Bump github.com/hashicorp/terraform-plugin-sdk/v2 from 2.26.1 to 2.27.0

Bumps [github.com/hashicorp/terraform-plugin-sdk/v2](https://github.com/hashicorp/terraform-plugin-sdk) from 2.26.1 to 2.27.0.
- [Release notes](https://github.com/hashicorp/terraform-plugin-sdk/releases)
- [Changelog](https://github.com/hashicorp/terraform-plugin-sdk/blob/main/CHANGELOG.md)
- [Commits](https://github.com/hashicorp/terraform-plugin-sdk/compare/v2.26.1...v2.27.0)

---
updated-dependencies:
- dependency-name: github.com/hashicorp/terraform-plugin-sdk/v2
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
This commit is contained in:
dependabot[bot]
2023-07-03 20:21:30 +00:00
committed by GitHub
parent b2403e2569
commit 910ccdb092
722 changed files with 31260 additions and 8125 deletions

57
vendor/github.com/cloudflare/circl/LICENSE generated vendored Normal file
View File

@ -0,0 +1,57 @@
Copyright (c) 2019 Cloudflare. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Cloudflare nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
========================================================================
Copyright (c) 2009 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

96
vendor/github.com/cloudflare/circl/dh/x25519/curve.go generated vendored Normal file
View File

@ -0,0 +1,96 @@
package x25519
import (
fp "github.com/cloudflare/circl/math/fp25519"
)
// ladderJoye calculates a fixed-point multiplication with the generator point.
// The algorithm is the right-to-left Joye's ladder as described
// in "How to precompute a ladder" in SAC'2017.
func ladderJoye(k *Key) {
w := [5]fp.Elt{} // [mu,x1,z1,x2,z2] order must be preserved.
fp.SetOne(&w[1]) // x1 = 1
fp.SetOne(&w[2]) // z1 = 1
w[3] = fp.Elt{ // x2 = G-S
0xbd, 0xaa, 0x2f, 0xc8, 0xfe, 0xe1, 0x94, 0x7e,
0xf8, 0xed, 0xb2, 0x14, 0xae, 0x95, 0xf0, 0xbb,
0xe2, 0x48, 0x5d, 0x23, 0xb9, 0xa0, 0xc7, 0xad,
0x34, 0xab, 0x7c, 0xe2, 0xee, 0xcd, 0xae, 0x1e,
}
fp.SetOne(&w[4]) // z2 = 1
const n = 255
const h = 3
swap := uint(1)
for s := 0; s < n-h; s++ {
i := (s + h) / 8
j := (s + h) % 8
bit := uint((k[i] >> uint(j)) & 1)
copy(w[0][:], tableGenerator[s*Size:(s+1)*Size])
diffAdd(&w, swap^bit)
swap = bit
}
for s := 0; s < h; s++ {
double(&w[1], &w[2])
}
toAffine((*[fp.Size]byte)(k), &w[1], &w[2])
}
// ladderMontgomery calculates a generic scalar point multiplication
// The algorithm implemented is the left-to-right Montgomery's ladder.
func ladderMontgomery(k, xP *Key) {
w := [5]fp.Elt{} // [x1, x2, z2, x3, z3] order must be preserved.
w[0] = *(*fp.Elt)(xP) // x1 = xP
fp.SetOne(&w[1]) // x2 = 1
w[3] = *(*fp.Elt)(xP) // x3 = xP
fp.SetOne(&w[4]) // z3 = 1
move := uint(0)
for s := 255 - 1; s >= 0; s-- {
i := s / 8
j := s % 8
bit := uint((k[i] >> uint(j)) & 1)
ladderStep(&w, move^bit)
move = bit
}
toAffine((*[fp.Size]byte)(k), &w[1], &w[2])
}
func toAffine(k *[fp.Size]byte, x, z *fp.Elt) {
fp.Inv(z, z)
fp.Mul(x, x, z)
_ = fp.ToBytes(k[:], x)
}
var lowOrderPoints = [5]fp.Elt{
{ /* (0,_,1) point of order 2 on Curve25519 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
},
{ /* (1,_,1) point of order 4 on Curve25519 */
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
},
{ /* (x,_,1) first point of order 8 on Curve25519 */
0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae,
0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a,
0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd,
0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00,
},
{ /* (x,_,1) second point of order 8 on Curve25519 */
0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24,
0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b,
0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86,
0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57,
},
{ /* (-1,_,1) a point of order 4 on the twist of Curve25519 */
0xec, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f,
},
}

View File

@ -0,0 +1,30 @@
//go:build amd64 && !purego
// +build amd64,!purego
package x25519
import (
fp "github.com/cloudflare/circl/math/fp25519"
"golang.org/x/sys/cpu"
)
var hasBmi2Adx = cpu.X86.HasBMI2 && cpu.X86.HasADX
var _ = hasBmi2Adx
func double(x, z *fp.Elt) { doubleAmd64(x, z) }
func diffAdd(w *[5]fp.Elt, b uint) { diffAddAmd64(w, b) }
func ladderStep(w *[5]fp.Elt, b uint) { ladderStepAmd64(w, b) }
func mulA24(z, x *fp.Elt) { mulA24Amd64(z, x) }
//go:noescape
func ladderStepAmd64(w *[5]fp.Elt, b uint)
//go:noescape
func diffAddAmd64(w *[5]fp.Elt, b uint)
//go:noescape
func doubleAmd64(x, z *fp.Elt)
//go:noescape
func mulA24Amd64(z, x *fp.Elt)

