Bump github.com/hashicorp/terraform-plugin-sdk/v2 from 2.20.0 to 2.24.1

Bumps [github.com/hashicorp/terraform-plugin-sdk/v2](https://github.com/hashicorp/terraform-plugin-sdk) from 2.20.0 to 2.24.1.
- [Release notes](https://github.com/hashicorp/terraform-plugin-sdk/releases)
- [Changelog](https://github.com/hashicorp/terraform-plugin-sdk/blob/main/CHANGELOG.md)
- [Commits](https://github.com/hashicorp/terraform-plugin-sdk/compare/v2.20.0...v2.24.1)

---
updated-dependencies:
- dependency-name: github.com/hashicorp/terraform-plugin-sdk/v2
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
This commit is contained in:
dependabot[bot]
2022-12-24 16:57:19 +00:00
committed by Tobias Trabelsi
parent 683a051502
commit 282cd097f9
195 changed files with 3914 additions and 3093 deletions

View File

@ -127,9 +127,9 @@ var randBool = rand.New(rand.NewSource(time.Now().Unix())).Intn(2) == 0
// This function returns an edit-script, which is a sequence of operations
// needed to convert one list into the other. The following invariants for
// the edit-script are maintained:
// eq == (es.Dist()==0)
// nx == es.LenX()
// ny == es.LenY()
// - eq == (es.Dist()==0)
// - nx == es.LenX()
// - ny == es.LenY()
//
// This algorithm is not guaranteed to be an optimal solution (i.e., one that
// produces an edit-script with a minimal Levenshtein distance). This algorithm
@ -169,12 +169,13 @@ func Difference(nx, ny int, f EqualFunc) (es EditScript) {
// A diagonal edge is equivalent to a matching symbol between both X and Y.
// Invariants:
// 0 ≤ fwdPath.X ≤ (fwdFrontier.X, revFrontier.X) ≤ revPath.X ≤ nx
// 0 ≤ fwdPath.Y ≤ (fwdFrontier.Y, revFrontier.Y) ≤ revPath.Y ≤ ny
// - 0 ≤ fwdPath.X ≤ (fwdFrontier.X, revFrontier.X) ≤ revPath.X ≤ nx
// - 0 ≤ fwdPath.Y ≤ (fwdFrontier.Y, revFrontier.Y) ≤ revPath.Y ≤ ny
//
// In general:
// fwdFrontier.X < revFrontier.X
// fwdFrontier.Y < revFrontier.Y
// - fwdFrontier.X < revFrontier.X
// - fwdFrontier.Y < revFrontier.Y
//
// Unless, it is time for the algorithm to terminate.
fwdPath := path{+1, point{0, 0}, make(EditScript, 0, (nx+ny)/2)}
revPath := path{-1, point{nx, ny}, make(EditScript, 0)}
@ -195,19 +196,21 @@ func Difference(nx, ny int, f EqualFunc) (es EditScript) {
// computing sub-optimal edit-scripts between two lists.
//
// The algorithm is approximately as follows:
// Searching for differences switches back-and-forth between
// a search that starts at the beginning (the top-left corner), and
// a search that starts at the end (the bottom-right corner). The goal of
// the search is connect with the search from the opposite corner.
// • As we search, we build a path in a greedy manner, where the first
// match seen is added to the path (this is sub-optimal, but provides a
// decent result in practice). When matches are found, we try the next pair
// of symbols in the lists and follow all matches as far as possible.
// • When searching for matches, we search along a diagonal going through
// through the "frontier" point. If no matches are found, we advance the
// frontier towards the opposite corner.
// • This algorithm terminates when either the X coordinates or the
// Y coordinates of the forward and reverse frontier points ever intersect.
// - Searching for differences switches back-and-forth between
// a search that starts at the beginning (the top-left corner), and
// a search that starts at the end (the bottom-right corner).
// The goal of the search is connect with the search
// from the opposite corner.
// - As we search, we build a path in a greedy manner,
// where the first match seen is added to the path (this is sub-optimal,
// but provides a decent result in practice). When matches are found,
// we try the next pair of symbols in the lists and follow all matches
// as far as possible.
// - When searching for matches, we search along a diagonal going through
// through the "frontier" point. If no matches are found,
// we advance the frontier towards the opposite corner.
// - This algorithm terminates when either the X coordinates or the
// Y coordinates of the forward and reverse frontier points ever intersect.
// This algorithm is correct even if searching only in the forward direction
// or in the reverse direction. We do both because it is commonly observed
@ -389,6 +392,7 @@ type point struct{ X, Y int }
func (p *point) add(dx, dy int) { p.X += dx; p.Y += dy }
// zigzag maps a consecutive sequence of integers to a zig-zag sequence.
//
// [0 1 2 3 4 5 ...] => [0 -1 +1 -2 +2 ...]
func zigzag(x int) int {
if x&1 != 0 {