values are:
//
// * "ignore" - The field will be ignored, effectively resulting in it being
// assigned the zero value in the copy.
//
// * "shallow" - The field will be be shallow copied. This means that references
// values such as pointers, maps, slices, etc. will be directly assigned
// versus deep copied.
//
func Copy(v interface{}) (interface{}, error) {
return Config{}.Copy(v)
}
// CopierFunc is a function that knows how to deep copy a specific type.
// Register these globally with the Copiers variable.
type CopierFunc func(interface{}) (interface{}, error)
// Copiers is a map of types that behave specially when they are copied.
// If a type is found in this map while deep copying, this function
// will be called to copy it instead of attempting to copy all fields.
//
// The key should be the type, obtained using: reflect.TypeOf(value with type).
//
// It is unsafe to write to this map after Copies have started. If you
// are writing to this map while also copying, wrap all modifications to
// this map as well as to Copy in a mutex.
var Copiers map[reflect.Type]CopierFunc = make(map[reflect.Type]CopierFunc)
// ShallowCopiers is a map of pointer types that behave specially
// when they are copied. If a type is found in this map while deep
// copying, the pointer value will be shallow copied and not walked
// into.
//
// The key should be the type, obtained using: reflect.TypeOf(value
// with type).
//
// It is unsafe to write to this map after Copies have started. If you
// are writing to this map while also copying, wrap all modifications to
// this map as well as to Copy in a mutex.
var ShallowCopiers map[reflect.Type]struct{} = make(map[reflect.Type]struct{})
// Must is a helper that wraps a call to a function returning
// (interface{}, error) and panics if the error is non-nil. It is intended
// for use in variable initializations and should only be used when a copy
// error should be a crashing case.
func Must(v interface{}, err error) interface{} {
if err != nil {
panic("copy error: " + err.Error())
}
return v
}
var errPointerRequired = errors.New("Copy argument must be a pointer when Lock is true")
type Config struct {
// Lock any types that are a sync.Locker and are not a mutex while copying.
// If there is an RLocker method, use that to get the sync.Locker.
Lock bool
// Copiers is a map of types associated with a CopierFunc. Use the global
// Copiers map if this is nil.
Copiers map[reflect.Type]CopierFunc
// ShallowCopiers is a map of pointer types that when they are
// shallow copied no matter where they are encountered. Use the
// global ShallowCopiers if this is nil.
ShallowCopiers map[reflect.Type]struct{}
}
func (c Config) Copy(v interface{}) (interface{}, error) {
if c.Lock && reflect.ValueOf(v).Kind() != reflect.Ptr {
return nil, errPointerRequired
}
w := new(walker)
if c.Lock {
w.useLocks = true
}
if c.Copiers == nil {
c.Copiers = Copiers
}
w.copiers = c.Copiers
if c.ShallowCopiers == nil {
c.ShallowCopiers = ShallowCopiers
}
w.shallowCopiers = c.ShallowCopiers
err := reflectwalk.Walk(v, w)
if err != nil {
return nil, err
}
// Get the result. If the result is nil, then we want to turn it
// into a typed nil if we can.
result := w.Result
if result == nil {
val := reflect.ValueOf(v)
result = reflect.Indirect(reflect.New(val.Type())).Interface()
}
return result, nil
}
// Return the key used to index interfaces types we've seen. Store the number
// of pointers in the upper 32bits, and the depth in the lower 32bits. This is
// easy to calculate, easy to match a key with our current depth, and we don't
// need to deal with initializing and cleaning up nested maps or slices.
func ifaceKey(pointers, depth int) uint64 {
return uint64(pointers)<<32 | uint64(depth)
}
type walker struct {
Result interface{}
copiers map[reflect.Type]CopierFunc
shallowCopiers map[reflect.Type]struct{}
depth int
ignoreDepth int
vals []reflect.Value
cs []reflect.Value
// This stores the number of pointers we've walked over, indexed by depth.
ps []int
// If an interface is indirected by a pointer, we need to know the type of
// interface to create when creating the new value. Store the interface
// types here, indexed by both the walk depth and the number of pointers
// already seen at that depth. Use ifaceKey to calculate the proper uint64
// value.
ifaceTypes map[uint64]reflect.Type
// any locks we've taken, indexed by depth
locks []sync.Locker
// take locks while walking the structure
useLocks bool
}
func (w *walker) Enter(l reflectwalk.Location) error {
w.depth++
// ensure we have enough elements to index via w.depth
for w.depth >= len(w.locks) {
w.locks = append(w.locks, nil)
}
for len(w.ps) < w.depth+1 {
w.ps = append(w.ps, 0)
}
return nil
}
func (w *walker) Exit(l reflectwalk.Location) error {
locker := w.locks[w.depth]
w.locks[w.depth] = nil
if locker != nil {
defer locker.Unlock()
}
// clear out pointers and interfaces as we exit the stack
w.ps[w.depth] = 0
for k := range w.ifaceTypes {
mask := uint64(^uint32(0))
if k&mask == uint64(w.depth) {
delete(w.ifaceTypes, k)
}
}
w.depth--
if w.ignoreDepth > w.depth {
w.ignoreDepth = 0
}
if w.ignoring() {
return nil
}
switch l {
case reflectwalk.Array:
fallthrough
case reflectwalk.Map:
fallthrough
case reflectwalk.Slice:
w.replacePointerMaybe()
// Pop map off our container
w.cs = w.cs[:len(w.cs)-1]
case reflectwalk.MapValue:
// Pop off the key and value
mv := w.valPop()
mk := w.valPop()
m := w.cs[len(w.cs)-1]
// If mv is the zero value, SetMapIndex deletes the key form the map,
// or in this case never adds it. We need to create a properly typed
// zero value so that this key can be set.
if !mv.IsValid() {
mv = reflect.Zero(m.Elem().Type().Elem())
}
m.Elem().SetMapIndex(mk, mv)
case reflectwalk.ArrayElem:
// Pop off the value and the index and set it on the array
v := w.valPop()
i := w.valPop().Interface().(int)
if v.IsValid() {
a := w.cs[len(w.cs)-1]
ae := a.Elem().Index(i) // storing array as pointer on stack - so need Elem() call
if ae.CanSet() {
ae.Set(v)
}
}
case reflectwalk.SliceElem:
// Pop off the value and the index and set it on the slice
v := w.valPop()
i := w.valPop().Interface().(int)
if v.IsValid() {
s := w.cs[len(w.cs)-1]
se := s.Elem().Index(i)
if se.CanSet() {
se.Set(v)
}
}
case reflectwalk.Struct:
w.replacePointerMaybe()
// Remove the struct from the container stack
w.cs = w.cs[:len(w.cs)-1]
case reflectwalk.StructField:
// Pop off the value and the field
v := w.valPop()
f := w.valPop().Interface().(reflect.StructField)
if v.IsValid() {
s := w.cs[len(w.cs)-1]
sf := reflect.Indirect(s).FieldByName(f.Name)
if sf.CanSet() {
sf.Set(v)
}
}
case reflectwalk.WalkLoc:
// Clear out the slices for GC
w.cs = nil
w.vals = nil
}
return nil
}
func (w *walker) Map(m reflect.Value) error {
if w.ignoring() {
return nil
}
w.lock(m)
// Create the map. If the map itself is nil, then just make a nil map
var newMap reflect.Value
if m.IsNil() {
newMap = reflect.New(m.Type())
} else {
newMap = wrapPtr(reflect.MakeMap(m.Type()))
}
w.cs = append(w.cs, newMap)
w.valPush(newMap)
return nil
}
func (w *walker) MapElem(m, k, v reflect.Value) error {