View File

@ -0,0 +1,111 @@
#define ladderStepLeg \
addSub(x2,z2) \
addSub(x3,z3) \
integerMulLeg(b0,x2,z3) \
integerMulLeg(b1,x3,z2) \
reduceFromDoubleLeg(t0,b0) \
reduceFromDoubleLeg(t1,b1) \
addSub(t0,t1) \
cselect(x2,x3,regMove) \
cselect(z2,z3,regMove) \
integerSqrLeg(b0,t0) \
integerSqrLeg(b1,t1) \
reduceFromDoubleLeg(x3,b0) \
reduceFromDoubleLeg(z3,b1) \
integerMulLeg(b0,x1,z3) \
reduceFromDoubleLeg(z3,b0) \
integerSqrLeg(b0,x2) \
integerSqrLeg(b1,z2) \
reduceFromDoubleLeg(x2,b0) \
reduceFromDoubleLeg(z2,b1) \
subtraction(t0,x2,z2) \
multiplyA24Leg(t1,t0) \
additionLeg(t1,t1,z2) \
integerMulLeg(b0,x2,z2) \
integerMulLeg(b1,t0,t1) \
reduceFromDoubleLeg(x2,b0) \
reduceFromDoubleLeg(z2,b1)
#define ladderStepBmi2Adx \
addSub(x2,z2) \
addSub(x3,z3) \
integerMulAdx(b0,x2,z3) \
integerMulAdx(b1,x3,z2) \
reduceFromDoubleAdx(t0,b0) \
reduceFromDoubleAdx(t1,b1) \
addSub(t0,t1) \
cselect(x2,x3,regMove) \
cselect(z2,z3,regMove) \
integerSqrAdx(b0,t0) \
integerSqrAdx(b1,t1) \
reduceFromDoubleAdx(x3,b0) \
reduceFromDoubleAdx(z3,b1) \
integerMulAdx(b0,x1,z3) \
reduceFromDoubleAdx(z3,b0) \
integerSqrAdx(b0,x2) \
integerSqrAdx(b1,z2) \
reduceFromDoubleAdx(x2,b0) \
reduceFromDoubleAdx(z2,b1) \
subtraction(t0,x2,z2) \
multiplyA24Adx(t1,t0) \
additionAdx(t1,t1,z2) \
integerMulAdx(b0,x2,z2) \
integerMulAdx(b1,t0,t1) \
reduceFromDoubleAdx(x2,b0) \
reduceFromDoubleAdx(z2,b1)
#define difAddLeg \
addSub(x1,z1) \
integerMulLeg(b0,z1,ui) \
reduceFromDoubleLeg(z1,b0) \
addSub(x1,z1) \
integerSqrLeg(b0,x1) \
integerSqrLeg(b1,z1) \
reduceFromDoubleLeg(x1,b0) \
reduceFromDoubleLeg(z1,b1) \
integerMulLeg(b0,x1,z2) \
integerMulLeg(b1,z1,x2) \
reduceFromDoubleLeg(x1,b0) \
reduceFromDoubleLeg(z1,b1)
#define difAddBmi2Adx \
addSub(x1,z1) \
integerMulAdx(b0,z1,ui) \
reduceFromDoubleAdx(z1,b0) \
addSub(x1,z1) \
integerSqrAdx(b0,x1) \
integerSqrAdx(b1,z1) \
reduceFromDoubleAdx(x1,b0) \
reduceFromDoubleAdx(z1,b1) \
integerMulAdx(b0,x1,z2) \
integerMulAdx(b1,z1,x2) \
reduceFromDoubleAdx(x1,b0) \
reduceFromDoubleAdx(z1,b1)
#define doubleLeg \
addSub(x1,z1) \
integerSqrLeg(b0,x1) \
integerSqrLeg(b1,z1) \
reduceFromDoubleLeg(x1,b0) \
reduceFromDoubleLeg(z1,b1) \
subtraction(t0,x1,z1) \
multiplyA24Leg(t1,t0) \
additionLeg(t1,t1,z1) \
integerMulLeg(b0,x1,z1) \
integerMulLeg(b1,t0,t1) \
reduceFromDoubleLeg(x1,b0) \
reduceFromDoubleLeg(z1,b1)
#define doubleBmi2Adx \
addSub(x1,z1) \
integerSqrAdx(b0,x1) \
integerSqrAdx(b1,z1) \
reduceFromDoubleAdx(x1,b0) \
reduceFromDoubleAdx(z1,b1) \
subtraction(t0,x1,z1) \
multiplyA24Adx(t1,t0) \
additionAdx(t1,t1,z1) \
integerMulAdx(b0,x1,z1) \
integerMulAdx(b1,t0,t1) \
reduceFromDoubleAdx(x1,b0) \
reduceFromDoubleAdx(z1,b1)

View File

@ -0,0 +1,156 @@
// +build amd64
#include "textflag.h"
// Depends on circl/math/fp25519 package
#include "../../math/fp25519/fp_amd64.h"
#include "curve_amd64.h"
// CTE_A24 is (A+2)/4 from Curve25519
#define CTE_A24 121666
#define Size 32
// multiplyA24Leg multiplies x times CTE_A24 and stores in z
// Uses: AX, DX, R8-R13, FLAGS
// Instr: x86_64, cmov
#define multiplyA24Leg(z,x) \
MOVL $CTE_A24, AX; MULQ 0+x; MOVQ AX, R8; MOVQ DX, R9; \
MOVL $CTE_A24, AX; MULQ 8+x; MOVQ AX, R12; MOVQ DX, R10; \
MOVL $CTE_A24, AX; MULQ 16+x; MOVQ AX, R13; MOVQ DX, R11; \
MOVL $CTE_A24, AX; MULQ 24+x; \
ADDQ R12, R9; \
ADCQ R13, R10; \
ADCQ AX, R11; \
ADCQ $0, DX; \
MOVL $38, AX; /* 2*C = 38 = 2^256 MOD 2^255-19*/ \
IMULQ AX, DX; \
ADDQ DX, R8; \
ADCQ $0, R9; MOVQ R9, 8+z; \
ADCQ $0, R10; MOVQ R10, 16+z; \
ADCQ $0, R11; MOVQ R11, 24+z; \
MOVQ $0, DX; \
CMOVQCS AX, DX; \
ADDQ DX, R8; MOVQ R8, 0+z;
// multiplyA24Adx multiplies x times CTE_A24 and stores in z
// Uses: AX, DX, R8-R12, FLAGS
// Instr: x86_64, cmov, bmi2
#define multiplyA24Adx(z,x) \
MOVQ $CTE_A24, DX; \
MULXQ 0+x, R8, R10; \
MULXQ 8+x, R9, R11; ADDQ R10, R9; \
MULXQ 16+x, R10, AX; ADCQ R11, R10; \
MULXQ 24+x, R11, R12; ADCQ AX, R11; \
;;;;;;;;;;;;;;;;;;;;; ADCQ $0, R12; \
MOVL $38, DX; /* 2*C = 38 = 2^256 MOD 2^255-19*/ \
IMULQ DX, R12; \
ADDQ R12, R8; \
ADCQ $0, R9; MOVQ R9, 8+z; \
ADCQ $0, R10; MOVQ R10, 16+z; \
ADCQ $0, R11; MOVQ R11, 24+z; \
MOVQ $0, R12; \
CMOVQCS DX, R12; \
ADDQ R12, R8; MOVQ R8, 0+z;
#define mulA24Legacy \
multiplyA24Leg(0(DI),0(SI))
#define mulA24Bmi2Adx \
multiplyA24Adx(0(DI),0(SI))
// func mulA24Amd64(z, x *fp255.Elt)
TEXT ·mulA24Amd64(SB),NOSPLIT,$0-16
MOVQ z+0(FP), DI
MOVQ x+8(FP), SI
CHECK_BMI2ADX(LMA24, mulA24Legacy, mulA24Bmi2Adx)
// func ladderStepAmd64(w *[5]fp255.Elt, b uint)
// ladderStepAmd64 calculates a point addition and doubling as follows:
// (x2,z2) = 2*(x2,z2) and (x3,z3) = (x2,z2)+(x3,z3) using as a difference (x1,-).
// work = (x1,x2,z2,x3,z3) are five fp255.Elt of 32 bytes.
// stack = (t0,t1) are two fp.Elt of fp.Size bytes, and
// (b0,b1) are two-double precision fp.Elt of 2*fp.Size bytes.
TEXT ·ladderStepAmd64(SB),NOSPLIT,$192-16
// Parameters
#define regWork DI
#define regMove SI
#define x1 0*Size(regWork)
#define x2 1*Size(regWork)
#define z2 2*Size(regWork)
#define x3 3*Size(regWork)
#define z3 4*Size(regWork)
// Local variables
#define t0 0*Size(SP)
#define t1 1*Size(SP)
#define b0 2*Size(SP)
#define b1 4*Size(SP)
MOVQ w+0(FP), regWork
MOVQ b+8(FP), regMove
CHECK_BMI2ADX(LLADSTEP, ladderStepLeg, ladderStepBmi2Adx)
#undef regWork
#undef regMove
#undef x1
#undef x2
#undef z2
#undef x3
#undef z3
#undef t0
#undef t1
#undef b0
#undef b1
// func diffAddAmd64(w *[5]fp255.Elt, b uint)
// diffAddAmd64 calculates a differential point addition using a precomputed point.
// (x1,z1) = (x1,z1)+(mu) using a difference point (x2,z2)
// w = (mu,x1,z1,x2,z2) are five fp.Elt, and
// stack = (b0,b1) are two-double precision fp.Elt of 2*fp.Size bytes.
TEXT ·diffAddAmd64(SB),NOSPLIT,$128-16
// Parameters
#define regWork DI
#define regSwap SI
#define ui 0*Size(regWork)
#define x1 1*Size(regWork)
#define z1 2*Size(regWork)
#define x2 3*Size(regWork)
#define z2 4*Size(regWork)
// Local variables
#define b0 0*Size(SP)
#define b1 2*Size(SP)
MOVQ w+0(FP), regWork
MOVQ b+8(FP), regSwap
cswap(x1,x2,regSwap)
cswap(z1,z2,regSwap)
CHECK_BMI2ADX(LDIFADD, difAddLeg, difAddBmi2Adx)
#undef regWork
#undef regSwap
#undef ui
#undef x1
#undef z1
#undef x2
#undef z2
#undef b0
#undef b1
// func doubleAmd64(x, z *fp255.Elt)
// doubleAmd64 calculates a point doubling (x1,z1) = 2*(x1,z1).
// stack = (t0,t1) are two fp.Elt of fp.Size bytes, and
// (b0,b1) are two-double precision fp.Elt of 2*fp.Size bytes.
TEXT ·doubleAmd64(SB),NOSPLIT,$192-16
// Parameters
#define x1 0(DI)
#define z1 0(SI)
// Local variables
#define t0 0*Size(SP)
#define t1 1*Size(SP)
#define b0 2*Size(SP)
#define b1 4*Size(SP)
MOVQ x+0(FP), DI
MOVQ z+8(FP), SI
CHECK_BMI2ADX(LDOUB,doubleLeg,doubleBmi2Adx)
#undef x1
#undef z1
#undef t0
#undef t1
#undef b0
#undef b1