return nil
}
func (w *walker) PointerEnter(v bool) error {
if v {
w.ps[w.depth]++
}
return nil
}
func (w *walker) PointerExit(v bool) error {
if v {
w.ps[w.depth]--
}
return nil
}
func (w *walker) Pointer(v reflect.Value) error {
if _, ok := w.shallowCopiers[v.Type()]; ok {
// Shallow copy this value. Use the same logic as primitive, then
// return skip.
if err := w.Primitive(v); err != nil {
return err
}
return reflectwalk.SkipEntry
}
return nil
}
func (w *walker) Interface(v reflect.Value) error {
if !v.IsValid() {
return nil
}
if w.ifaceTypes == nil {
w.ifaceTypes = make(map[uint64]reflect.Type)
}
w.ifaceTypes[ifaceKey(w.ps[w.depth], w.depth)] = v.Type()
return nil
}
func (w *walker) Primitive(v reflect.Value) error {
if w.ignoring() {
return nil
}
w.lock(v)
// IsValid verifies the v is non-zero and CanInterface verifies
// that we're allowed to read this value (unexported fields).
var newV reflect.Value
if v.IsValid() && v.CanInterface() {
newV = reflect.New(v.Type())
newV.Elem().Set(v)
}
w.valPush(newV)
w.replacePointerMaybe()
return nil
}
func (w *walker) Slice(s reflect.Value) error {
if w.ignoring() {
return nil
}
w.lock(s)
var newS reflect.Value
if s.IsNil() {
newS = reflect.New(s.Type())
} else {
newS = wrapPtr(reflect.MakeSlice(s.Type(), s.Len(), s.Cap()))
}
w.cs = append(w.cs, newS)
w.valPush(newS)
return nil
}
func (w *walker) SliceElem(i int, elem reflect.Value) error {
if w.ignoring() {
return nil
}
// We don't write the slice here because elem might still be
// arbitrarily complex. Just record the index and continue on.
w.valPush(reflect.ValueOf(i))
return nil
}
func (w *walker) Array(a reflect.Value) error {
if w.ignoring() {
return nil
}
w.lock(a)
newA := reflect.New(a.Type())
w.cs = append(w.cs, newA)
w.valPush(newA)
return nil
}
func (w *walker) ArrayElem(i int, elem reflect.Value) error {
if w.ignoring() {
return nil
}
// We don't write the array here because elem might still be
// arbitrarily complex. Just record the index and continue on.
w.valPush(reflect.ValueOf(i))
return nil
}
func (w *walker) Struct(s reflect.Value) error {
if w.ignoring() {
return nil
}
w.lock(s)
var v reflect.Value
if c, ok := w.copiers[s.Type()]; ok {
// We have a Copier for this struct, so we use that copier to
// get the copy, and we ignore anything deeper than this.
w.ignoreDepth = w.depth
dup, err := c(s.Interface())
if err != nil {
return err
}
// We need to put a pointer to the value on the value stack,
// so allocate a new pointer and set it.
v = reflect.New(s.Type())
reflect.Indirect(v).Set(reflect.ValueOf(dup))
} else {
// No copier, we copy ourselves and allow reflectwalk to guide
// us deeper into the structure for copying.
v = reflect.New(s.Type())
}
// Push the value onto the value stack for setting the struct field,
// and add the struct itself to the containers stack in case we walk
// deeper so that its own fields can be modified.
w.valPush(v)
w.cs = append(w.cs, v)
return nil
}
func (w *walker) StructField(f reflect.StructField, v reflect.Value) error {
if w.ignoring() {
return nil
}
// If PkgPath is non-empty, this is a private (unexported) field.
// We do not set this unexported since the Go runtime doesn't allow us.
if f.PkgPath != "" {
return reflectwalk.SkipEntry
}
switch f.Tag.Get(tagKey) {
case "shallow":
// If we're shallow copying then assign the value directly to the
// struct and skip the entry.
if v.IsValid() {
s := w.cs[len(w.cs)-1]
sf := reflect.Indirect(s).FieldByName(f.Name)
if sf.CanSet() {
sf.Set(v)
}
}
return reflectwalk.SkipEntry
case "ignore":
// Do nothing
return reflectwalk.SkipEntry
}
// Push the field onto the stack, we'll handle it when we exit
// the struct field in Exit...
w.valPush(reflect.ValueOf(f))
return nil
}
// ignore causes the walker to ignore any more values until we exit this on
func (w *walker) ignore() {
w.ignoreDepth = w.depth
}
func (w *walker) ignoring() bool {
return w.ignoreDepth > 0 && w.depth >= w.ignoreDepth
}
func (w *walker) pointerPeek() bool {
return w.ps[w.depth] > 0
}
func (w *walker) valPop() reflect.Value {
result := w.vals[len(w.vals)-1]
w.vals = w.vals[:len(w.vals)-1]
// If we're out of values, that means we popped everything off. In
// this case, we reset the result so the next pushed value becomes
// the result.
if len(w.vals) == 0 {
w.Result = nil
}
return result
}
func (w *walker) valPush(v reflect.Value) {
w.vals = append(w.vals, v)
// If we haven't set the result yet, then this is the result since
// it is the first (outermost) value we're seeing.
if w.Result == nil && v.IsValid() {
w.Result = v.Interface()
}
}
func (w *walker) replacePointerMaybe() {
// Determine the last pointer value. If it is NOT a pointer, then
// we need to push that onto the stack.
if !w.pointerPeek() {
w.valPush(reflect.Indirect(w.valPop()))
return
}
v := w.valPop()
// If the expected type is a pointer to an interface of any depth,
// such as *interface{}, **interface{}, etc., then we need to convert
// the value "v" from *CONCRETE to *interface{} so types match for
// Set.
//
// Example if v is type *Foo where Foo is a struct, v would become
// *interface{} instead. This only happens if we have an interface expectation
// at this depth.
//
// For more info, see GH-16
if iType, ok := w.ifaceTypes[ifaceKey(w.ps[w.depth], w.depth)]; ok && iType.Kind() == reflect.Interface {
y := reflect.New(iType) // Create *interface{}
y.Elem().Set(reflect.Indirect(v)) // Assign "Foo" to interface{} (dereferenced)
v = y // v is now typed *interface{} (where *v = Foo)
}
for i := 1; i < w.ps[w.depth]; i++ {
if iType, ok := w.ifaceTypes[ifaceKey(w.ps[w.depth]-i, w.depth)]; ok {
iface := reflect.New(iType).Elem()
iface.Set(v)
v = iface
}
p := reflect.New(v.Type())
p.Elem().Set(v)
v = p
}
w.valPush(v)
}
// if this value is a Locker, lock it and add it to the locks slice
func (w *walker) lock(v reflect.Value) {
if !w.useLocks {
return
}
if !v.IsValid() || !v.CanInterface() {
return
}
type rlocker interface {
RLocker() sync.Locker
}
var locker sync.Locker
// We can't call Interface() on a value directly, since that requires
// a copy. This is OK, since the pointer to a value which is a sync.Locker
// is also a sync.Locker.
if v.Kind() == reflect.Ptr {
switch l := v.Interface().(type) {
case rlocker:
// don't lock a mutex directly
if _, ok := l.(*sync.RWMutex); !ok {
locker = l.RLocker()
}
case sync.Locker:
locker = l
}
} else if v.CanAddr() {
switch l := v.Addr().Interface().(type) {
case rlocker:
// don't lock a mutex directly
if _, ok := l.(*sync.RWMutex); !ok {
locker = l.RLocker()
}
case sync.Locker:
locker = l
}
}
// still no callable locker
if locker == nil {
return
}
// don't lock a mutex directly
switch locker.(type) {
case *sync.Mutex, *sync.RWMutex:
return
}
locker.Lock()
w.locks[w.depth] = locker
}
// wrapPtr is a helper that takes v and always make it *v. copystructure
// stores things internally as pointers until the last moment before unwrapping
func wrapPtr(v reflect.Value) reflect.Value {
if !v.IsValid() {
return v
}
vPtr := reflect.New(v.Type())
vPtr.Elem().Set(v)
return vPtr
}