View File

@ -0,0 +1,85 @@
package x25519
import (
"encoding/binary"
"math/bits"
fp "github.com/cloudflare/circl/math/fp25519"
)
func doubleGeneric(x, z *fp.Elt) {
t0, t1 := &fp.Elt{}, &fp.Elt{}
fp.AddSub(x, z)
fp.Sqr(x, x)
fp.Sqr(z, z)
fp.Sub(t0, x, z)
mulA24Generic(t1, t0)
fp.Add(t1, t1, z)
fp.Mul(x, x, z)
fp.Mul(z, t0, t1)
}
func diffAddGeneric(w *[5]fp.Elt, b uint) {
mu, x1, z1, x2, z2 := &w[0], &w[1], &w[2], &w[3], &w[4]
fp.Cswap(x1, x2, b)
fp.Cswap(z1, z2, b)
fp.AddSub(x1, z1)
fp.Mul(z1, z1, mu)
fp.AddSub(x1, z1)
fp.Sqr(x1, x1)
fp.Sqr(z1, z1)
fp.Mul(x1, x1, z2)
fp.Mul(z1, z1, x2)
}
func ladderStepGeneric(w *[5]fp.Elt, b uint) {
x1, x2, z2, x3, z3 := &w[0], &w[1], &w[2], &w[3], &w[4]
t0 := &fp.Elt{}
t1 := &fp.Elt{}
fp.AddSub(x2, z2)
fp.AddSub(x3, z3)
fp.Mul(t0, x2, z3)
fp.Mul(t1, x3, z2)
fp.AddSub(t0, t1)
fp.Cmov(x2, x3, b)
fp.Cmov(z2, z3, b)
fp.Sqr(x3, t0)
fp.Sqr(z3, t1)
fp.Mul(z3, x1, z3)
fp.Sqr(x2, x2)
fp.Sqr(z2, z2)
fp.Sub(t0, x2, z2)
mulA24Generic(t1, t0)
fp.Add(t1, t1, z2)
fp.Mul(x2, x2, z2)
fp.Mul(z2, t0, t1)
}
func mulA24Generic(z, x *fp.Elt) {
const A24 = 121666
const n = 8
var xx [4]uint64
for i := range xx {
xx[i] = binary.LittleEndian.Uint64(x[i*n : (i+1)*n])
}
h0, l0 := bits.Mul64(xx[0], A24)
h1, l1 := bits.Mul64(xx[1], A24)
h2, l2 := bits.Mul64(xx[2], A24)
h3, l3 := bits.Mul64(xx[3], A24)
var c3 uint64
l1, c0 := bits.Add64(h0, l1, 0)
l2, c1 := bits.Add64(h1, l2, c0)
l3, c2 := bits.Add64(h2, l3, c1)
l4, _ := bits.Add64(h3, 0, c2)
_, l4 = bits.Mul64(l4, 38)
l0, c0 = bits.Add64(l0, l4, 0)
xx[1], c1 = bits.Add64(l1, 0, c0)
xx[2], c2 = bits.Add64(l2, 0, c1)
xx[3], c3 = bits.Add64(l3, 0, c2)
xx[0], _ = bits.Add64(l0, (-c3)&38, 0)
for i := range xx {
binary.LittleEndian.PutUint64(z[i*n:(i+1)*n], xx[i])
}
}

View File

@ -0,0 +1,11 @@
//go:build !amd64 || purego
// +build !amd64 purego
package x25519
import fp "github.com/cloudflare/circl/math/fp25519"
func double(x, z *fp.Elt) { doubleGeneric(x, z) }
func diffAdd(w *[5]fp.Elt, b uint) { diffAddGeneric(w, b) }
func ladderStep(w *[5]fp.Elt, b uint) { ladderStepGeneric(w, b) }
func mulA24(z, x *fp.Elt) { mulA24Generic(z, x) }

19
vendor/github.com/cloudflare/circl/dh/x25519/doc.go generated vendored Normal file
View File

@ -0,0 +1,19 @@
/*
Package x25519 provides Diffie-Hellman functions as specified in RFC-7748.
Validation of public keys.
The Diffie-Hellman function, as described in RFC-7748 [1], works for any
public key. However, if a different protocol requires contributory
behaviour [2,3], then the public keys must be validated against low-order
points [3,4]. To do that, the Shared function performs this validation
internally and returns false when the public key is invalid (i.e., it
is a low-order point).
References:
- [1] RFC7748 by Langley, Hamburg, Turner (https://rfc-editor.org/rfc/rfc7748.txt)
- [2] Curve25519 by Bernstein (https://cr.yp.to/ecdh.html)
- [3] Bernstein (https://cr.yp.to/ecdh.html#validate)
- [4] Cremers&Jackson (https://eprint.iacr.org/2019/526)
*/
package x25519

47
vendor/github.com/cloudflare/circl/dh/x25519/key.go generated vendored Normal file
View File

@ -0,0 +1,47 @@
package x25519
import (
"crypto/subtle"
fp "github.com/cloudflare/circl/math/fp25519"
)
// Size is the length in bytes of a X25519 key.
const Size = 32
// Key represents a X25519 key.
type Key [Size]byte
func (k *Key) clamp(in *Key) *Key {
*k = *in
k[0] &= 248
k[31] = (k[31] & 127) | 64
return k
}
// isValidPubKey verifies if the public key is not a low-order point.
func (k *Key) isValidPubKey() bool {
fp.Modp((*fp.Elt)(k))
var isLowOrder int
for _, P := range lowOrderPoints {
isLowOrder |= subtle.ConstantTimeCompare(P[:], k[:])
}
return isLowOrder == 0
}
// KeyGen obtains a public key given a secret key.
func KeyGen(public, secret *Key) {
ladderJoye(public.clamp(secret))
}
// Shared calculates Alice's shared key from Alice's secret key and Bob's
// public key returning true on success. A failure case happens when the public
// key is a low-order point, thus the shared key is all-zeros and the function
// returns false.
func Shared(shared, secret, public *Key) bool {
validPk := *public
validPk[31] &= (1 << (255 % 8)) - 1
ok := validPk.isValidPubKey()
ladderMontgomery(shared.clamp(secret), &validPk)
return ok
}

268
vendor/github.com/cloudflare/circl/dh/x25519/table.go generated vendored Normal file
View File

@ -0,0 +1,268 @@
package x25519
import "github.com/cloudflare/circl/math/fp25519"
// tableGenerator contains the set of points:
//
// t[i] = (xi+1)/(xi-1),
//
// where (xi,yi) = 2^iG and G is the generator point
// Size = (256)*(256/8) = 8192 bytes.
var tableGenerator = [256 * fp25519.Size]byte{
/* (2^ 0)P */ 0xf3, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x5f,
/* (2^ 1)P */ 0x96, 0xfe, 0xaa, 0x16, 0xf4, 0x20, 0x82, 0x6b, 0x34, 0x6a, 0x56, 0x4f, 0x2b, 0xeb, 0xeb, 0x82, 0x0f, 0x95, 0xa5, 0x75, 0xb0, 0xa5, 0xa9, 0xd5, 0xf4, 0x88, 0x24, 0x4b, 0xcf, 0xb2, 0x42, 0x51,
/* (2^ 2)P */ 0x0c, 0x68, 0x69, 0x00, 0x75, 0xbc, 0xae, 0x6a, 0x41, 0x9c, 0xf9, 0xa0, 0x20, 0x78, 0xcf, 0x89, 0xf4, 0xd0, 0x56, 0x3b, 0x18, 0xd9, 0x58, 0x2a, 0xa4, 0x11, 0x60, 0xe3, 0x80, 0xca, 0x5a, 0x4b,
/* (2^ 3)P */ 0x5d, 0x74, 0x29, 0x8c, 0x34, 0x32, 0x91, 0x32, 0xd7, 0x2f, 0x64, 0xe1, 0x16, 0xe6, 0xa2, 0xf4, 0x34, 0xbc, 0x67, 0xff, 0x03, 0xbb, 0x45, 0x1e, 0x4a, 0x9b, 0x2a, 0xf4, 0xd0, 0x12, 0x69, 0x30,
/* (2^ 4)P */ 0x54, 0x71, 0xaf, 0xe6, 0x07, 0x65, 0x88, 0xff, 0x2f, 0xc8, 0xee, 0xdf, 0x13, 0x0e, 0xf5, 0x04, 0xce, 0xb5, 0xba, 0x2a, 0xe8, 0x2f, 0x51, 0xaa, 0x22, 0xf2, 0xd5, 0x68, 0x1a, 0x25, 0x4e, 0x17,
/* (2^ 5)P */ 0x98, 0x88, 0x02, 0x82, 0x0d, 0x70, 0x96, 0xcf, 0xc5, 0x02, 0x2c, 0x0a, 0x37, 0xe3, 0x43, 0x17, 0xaa, 0x6e, 0xe8, 0xb4, 0x98, 0xec, 0x9e, 0x37, 0x2e, 0x48, 0xe0, 0x51, 0x8a, 0x88, 0x59, 0x0c,
/* (2^ 6)P */ 0x89, 0xd1, 0xb5, 0x99, 0xd6, 0xf1, 0xcb, 0xfb, 0x84, 0xdc, 0x9f, 0x8e, 0xd5, 0xf0, 0xae, 0xac, 0x14, 0x76, 0x1f, 0x23, 0x06, 0x0d, 0xc2, 0xc1, 0x72, 0xf9, 0x74, 0xa2, 0x8d, 0x21, 0x38, 0x29,
/* (2^ 7)P */ 0x18, 0x7f, 0x1d, 0xff, 0xbe, 0x49, 0xaf, 0xf6, 0xc2, 0xc9, 0x7a, 0x38, 0x22, 0x1c, 0x54, 0xcc, 0x6b, 0xc5, 0x15, 0x40, 0xef, 0xc9, 0xfc, 0x96, 0xa9, 0x13, 0x09, 0x69, 0x7c, 0x62, 0xc1, 0x69,
/* (2^ 8)P */ 0x0e, 0xdb, 0x33, 0x47, 0x2f, 0xfd, 0x86, 0x7a, 0xe9, 0x7d, 0x08, 0x9e, 0xf2, 0xc4, 0xb8, 0xfd, 0x29, 0xa2, 0xa2, 0x8e, 0x1a, 0x4b, 0x5e, 0x09, 0x79, 0x7a, 0xb3, 0x29, 0xc8, 0xa7, 0xd7, 0x1a,
/* (2^ 9)P */ 0xc0, 0xa0, 0x7e, 0xd1, 0xca, 0x89, 0x2d, 0x34, 0x51, 0x20, 0xed, 0xcc, 0xa6, 0xdd, 0xbe, 0x67, 0x74, 0x2f, 0xb4, 0x2b, 0xbf, 0x31, 0xca, 0x19, 0xbb, 0xac, 0x80, 0x49, 0xc8, 0xb4, 0xf7, 0x3d,
/* (2^ 10)P */ 0x83, 0xd8, 0x0a, 0xc8, 0x4d, 0x44, 0xc6, 0xa8, 0x85, 0xab, 0xe3, 0x66, 0x03, 0x44, 0x1e, 0xb9, 0xd8, 0xf6, 0x64, 0x01, 0xa0, 0xcd, 0x15, 0xc2, 0x68, 0xe6, 0x47, 0xf2, 0x6e, 0x7c, 0x86, 0x3d,
/* (2^ 11)P */ 0x8c, 0x65, 0x3e, 0xcc, 0x2b, 0x58, 0xdd, 0xc7, 0x28, 0x55, 0x0e, 0xee, 0x48, 0x47, 0x2c, 0xfd, 0x71, 0x4f, 0x9f, 0xcc, 0x95, 0x9b, 0xfd, 0xa0, 0xdf, 0x5d, 0x67, 0xb0, 0x71, 0xd8, 0x29, 0x75,
/* (2^ 12)P */ 0x78, 0xbd, 0x3c, 0x2d, 0xb4, 0x68, 0xf5, 0xb8, 0x82, 0xda, 0xf3, 0x91, 0x1b, 0x01, 0x33, 0x12, 0x62, 0x3b, 0x7c, 0x4a, 0xcd, 0x6c, 0xce, 0x2d, 0x03, 0x86, 0x49, 0x9e, 0x8e, 0xfc, 0xe7, 0x75,