21
vendor/github.com/mitchellh/go-homedir/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2013 Mitchell Hashimoto
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

14
vendor/github.com/mitchellh/go-homedir/README.md generated vendored Normal file
View File

@@ -0,0 +1,14 @@
# go-homedir
This is a Go library for detecting the user's home directory without
the use of cgo, so the library can be used in cross-compilation environments.
Usage is incredibly simple, just call `homedir.Dir()` to get the home directory
for a user, and `homedir.Expand()` to expand the `~` in a path to the home
directory.
**Why not just use `os/user`?** The built-in `os/user` package requires
cgo on Darwin systems. This means that any Go code that uses that package
cannot cross compile. But 99% of the time the use for `os/user` is just to
retrieve the home directory, which we can do for the current user without
cgo. This library does that, enabling cross-compilation.

167
vendor/github.com/mitchellh/go-homedir/homedir.go generated vendored Normal file
View File

@@ -0,0 +1,167 @@
package homedir
import (
"bytes"
"errors"
"os"
"os/exec"
"path/filepath"
"runtime"
"strconv"
"strings"
"sync"
)
// DisableCache will disable caching of the home directory. Caching is enabled
// by default.
var DisableCache bool
var homedirCache string
var cacheLock sync.RWMutex
// Dir returns the home directory for the executing user.
//
// This uses an OS-specific method for discovering the home directory.
// An error is returned if a home directory cannot be detected.
func Dir() (string, error) {
if !DisableCache {
cacheLock.RLock()
cached := homedirCache
cacheLock.RUnlock()
if cached != "" {
return cached, nil
}
}
cacheLock.Lock()
defer cacheLock.Unlock()
var result string
var err error
if runtime.GOOS == "windows" {
result, err = dirWindows()
} else {
// Unix-like system, so just assume Unix
result, err = dirUnix()
}
if err != nil {
return "", err
}
homedirCache = result
return result, nil
}
// Expand expands the path to include the home directory if the path
// is prefixed with `~`. If it isn't prefixed with `~`, the path is
// returned as-is.
func Expand(path string) (string, error) {
if len(path) == 0 {
return path, nil
}
if path[0] != '~' {
return path, nil
}
if len(path) > 1 && path[1] != '/' && path[1] != '\\' {
return "", errors.New("cannot expand user-specific home dir")
}
dir, err := Dir()
if err != nil {
return "", err
}
return filepath.Join(dir, path[1:]), nil
}
// Reset clears the cache, forcing the next call to Dir to re-detect
// the home directory. This generally never has to be called, but can be
// useful in tests if you're modifying the home directory via the HOME
// env var or something.
func Reset() {
cacheLock.Lock()
defer cacheLock.Unlock()
homedirCache = ""
}
func dirUnix() (string, error) {
homeEnv := "HOME"
if runtime.GOOS == "plan9" {
// On plan9, env vars are lowercase.
homeEnv = "home"
}
// First prefer the HOME environmental variable
if home := os.Getenv(homeEnv); home != "" {
return home, nil
}
var stdout bytes.Buffer
// If that fails, try OS specific commands
if runtime.GOOS == "darwin" {
cmd := exec.Command("sh", "-c", `dscl -q . -read /Users/"$(whoami)" NFSHomeDirectory | sed 's/^[^ ]*: //'`)
cmd.Stdout = &stdout
if err := cmd.Run(); err == nil {
result := strings.TrimSpace(stdout.String())
if result != "" {
return result, nil
}
}
} else {
cmd := exec.Command("getent", "passwd", strconv.Itoa(os.Getuid()))
cmd.Stdout = &stdout
if err := cmd.Run(); err != nil {
// If the error is ErrNotFound, we ignore it. Otherwise, return it.
if err != exec.ErrNotFound {
return "", err
}
} else {
if passwd := strings.TrimSpace(stdout.String()); passwd != "" {
// username:password:uid:gid:gecos:home:shell
passwdParts := strings.SplitN(passwd, ":", 7)
if len(passwdParts) > 5 {
return passwdParts[5], nil
}
}
}
}
// If all else fails, try the shell
stdout.Reset()
cmd := exec.Command("sh", "-c", "cd && pwd")
cmd.Stdout = &stdout
if err := cmd.Run(); err != nil {
return "", err
}
result := strings.TrimSpace(stdout.String())
if result == "" {
return "", errors.New("blank output when reading home directory")
}
return result, nil
}
func dirWindows() (string, error) {
// First prefer the HOME environmental variable
if home := os.Getenv("HOME"); home != "" {
return home, nil
}
// Prefer standard environment variable USERPROFILE
if home := os.Getenv("USERPROFILE"); home != "" {
return home, nil
}
drive := os.Getenv("HOMEDRIVE")
path := os.Getenv("HOMEPATH")
home := drive + path
if drive == "" || path == "" {
return "", errors.New("HOMEDRIVE, HOMEPATH, or USERPROFILE are blank")
}
return home, nil
}