/* (2^ 13)P */ 0xec, 0xb6, 0xd0, 0xfc, 0xf1, 0x13, 0x4f, 0x2f, 0x45, 0x7a, 0xff, 0x29, 0x1f, 0xca, 0xa8, 0xf1, 0x9b, 0xe2, 0x81, 0x29, 0xa7, 0xc1, 0x49, 0xc2, 0x6a, 0xb5, 0x83, 0x8c, 0xbb, 0x0d, 0xbe, 0x6e,
/* (2^ 14)P */ 0x22, 0xb2, 0x0b, 0x17, 0x8d, 0xfa, 0x14, 0x71, 0x5f, 0x93, 0x93, 0xbf, 0xd5, 0xdc, 0xa2, 0x65, 0x9a, 0x97, 0x9c, 0xb5, 0x68, 0x1f, 0xc4, 0xbd, 0x89, 0x92, 0xce, 0xa2, 0x79, 0xef, 0x0e, 0x2f,
/* (2^ 15)P */ 0xce, 0x37, 0x3c, 0x08, 0x0c, 0xbf, 0xec, 0x42, 0x22, 0x63, 0x49, 0xec, 0x09, 0xbc, 0x30, 0x29, 0x0d, 0xac, 0xfe, 0x9c, 0xc1, 0xb0, 0x94, 0xf2, 0x80, 0xbb, 0xfa, 0xed, 0x4b, 0xaa, 0x80, 0x37,
/* (2^ 16)P */ 0x29, 0xd9, 0xea, 0x7c, 0x3e, 0x7d, 0xc1, 0x56, 0xc5, 0x22, 0x57, 0x2e, 0xeb, 0x4b, 0xcb, 0xe7, 0x5a, 0xe1, 0xbf, 0x2d, 0x73, 0x31, 0xe9, 0x0c, 0xf8, 0x52, 0x10, 0x62, 0xc7, 0x83, 0xb8, 0x41,
/* (2^ 17)P */ 0x50, 0x53, 0xd2, 0xc3, 0xa0, 0x5c, 0xf7, 0xdb, 0x51, 0xe3, 0xb1, 0x6e, 0x08, 0xbe, 0x36, 0x29, 0x12, 0xb2, 0xa9, 0xb4, 0x3c, 0xe0, 0x36, 0xc9, 0xaa, 0x25, 0x22, 0x32, 0x82, 0xbf, 0x45, 0x1d,
/* (2^ 18)P */ 0xc5, 0x4c, 0x02, 0x6a, 0x03, 0xb1, 0x1a, 0xe8, 0x72, 0x9a, 0x4c, 0x30, 0x1c, 0x20, 0x12, 0xe2, 0xfc, 0xb1, 0x32, 0x68, 0xba, 0x3f, 0xd7, 0xc5, 0x81, 0x95, 0x83, 0x4d, 0x5a, 0xdb, 0xff, 0x20,
/* (2^ 19)P */ 0xad, 0x0f, 0x5d, 0xbe, 0x67, 0xd3, 0x83, 0xa2, 0x75, 0x44, 0x16, 0x8b, 0xca, 0x25, 0x2b, 0x6c, 0x2e, 0xf2, 0xaa, 0x7c, 0x46, 0x35, 0x49, 0x9d, 0x49, 0xff, 0x85, 0xee, 0x8e, 0x40, 0x66, 0x51,
/* (2^ 20)P */ 0x61, 0xe3, 0xb4, 0xfa, 0xa2, 0xba, 0x67, 0x3c, 0xef, 0x5c, 0xf3, 0x7e, 0xc6, 0x33, 0xe4, 0xb3, 0x1c, 0x9b, 0x15, 0x41, 0x92, 0x72, 0x59, 0x52, 0x33, 0xab, 0xb0, 0xd5, 0x92, 0x18, 0x62, 0x6a,
/* (2^ 21)P */ 0xcb, 0xcd, 0x55, 0x75, 0x38, 0x4a, 0xb7, 0x20, 0x3f, 0x92, 0x08, 0x12, 0x0e, 0xa1, 0x2a, 0x53, 0xd1, 0x1d, 0x28, 0x62, 0x77, 0x7b, 0xa1, 0xea, 0xbf, 0x44, 0x5c, 0xf0, 0x43, 0x34, 0xab, 0x61,
/* (2^ 22)P */ 0xf8, 0xde, 0x24, 0x23, 0x42, 0x6c, 0x7a, 0x25, 0x7f, 0xcf, 0xe3, 0x17, 0x10, 0x6c, 0x1c, 0x13, 0x57, 0xa2, 0x30, 0xf6, 0x39, 0x87, 0x75, 0x23, 0x80, 0x85, 0xa7, 0x01, 0x7a, 0x40, 0x5a, 0x29,
/* (2^ 23)P */ 0xd9, 0xa8, 0x5d, 0x6d, 0x24, 0x43, 0xc4, 0xf8, 0x5d, 0xfa, 0x52, 0x0c, 0x45, 0x75, 0xd7, 0x19, 0x3d, 0xf8, 0x1b, 0x73, 0x92, 0xfc, 0xfc, 0x2a, 0x00, 0x47, 0x2b, 0x1b, 0xe8, 0xc8, 0x10, 0x7d,
/* (2^ 24)P */ 0x0b, 0xa2, 0xba, 0x70, 0x1f, 0x27, 0xe0, 0xc8, 0x57, 0x39, 0xa6, 0x7c, 0x86, 0x48, 0x37, 0x99, 0xbb, 0xd4, 0x7e, 0xcb, 0xb3, 0xef, 0x12, 0x54, 0x75, 0x29, 0xe6, 0x73, 0x61, 0xd3, 0x96, 0x31,
/* (2^ 25)P */ 0xfc, 0xdf, 0xc7, 0x41, 0xd1, 0xca, 0x5b, 0xde, 0x48, 0xc8, 0x95, 0xb3, 0xd2, 0x8c, 0xcc, 0x47, 0xcb, 0xf3, 0x1a, 0xe1, 0x42, 0xd9, 0x4c, 0xa3, 0xc2, 0xce, 0x4e, 0xd0, 0xf2, 0xdb, 0x56, 0x02,