View File

@@ -0,0 +1,13 @@
language: go
go:
- 1.8
- 1.x
- tip
script:
- go test
matrix:
allow_failures:
- go: tip

View File

@@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2016 Mitchell Hashimoto
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

View File

@@ -0,0 +1,52 @@
# go-testing-interface
go-testing-interface is a Go library that exports an interface that
`*testing.T` implements as well as a runtime version you can use in its
place.
The purpose of this library is so that you can export test helpers as a
public API without depending on the "testing" package, since you can't
create a `*testing.T` struct manually. This lets you, for example, use the
public testing APIs to generate mock data at runtime, rather than just at
test time.
## Usage & Example
For usage and examples see the [Godoc](http://godoc.org/github.com/mitchellh/go-testing-interface).
Given a test helper written using `go-testing-interface` like this:
import "github.com/mitchellh/go-testing-interface"
func TestHelper(t testing.T) {
t.Fatal("I failed")
}
You can call the test helper in a real test easily:
import "testing"
func TestThing(t *testing.T) {
TestHelper(t)
}
You can also call the test helper at runtime if needed:
import "github.com/mitchellh/go-testing-interface"
func main() {
TestHelper(&testing.RuntimeT{})
}
## Why?!
**Why would I call a test helper that takes a *testing.T at runtime?**
You probably shouldn't. The only use case I've seen (and I've had) for this
is to implement a "dev mode" for a service where the test helpers are used
to populate mock data, create a mock DB, perhaps run service dependencies
in-memory, etc.
Outside of a "dev mode", I've never seen a use case for this and I think
there shouldn't be one since the point of the `testing.T` interface is that
you can fail immediately.

View File

@@ -0,0 +1,84 @@
// +build !go1.9
package testing
import (
"fmt"
"log"
)
// T is the interface that mimics the standard library *testing.T.
//
// In unit tests you can just pass a *testing.T struct. At runtime, outside
// of tests, you can pass in a RuntimeT struct from this package.
type T interface {
Error(args ...interface{})
Errorf(format string, args ...interface{})
Fail()
FailNow()
Failed() bool
Fatal(args ...interface{})
Fatalf(format string, args ...interface{})
Log(args ...interface{})
Logf(format string, args ...interface{})
Name() string
Skip(args ...interface{})
SkipNow()
Skipf(format string, args ...interface{})
Skipped() bool
}
// RuntimeT implements T and can be instantiated and run at runtime to
// mimic *testing.T behavior. Unlike *testing.T, this will simply panic
// for calls to Fatal. For calls to Error, you'll have to check the errors
// list to determine whether to exit yourself. Name and Skip methods are
// unimplemented noops.
type RuntimeT struct {
failed bool
}
func (t *RuntimeT) Error(args ...interface{}) {
log.Println(fmt.Sprintln(args...))
t.Fail()
}
func (t *RuntimeT) Errorf(format string, args ...interface{}) {
log.Println(fmt.Sprintf(format, args...))
t.Fail()
}
func (t *RuntimeT) Fatal(args ...interface{}) {
log.Println(fmt.Sprintln(args...))
t.FailNow()
}
func (t *RuntimeT) Fatalf(format string, args ...interface{}) {
log.Println(fmt.Sprintf(format, args...))
t.FailNow()
}
func (t *RuntimeT) Fail() {
t.failed = true
}
func (t *RuntimeT) FailNow() {
panic("testing.T failed, see logs for output (if any)")
}
func (t *RuntimeT) Failed() bool {
return t.failed
}
func (t *RuntimeT) Log(args ...interface{}) {
log.Println(fmt.Sprintln(args...))
}
func (t *RuntimeT) Logf(format string, args ...interface{}) {
log.Println(fmt.Sprintf(format, args...))
}
func (t *RuntimeT) Name() string { return "" }
func (t *RuntimeT) Skip(args ...interface{}) {}
func (t *RuntimeT) SkipNow() {}
func (t *RuntimeT) Skipf(format string, args ...interface{}) {}
func (t *RuntimeT) Skipped() bool { return false }