/* (2^ 26)P */ 0x7f, 0x66, 0x0e, 0x4b, 0xe9, 0xb7, 0x5a, 0x87, 0x10, 0x0d, 0x85, 0xc0, 0x83, 0xdd, 0xd4, 0xca, 0x9f, 0xc7, 0x72, 0x4e, 0x8f, 0x2e, 0xf1, 0x47, 0x9b, 0xb1, 0x85, 0x8c, 0xbb, 0x87, 0x1a, 0x5f,
/* (2^ 27)P */ 0xb8, 0x51, 0x7f, 0x43, 0xb6, 0xd0, 0xe9, 0x7a, 0x65, 0x90, 0x87, 0x18, 0x55, 0xce, 0xc7, 0x12, 0xee, 0x7a, 0xf7, 0x5c, 0xfe, 0x09, 0xde, 0x2a, 0x27, 0x56, 0x2c, 0x7d, 0x2f, 0x5a, 0xa0, 0x23,
/* (2^ 28)P */ 0x9a, 0x16, 0x7c, 0xf1, 0x28, 0xe1, 0x08, 0x59, 0x2d, 0x85, 0xd0, 0x8a, 0xdd, 0x98, 0x74, 0xf7, 0x64, 0x2f, 0x10, 0xab, 0xce, 0xc4, 0xb4, 0x74, 0x45, 0x98, 0x13, 0x10, 0xdd, 0xba, 0x3a, 0x18,
/* (2^ 29)P */ 0xac, 0xaa, 0x92, 0xaa, 0x8d, 0xba, 0x65, 0xb1, 0x05, 0x67, 0x38, 0x99, 0x95, 0xef, 0xc5, 0xd5, 0xd1, 0x40, 0xfc, 0xf8, 0x0c, 0x8f, 0x2f, 0xbe, 0x14, 0x45, 0x20, 0xee, 0x35, 0xe6, 0x01, 0x27,
/* (2^ 30)P */ 0x14, 0x65, 0x15, 0x20, 0x00, 0xa8, 0x9f, 0x62, 0xce, 0xc1, 0xa8, 0x64, 0x87, 0x86, 0x23, 0xf2, 0x0e, 0x06, 0x3f, 0x0b, 0xff, 0x4f, 0x89, 0x5b, 0xfa, 0xa3, 0x08, 0xf7, 0x4c, 0x94, 0xd9, 0x60,
/* (2^ 31)P */ 0x1f, 0x20, 0x7a, 0x1c, 0x1a, 0x00, 0xea, 0xae, 0x63, 0xce, 0xe2, 0x3e, 0x63, 0x6a, 0xf1, 0xeb, 0xe1, 0x07, 0x7a, 0x4c, 0x59, 0x09, 0x77, 0x6f, 0xcb, 0x08, 0x02, 0x0d, 0x15, 0x58, 0xb9, 0x79,
/* (2^ 32)P */ 0xe7, 0x10, 0xd4, 0x01, 0x53, 0x5e, 0xb5, 0x24, 0x4d, 0xc8, 0xfd, 0xf3, 0xdf, 0x4e, 0xa3, 0xe3, 0xd8, 0x32, 0x40, 0x90, 0xe4, 0x68, 0x87, 0xd8, 0xec, 0xae, 0x3a, 0x7b, 0x42, 0x84, 0x13, 0x13,
/* (2^ 33)P */ 0x14, 0x4f, 0x23, 0x86, 0x12, 0xe5, 0x05, 0x84, 0x29, 0xc5, 0xb4, 0xad, 0x39, 0x47, 0xdc, 0x14, 0xfd, 0x4f, 0x63, 0x50, 0xb2, 0xb5, 0xa2, 0xb8, 0x93, 0xff, 0xa7, 0xd8, 0x4a, 0xa9, 0xe2, 0x2f,
/* (2^ 34)P */ 0xdd, 0xfa, 0x43, 0xe8, 0xef, 0x57, 0x5c, 0xec, 0x18, 0x99, 0xbb, 0xf0, 0x40, 0xce, 0x43, 0x28, 0x05, 0x63, 0x3d, 0xcf, 0xd6, 0x61, 0xb5, 0xa4, 0x7e, 0x77, 0xfb, 0xe8, 0xbd, 0x29, 0x36, 0x74,
/* (2^ 35)P */ 0x8f, 0x73, 0xaf, 0xbb, 0x46, 0xdd, 0x3e, 0x34, 0x51, 0xa6, 0x01, 0xb1, 0x28, 0x18, 0x98, 0xed, 0x7a, 0x79, 0x2c, 0x88, 0x0b, 0x76, 0x01, 0xa4, 0x30, 0x87, 0xc8, 0x8d, 0xe2, 0x23, 0xc2, 0x1f,
/* (2^ 36)P */ 0x0e, 0xba, 0x0f, 0xfc, 0x91, 0x4e, 0x60, 0x48, 0xa4, 0x6f, 0x2c, 0x05, 0x8f, 0xf7, 0x37, 0xb6, 0x9c, 0x23, 0xe9, 0x09, 0x3d, 0xac, 0xcc, 0x91, 0x7c, 0x68, 0x7a, 0x43, 0xd4, 0xee, 0xf7, 0x23,
/* (2^ 37)P */ 0x00, 0xd8, 0x9b, 0x8d, 0x11, 0xb1, 0x73, 0x51, 0xa7, 0xd4, 0x89, 0x31, 0xb6, 0x41, 0xd6, 0x29, 0x86, 0xc5, 0xbb, 0x88, 0x79, 0x17, 0xbf, 0xfd, 0xf5, 0x1d, 0xd8, 0xca, 0x4f, 0x89, 0x59, 0x29,
/* (2^ 38)P */ 0x99, 0xc8, 0xbb, 0xb4, 0xf3, 0x8e, 0xbc, 0xae, 0xb9, 0x92, 0x69, 0xb2, 0x5a, 0x99, 0x48, 0x41, 0xfb, 0x2c, 0xf9, 0x34, 0x01, 0x0b, 0xe2, 0x24, 0xe8, 0xde, 0x05, 0x4a, 0x89, 0x58, 0xd1, 0x40,