View File

@@ -0,0 +1,108 @@
// +build go1.9
// NOTE: This is a temporary copy of testing.go for Go 1.9 with the addition
// of "Helper" to the T interface. Go 1.9 at the time of typing is in RC
// and is set for release shortly. We'll support this on master as the default
// as soon as 1.9 is released.
package testing
import (
"fmt"
"log"
)
// T is the interface that mimics the standard library *testing.T.
//
// In unit tests you can just pass a *testing.T struct. At runtime, outside
// of tests, you can pass in a RuntimeT struct from this package.
type T interface {
Error(args ...interface{})
Errorf(format string, args ...interface{})
Fail()
FailNow()
Failed() bool
Fatal(args ...interface{})
Fatalf(format string, args ...interface{})
Log(args ...interface{})
Logf(format string, args ...interface{})
Name() string
Skip(args ...interface{})
SkipNow()
Skipf(format string, args ...interface{})
Skipped() bool
Helper()
}
// RuntimeT implements T and can be instantiated and run at runtime to
// mimic *testing.T behavior. Unlike *testing.T, this will simply panic
// for calls to Fatal. For calls to Error, you'll have to check the errors
// list to determine whether to exit yourself.
type RuntimeT struct {
skipped bool
failed bool
}
func (t *RuntimeT) Error(args ...interface{}) {
log.Println(fmt.Sprintln(args...))
t.Fail()
}
func (t *RuntimeT) Errorf(format string, args ...interface{}) {
log.Printf(format, args...)
t.Fail()
}
func (t *RuntimeT) Fail() {
t.failed = true
}
func (t *RuntimeT) FailNow() {
panic("testing.T failed, see logs for output (if any)")
}
func (t *RuntimeT) Failed() bool {
return t.failed
}
func (t *RuntimeT) Fatal(args ...interface{}) {
log.Print(args...)
t.FailNow()
}
func (t *RuntimeT) Fatalf(format string, args ...interface{}) {
log.Printf(format, args...)
t.FailNow()
}
func (t *RuntimeT) Log(args ...interface{}) {
log.Println(fmt.Sprintln(args...))
}
func (t *RuntimeT) Logf(format string, args ...interface{}) {
log.Println(fmt.Sprintf(format, args...))
}
func (t *RuntimeT) Name() string {
return ""
}
func (t *RuntimeT) Skip(args ...interface{}) {
log.Print(args...)
t.SkipNow()
}
func (t *RuntimeT) SkipNow() {
t.skipped = true
}
func (t *RuntimeT) Skipf(format string, args ...interface{}) {
log.Printf(format, args...)
t.SkipNow()
}
func (t *RuntimeT) Skipped() bool {
return t.skipped
}
func (t *RuntimeT) Helper() {}

21
vendor/github.com/mitchellh/go-wordwrap/LICENSE.md generated vendored Normal file
View File

@@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2014 Mitchell Hashimoto
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

39
vendor/github.com/mitchellh/go-wordwrap/README.md generated vendored Normal file
View File

@@ -0,0 +1,39 @@
# go-wordwrap
`go-wordwrap` (Golang package: `wordwrap`) is a package for Go that
automatically wraps words into multiple lines. The primary use case for this
is in formatting CLI output, but of course word wrapping is a generally useful
thing to do.
## Installation and Usage
Install using `go get github.com/mitchellh/go-wordwrap`.
Full documentation is available at
http://godoc.org/github.com/mitchellh/go-wordwrap
Below is an example of its usage ignoring errors:
```go
wrapped := wordwrap.WrapString("foo bar baz", 3)
fmt.Println(wrapped)
```
Would output:
```
foo
bar
baz
```
## Word Wrap Algorithm
This library doesn't use any clever algorithm for word wrapping. The wrapping
is actually very naive: whenever there is whitespace or an explicit linebreak.
The goal of this library is for word wrapping CLI output, so the input is
typically pretty well controlled human language. Because of this, the naive
approach typically works just fine.
In the future, we'd like to make the algorithm more advanced. We would do
so without breaking the API.

73
vendor/github.com/mitchellh/go-wordwrap/wordwrap.go generated vendored Normal file
View File

@@ -0,0 +1,73 @@
package wordwrap
import (
"bytes"
"unicode"
)
// WrapString wraps the given string within lim width in characters.
//
// Wrapping is currently naive and only happens at white-space. A future
// version of the library will implement smarter wrapping. This means that
// pathological cases can dramatically reach past the limit, such as a very
// long word.
func WrapString(s string, lim uint) string {
// Initialize a buffer with a slightly larger size to account for breaks
init := make([]byte, 0, len(s))
buf := bytes.NewBuffer(init)
var current uint
var wordBuf, spaceBuf bytes.Buffer
for _, char := range s {
if char == '\n' {
if wordBuf.Len() == 0 {
if current+uint(spaceBuf.Len()) > lim {
current = 0
} else {
current += uint(spaceBuf.Len())
spaceBuf.WriteTo(buf)
}
spaceBuf.Reset()
} else {
current += uint(spaceBuf.Len() + wordBuf.Len())
spaceBuf.WriteTo(buf)
spaceBuf.Reset()
wordBuf.WriteTo(buf)
wordBuf.Reset()
}
buf.WriteRune(char)
current = 0
} else if unicode.IsSpace(char) {
if spaceBuf.Len() == 0 || wordBuf.Len() > 0 {
current += uint(spaceBuf.Len() + wordBuf.Len())
spaceBuf.WriteTo(buf)
spaceBuf.Reset()
wordBuf.WriteTo(buf)
wordBuf.Reset()
}
spaceBuf.WriteRune(char)
} else {
wordBuf.WriteRune(char)
if current+uint(spaceBuf.Len()+wordBuf.Len()) > lim && uint(wordBuf.Len()) < lim {
buf.WriteRune('\n')
current = 0
spaceBuf.Reset()
}
}
}
if wordBuf.Len() == 0 {
if current+uint(spaceBuf.Len()) <= lim {
spaceBuf.WriteTo(buf)
}
} else {
spaceBuf.WriteTo(buf)
wordBuf.WriteTo(buf)
}
return buf.String()
}

8
vendor/github.com/mitchellh/mapstructure/.travis.yml generated vendored Normal file
View File

@@ -0,0 +1,8 @@
language: go
go:
- "1.11.x"
- tip
script:
- go test

21
vendor/github.com/mitchellh/mapstructure/CHANGELOG.md generated vendored Normal file
View File

@@ -0,0 +1,21 @@
## 1.1.2
* Fix error when decode hook decodes interface implementation into interface
type. [GH-140]
## 1.1.1
* Fix panic that can happen in `decodePtr`
## 1.1.0
* Added `StringToIPHookFunc` to convert `string` to `net.IP` and `net.IPNet` [GH-133]
* Support struct to struct decoding [GH-137]
* If source map value is nil, then destination map value is nil (instead of empty)
* If source slice value is nil, then destination slice value is nil (instead of empty)
* If source pointer is nil, then destination pointer is set to nil (instead of
allocated zero value of type)
## 1.0.0
* Initial tagged stable release.

21
vendor/github.com/mitchellh/mapstructure/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2013 Mitchell Hashimoto
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

46
vendor/github.com/mitchellh/mapstructure/README.md generated vendored Normal file
View File

@@ -0,0 +1,46 @@
# mapstructure [![Godoc](https://godoc.org/github.com/mitchellh/mapstructure?status.svg)](https://godoc.org/github.com/mitchellh/mapstructure)
mapstructure is a Go library for decoding generic map values to structures
and vice versa, while providing helpful error handling.
This library is most useful when decoding values from some data stream (JSON,
Gob, etc.) where you don't _quite_ know the structure of the underlying data
until you read a part of it. You can therefore read a `map[string]interface{}`
and use this library to decode it into the proper underlying native Go
structure.
## Installation
Standard `go get`:
```
$ go get github.com/mitchellh/mapstructure
```
## Usage & Example
For usage and examples see the [Godoc](http://godoc.org/github.com/mitchellh/mapstructure).
The `Decode` function has examples associated with it there.
## But Why?!
Go offers fantastic standard libraries for decoding formats such as JSON.
The standard method is to have a struct pre-created, and populate that struct
from the bytes of the encoded format. This is great, but the problem is if
you have configuration or an encoding that changes slightly depending on
specific fields. For example, consider this JSON:
```json
{
"type": "person",
"name": "Mitchell"
}
```
Perhaps we can't populate a specific structure without first reading
the "type" field from the JSON. We could always do two passes over the
decoding of the JSON (reading the "type" first, and the rest later).
However, it is much simpler to just decode this into a `map[string]interface{}`
structure, read the "type" key, then use something like this library
to decode it into the proper structure.

View File

@@ -0,0 +1,217 @@
package mapstructure
import (
"errors"
"fmt"
"net"
"reflect"
"strconv"
"strings"
"time"
)
// typedDecodeHook takes a raw DecodeHookFunc (an interface{}) and turns
// it into the proper DecodeHookFunc type, such as DecodeHookFuncType.
func typedDecodeHook(h DecodeHookFunc) DecodeHookFunc {
// Create variables here so we can reference them with the reflect pkg
var f1 DecodeHookFuncType
var f2 DecodeHookFuncKind
// Fill in the variables into this interface and the rest is done
// automatically using the reflect package.
potential := []interface{}{f1, f2}
v := reflect.ValueOf(h)
vt := v.Type()
for _, raw := range potential {
pt := reflect.ValueOf(raw).Type()
if vt.ConvertibleTo(pt) {
return v.Convert(pt).Interface()
}
}
return nil
}
// DecodeHookExec executes the given decode hook. This should be used
// since it'll naturally degrade to the older backwards compatible DecodeHookFunc
// that took reflect.Kind instead of reflect.Type.
func DecodeHookExec(
raw DecodeHookFunc,
from reflect.Type, to reflect.Type,
data interface{}) (interface{}, error) {
switch f := typedDecodeHook(raw).(type) {
case DecodeHookFuncType:
return f(from, to, data)
case DecodeHookFuncKind:
return f(from.Kind(), to.Kind(), data)
default:
return nil, errors.New("invalid decode hook signature")
}
}
// ComposeDecodeHookFunc creates a single DecodeHookFunc that
// automatically composes multiple DecodeHookFuncs.
//
// The composed funcs are called in order, with the result of the
// previous transformation.
func ComposeDecodeHookFunc(fs ...DecodeHookFunc) DecodeHookFunc {
return func(
f reflect.Type,
t reflect.Type,
data interface{}) (interface{}, error) {
var err error
for _, f1 := range fs {
data, err = DecodeHookExec(f1, f, t, data)
if err != nil {
return nil, err
}
// Modify the from kind to be correct with the new data
f = nil
if val := reflect.ValueOf(data); val.IsValid() {
f = val.Type()
}
}
return data, nil
}
}
// StringToSliceHookFunc returns a DecodeHookFunc that converts
// string to []string by splitting on the given sep.
func StringToSliceHookFunc(sep string) DecodeHookFunc {
return func(
f reflect.Kind,
t reflect.Kind,
data interface{}) (interface{}, error) {
if f != reflect.String || t != reflect.Slice {
return data, nil
}
raw := data.(string)
if raw == "" {
return []string{}, nil
}
return strings.Split(raw, sep), nil
}
}
// StringToTimeDurationHookFunc returns a DecodeHookFunc that converts
// strings to time.Duration.
func StringToTimeDurationHookFunc() DecodeHookFunc {
return func(
f reflect.Type,
t reflect.Type,
data interface{}) (interface{}, error) {
if f.Kind() != reflect.String {
return data, nil
}
if t != reflect.TypeOf(time.Duration(5)) {
return data, nil
}
// Convert it by parsing
return time.ParseDuration(data.(string))
}
}
// StringToIPHookFunc returns a DecodeHookFunc that converts
// strings to net.IP
func StringToIPHookFunc() DecodeHookFunc {
return func(
f reflect.Type,
t reflect.Type,
data interface{}) (interface{}, error) {
if f.Kind() != reflect.String {
return data, nil
}
if t != reflect.TypeOf(net.IP{}) {
return data, nil
}
// Convert it by parsing
ip := net.ParseIP(data.(string))
if ip == nil {
return net.IP{}, fmt.Errorf("failed parsing ip %v", data)
}
return ip, nil
}
}
// StringToIPNetHookFunc returns a DecodeHookFunc that converts
// strings to net.IPNet
func StringToIPNetHookFunc() DecodeHookFunc {
return func(
f reflect.Type,
t reflect.Type,
data interface{}) (interface{}, error) {
if f.Kind() != reflect.String {
return data, nil
}
if t != reflect.TypeOf(net.IPNet{}) {
return data, nil
}
// Convert it by parsing
_, net, err := net.ParseCIDR(data.(string))
return net, err
}
}
// StringToTimeHookFunc returns a DecodeHookFunc that converts
// strings to time.Time.
func StringToTimeHookFunc(layout string) DecodeHookFunc {
return func(
f reflect.Type,
t reflect.Type,
data interface{}) (interface{}, error) {
if f.Kind() != reflect.String {
return data, nil
}
if t != reflect.TypeOf(time.Time{}) {
return data, nil
}
// Convert it by parsing
return time.Parse(layout, data.(string))
}
}
// WeaklyTypedHook is a DecodeHookFunc which adds support for weak typing to
// the decoder.
//
// Note that this is significantly different from the WeaklyTypedInput option
// of the DecoderConfig.
func WeaklyTypedHook(
f reflect.Kind,
t reflect.Kind,
data interface{}) (interface{}, error) {
dataVal := reflect.ValueOf(data)
switch t {
case reflect.String:
switch f {
case reflect.Bool:
if dataVal.Bool() {
return "1", nil
}
return "0", nil
case reflect.Float32:
return strconv.FormatFloat(dataVal.Float(), 'f', -1, 64), nil
case reflect.Int:
return strconv.FormatInt(dataVal.Int(), 10), nil
case reflect.Slice:
dataType := dataVal.Type()
elemKind := dataType.Elem().Kind()
if elemKind == reflect.Uint8 {
return string(dataVal.Interface().([]uint8)), nil
}
case reflect.Uint:
return strconv.FormatUint(dataVal.Uint(), 10), nil
}
}
return data, nil
}

50
vendor/github.com/mitchellh/mapstructure/error.go generated vendored Normal file
View File

@@ -0,0 +1,50 @@
package mapstructure
import (
"errors"
"fmt"
"sort"
"strings"
)
// Error implements the error interface and can represents multiple
// errors that occur in the course of a single decode.
type Error struct {
Errors []string
}
func (e *Error) Error() string {
points := make([]string, len(e.Errors))
for i, err := range e.Errors {
points[i] = fmt.Sprintf("* %s", err)
}
sort.Strings(points)
return fmt.Sprintf(
"%d error(s) decoding:\n\n%s",
len(e.Errors), strings.Join(points, "\n"))
}
// WrappedErrors implements the errwrap.Wrapper interface to make this
// return value more useful with the errwrap and go-multierror libraries.
func (e *Error) WrappedErrors() []error {
if e == nil {
return nil
}
result := make([]error, len(e.Errors))
for i, e := range e.Errors {
result[i] = errors.New(e)
}
return result
}
func appendErrors(errors []string, err error) []string {
switch e := err.(type) {
case *Error:
return append(errors, e.Errors...)
default:
return append(errors, e.Error())
}
}

1149
vendor/github.com/mitchellh/mapstructure/mapstructure.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

1
vendor/github.com/mitchellh/reflectwalk/.travis.yml generated vendored Normal file
View File

@@ -0,0 +1 @@
language: go

21
vendor/github.com/mitchellh/reflectwalk/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2013 Mitchell Hashimoto
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

6
vendor/github.com/mitchellh/reflectwalk/README.md generated vendored Normal file
View File

@@ -0,0 +1,6 @@
# reflectwalk
reflectwalk is a Go library for "walking" a value in Go using reflection,
in the same way a directory tree can be "walked" on the filesystem. Walking
a complex structure can allow you to do manipulations on unknown structures
such as those decoded from JSON.

19
vendor/github.com/mitchellh/reflectwalk/location.go generated vendored Normal file
View File

@@ -0,0 +1,19 @@
package reflectwalk
//go:generate stringer -type=Location location.go
type Location uint
const (
None Location = iota
Map
MapKey
MapValue
Slice
SliceElem
Array
ArrayElem
Struct
StructField
WalkLoc
)

View File

@@ -0,0 +1,16 @@
// Code generated by "stringer -type=Location location.go"; DO NOT EDIT.
package reflectwalk
import "fmt"
const _Location_name = "NoneMapMapKeyMapValueSliceSliceElemArrayArrayElemStructStructFieldWalkLoc"
var _Location_index = [...]uint8{0, 4, 7, 13, 21, 26, 35, 40, 49, 55, 66, 73}
func (i Location) String() string {
if i >= Location(len(_Location_index)-1) {
return fmt.Sprintf("Location(%d)", i)
}
return _Location_name[_Location_index[i]:_Location_index[i+1]]
}

420
vendor/github.com/mitchellh/reflectwalk/reflectwalk.go generated vendored Normal file
View File

@@ -0,0 +1,420 @@
// reflectwalk is a package that allows you to "walk" complex structures
// similar to how you may "walk" a filesystem: visiting every element one
// by one and calling callback functions allowing you to handle and manipulate
// those elements.
package reflectwalk
import (
"errors"
"reflect"
)
// PrimitiveWalker implementations are able to handle primitive values
// within complex structures. Primitive values are numbers, strings,
// booleans, funcs, chans.
//
// These primitive values are often members of more complex
// structures (slices, maps, etc.) that are walkable by other interfaces.
type PrimitiveWalker interface {
Primitive(reflect.Value) error
}
// InterfaceWalker implementations are able to handle interface values as they
// are encountered during the walk.
type InterfaceWalker interface {
Interface(reflect.Value) error
}
// MapWalker implementations are able to handle individual elements
// found within a map structure.
type MapWalker interface {
Map(m reflect.Value) error
MapElem(m, k, v reflect.Value) error
}
// SliceWalker implementations are able to handle slice elements found
// within complex structures.
type SliceWalker interface {
Slice(reflect.Value) error
SliceElem(int, reflect.Value) error
}
// ArrayWalker implementations are able to handle array elements found
// within complex structures.
type ArrayWalker interface {
Array(reflect.Value) error
ArrayElem(int, reflect.Value) error
}
// StructWalker is an interface that has methods that are called for
// structs when a Walk is done.
type StructWalker interface {
Struct(reflect.Value) error
StructField(reflect.StructField, reflect.Value) error
}
// EnterExitWalker implementations are notified before and after
// they walk deeper into complex structures (into struct fields,
// into slice elements, etc.)
type EnterExitWalker interface {
Enter(Location) error
Exit(Location) error
}
// PointerWalker implementations are notified when the value they're
// walking is a pointer or not. Pointer is called for _every_ value whether
// it is a pointer or not.
type PointerWalker interface {
PointerEnter(bool) error
PointerExit(bool) error
}
// PointerValueWalker implementations are notified with the value of
// a particular pointer when a pointer is walked. Pointer is called
// right before PointerEnter.
type PointerValueWalker interface {
Pointer(reflect.Value) error
}
// SkipEntry can be returned from walk functions to skip walking
// the value of this field. This is only valid in the following functions:
//
// - Struct: skips all fields from being walked
// - StructField: skips walking the struct value
//
var SkipEntry = errors.New("skip this entry")
// Walk takes an arbitrary value and an interface and traverses the
// value, calling callbacks on the interface if they are supported.
// The interface should implement one or more of the walker interfaces
// in this package, such as PrimitiveWalker, StructWalker, etc.
func Walk(data, walker interface{}) (err error) {
v := reflect.ValueOf(data)
ew, ok := walker.(EnterExitWalker)
if ok {
err = ew.Enter(WalkLoc)
}
if err == nil {
err = walk(v, walker)
}
if ok && err == nil {
err = ew.Exit(WalkLoc)
}
return
}
func walk(v reflect.Value, w interface{}) (err error) {
// Determine if we're receiving a pointer and if so notify the walker.
// The logic here is convoluted but very important (tests will fail if
// almost any part is changed). I will try to explain here.
//
// First, we check if the value is an interface, if so, we really need
// to check the interface's VALUE to see whether it is a pointer.
//
// Check whether the value is then a pointer. If so, then set pointer
// to true to notify the user.
//
// If we still have a pointer or an interface after the indirections, then
// we unwrap another level
//
// At this time, we also set "v" to be the dereferenced value. This is
// because once we've unwrapped the pointer we want to use that value.
pointer := false
pointerV := v
for {
if pointerV.Kind() == reflect.Interface {
if iw, ok := w.(InterfaceWalker); ok {
if err = iw.Interface(pointerV); err != nil {
return
}
}
pointerV = pointerV.Elem()
}
if pointerV.Kind() == reflect.Ptr {
if pw, ok := w.(PointerValueWalker); ok {
if err = pw.Pointer(pointerV); err != nil {
if err == SkipEntry {
// Skip the rest of this entry but clear the error
return nil
}
return
}
}
pointer = true
v = reflect.Indirect(pointerV)
}
if pw, ok := w.(PointerWalker); ok {
if err = pw.PointerEnter(pointer); err != nil {
return
}
defer func(pointer bool) {
if err != nil {
return
}
err = pw.PointerExit(pointer)
}(pointer)
}
if pointer {
pointerV = v
}
pointer = false
// If we still have a pointer or interface we have to indirect another level.
switch pointerV.Kind() {
case reflect.Ptr, reflect.Interface:
continue
}
break
}
// We preserve the original value here because if it is an interface
// type, we want to pass that directly into the walkPrimitive, so that
// we can set it.
originalV := v
if v.Kind() == reflect.Interface {
v = v.Elem()
}
k := v.Kind()
if k >= reflect.Int && k <= reflect.Complex128 {
k = reflect.Int
}
switch k {
// Primitives
case reflect.Bool, reflect.Chan, reflect.Func, reflect.Int, reflect.String, reflect.Invalid:
err = walkPrimitive(originalV, w)
return
case reflect.Map:
err = walkMap(v, w)
return
case reflect.Slice:
err = walkSlice(v, w)
return
case reflect.Struct:
err = walkStruct(v, w)
return
case reflect.Array:
err = walkArray(v, w)
return
default:
panic("unsupported type: " + k.String())
}
}
func walkMap(v reflect.Value, w interface{}) error {
ew, ewok := w.(EnterExitWalker)
if ewok {
ew.Enter(Map)
}
if mw, ok := w.(MapWalker); ok {
if err := mw.Map(v); err != nil {
return err
}
}
for _, k := range v.MapKeys() {
kv := v.MapIndex(k)
if mw, ok := w.(MapWalker); ok {
if err := mw.MapElem(v, k, kv); err != nil {
return err
}
}
ew, ok := w.(EnterExitWalker)
if ok {
ew.Enter(MapKey)
}
if err := walk(k, w); err != nil {
return err
}
if ok {
ew.Exit(MapKey)
ew.Enter(MapValue)
}
// get the map value again as it may have changed in the MapElem call
if err := walk(v.MapIndex(k), w); err != nil {
return err
}
if ok {
ew.Exit(MapValue)
}
}
if ewok {
ew.Exit(Map)
}
return nil
}
func walkPrimitive(v reflect.Value, w interface{}) error {
if pw, ok := w.(PrimitiveWalker); ok {
return pw.Primitive(v)
}
return nil
}
func walkSlice(v reflect.Value, w interface{}) (err error) {
ew, ok := w.(EnterExitWalker)
if ok {
ew.Enter(Slice)
}
if sw, ok := w.(SliceWalker); ok {
if err := sw.Slice(v); err != nil {
return err
}
}
for i := 0; i < v.Len(); i++ {
elem := v.Index(i)
if sw, ok := w.(SliceWalker); ok {
if err := sw.SliceElem(i, elem); err != nil {
return err
}
}
ew, ok := w.(EnterExitWalker)
if ok {
ew.Enter(SliceElem)
}
if err := walk(elem, w); err != nil {
return err
}
if ok {
ew.Exit(SliceElem)
}
}
ew, ok = w.(EnterExitWalker)
if ok {
ew.Exit(Slice)
}
return nil
}
func walkArray(v reflect.Value, w interface{}) (err error) {
ew, ok := w.(EnterExitWalker)
if ok {
ew.Enter(Array)
}
if aw, ok := w.(ArrayWalker); ok {
if err := aw.Array(v); err != nil {
return err
}
}
for i := 0; i < v.Len(); i++ {
elem := v.Index(i)
if aw, ok := w.(ArrayWalker); ok {
if err := aw.ArrayElem(i, elem); err != nil {
return err
}
}
ew, ok := w.(EnterExitWalker)
if ok {
ew.Enter(ArrayElem)
}
if err := walk(elem, w); err != nil {
return err
}
if ok {
ew.Exit(ArrayElem)
}
}
ew, ok = w.(EnterExitWalker)
if ok {
ew.Exit(Array)
}
return nil
}
func walkStruct(v reflect.Value, w interface{}) (err error) {
ew, ewok := w.(EnterExitWalker)
if ewok {
ew.Enter(Struct)
}
skip := false
if sw, ok := w.(StructWalker); ok {
err = sw.Struct(v)
if err == SkipEntry {
skip = true
err = nil
}
if err != nil {
return
}
}
if !skip {
vt := v.Type()
for i := 0; i < vt.NumField(); i++ {
sf := vt.Field(i)
f := v.FieldByIndex([]int{i})
if sw, ok := w.(StructWalker); ok {
err = sw.StructField(sf, f)
// SkipEntry just pretends this field doesn't even exist
if err == SkipEntry {
continue
}
if err != nil {
return
}
}
ew, ok := w.(EnterExitWalker)
if ok {
ew.Enter(StructField)
}
err = walk(f, w)
if err != nil {
return
}
if ok {
ew.Exit(StructField)
}
}
}
if ewok {
ew.Exit(Struct)
}
return nil
}