/* (2^ 39)P */ 0xf6, 0x76, 0xaf, 0x85, 0x11, 0x0b, 0xb0, 0x46, 0x79, 0x7a, 0x18, 0x73, 0x78, 0xc7, 0xba, 0x26, 0x5f, 0xff, 0x8f, 0xab, 0x95, 0xbf, 0xc0, 0x3d, 0xd7, 0x24, 0x55, 0x94, 0xd8, 0x8b, 0x60, 0x2a,
/* (2^ 40)P */ 0x02, 0x63, 0x44, 0xbd, 0x88, 0x95, 0x44, 0x26, 0x9c, 0x43, 0x88, 0x03, 0x1c, 0xc2, 0x4b, 0x7c, 0xb2, 0x11, 0xbd, 0x83, 0xf3, 0xa4, 0x98, 0x8e, 0xb9, 0x76, 0xd8, 0xc9, 0x7b, 0x8d, 0x21, 0x26,
/* (2^ 41)P */ 0x8a, 0x17, 0x7c, 0x99, 0x42, 0x15, 0x08, 0xe3, 0x6f, 0x60, 0xb6, 0x6f, 0xa8, 0x29, 0x2d, 0x3c, 0x74, 0x93, 0x27, 0xfa, 0x36, 0x77, 0x21, 0x5c, 0xfa, 0xb1, 0xfe, 0x4a, 0x73, 0x05, 0xde, 0x7d,
/* (2^ 42)P */ 0xab, 0x2b, 0xd4, 0x06, 0x39, 0x0e, 0xf1, 0x3b, 0x9c, 0x64, 0x80, 0x19, 0x3e, 0x80, 0xf7, 0xe4, 0x7a, 0xbf, 0x95, 0x95, 0xf8, 0x3b, 0x05, 0xe6, 0x30, 0x55, 0x24, 0xda, 0x38, 0xaf, 0x4f, 0x39,
/* (2^ 43)P */ 0xf4, 0x28, 0x69, 0x89, 0x58, 0xfb, 0x8e, 0x7a, 0x3c, 0x11, 0x6a, 0xcc, 0xe9, 0x78, 0xc7, 0xfb, 0x6f, 0x59, 0xaf, 0x30, 0xe3, 0x0c, 0x67, 0x72, 0xf7, 0x6c, 0x3d, 0x1d, 0xa8, 0x22, 0xf2, 0x48,
/* (2^ 44)P */ 0xa7, 0xca, 0x72, 0x0d, 0x41, 0xce, 0x1f, 0xf0, 0x95, 0x55, 0x3b, 0x21, 0xc7, 0xec, 0x20, 0x5a, 0x83, 0x14, 0xfa, 0xc1, 0x65, 0x11, 0xc2, 0x7b, 0x41, 0xa7, 0xa8, 0x1d, 0xe3, 0x9a, 0xf8, 0x07,
/* (2^ 45)P */ 0xf9, 0x0f, 0x83, 0xc6, 0xb4, 0xc2, 0xd2, 0x05, 0x93, 0x62, 0x31, 0xc6, 0x0f, 0x33, 0x3e, 0xd4, 0x04, 0xa9, 0xd3, 0x96, 0x0a, 0x59, 0xa5, 0xa5, 0xb6, 0x33, 0x53, 0xa6, 0x91, 0xdb, 0x5e, 0x70,
/* (2^ 46)P */ 0xf7, 0xa5, 0xb9, 0x0b, 0x5e, 0xe1, 0x8e, 0x04, 0x5d, 0xaf, 0x0a, 0x9e, 0xca, 0xcf, 0x40, 0x32, 0x0b, 0xa4, 0xc4, 0xed, 0xce, 0x71, 0x4b, 0x8f, 0x6d, 0x4a, 0x54, 0xde, 0xa3, 0x0d, 0x1c, 0x62,
/* (2^ 47)P */ 0x91, 0x40, 0x8c, 0xa0, 0x36, 0x28, 0x87, 0x92, 0x45, 0x14, 0xc9, 0x10, 0xb0, 0x75, 0x83, 0xce, 0x94, 0x63, 0x27, 0x4f, 0x52, 0xeb, 0x72, 0x8a, 0x35, 0x36, 0xc8, 0x7e, 0xfa, 0xfc, 0x67, 0x26,
/* (2^ 48)P */ 0x2a, 0x75, 0xe8, 0x45, 0x33, 0x17, 0x4c, 0x7f, 0xa5, 0x79, 0x70, 0xee, 0xfe, 0x47, 0x1b, 0x06, 0x34, 0xff, 0x86, 0x9f, 0xfa, 0x9a, 0xdd, 0x25, 0x9c, 0xc8, 0x5d, 0x42, 0xf5, 0xce, 0x80, 0x37,
/* (2^ 49)P */ 0xe9, 0xb4, 0x3b, 0x51, 0x5a, 0x03, 0x46, 0x1a, 0xda, 0x5a, 0x57, 0xac, 0x79, 0xf3, 0x1e, 0x3e, 0x50, 0x4b, 0xa2, 0x5f, 0x1c, 0x5f, 0x8c, 0xc7, 0x22, 0x9f, 0xfd, 0x34, 0x76, 0x96, 0x1a, 0x32,
/* (2^ 50)P */ 0xfa, 0x27, 0x6e, 0x82, 0xb8, 0x07, 0x67, 0x94, 0xd0, 0x6f, 0x50, 0x4c, 0xd6, 0x84, 0xca, 0x3d, 0x36, 0x14, 0xe9, 0x75, 0x80, 0x21, 0x89, 0xc1, 0x84, 0x84, 0x3b, 0x9b, 0x16, 0x84, 0x92, 0x6d,
/* (2^ 51)P */ 0xdf, 0x2d, 0x3f, 0x38, 0x40, 0xe8, 0x67, 0x3a, 0x75, 0x9b, 0x4f, 0x0c, 0xa3, 0xc9, 0xee, 0x33, 0x47, 0xef, 0x83, 0xa7, 0x6f, 0xc8, 0xc7, 0x3e, 0xc4, 0xfb, 0xc9, 0xba, 0x9f, 0x44, 0xec, 0x26,
/* (2^ 52)P */ 0x7d, 0x9e, 0x9b, 0xa0, 0xcb, 0x38, 0x0f, 0x5c, 0x8c, 0x47, 0xa3, 0x62, 0xc7, 0x8c, 0x16, 0x81, 0x1c, 0x12, 0xfc, 0x06, 0xd3, 0xb0, 0x23, 0x3e, 0xdd, 0xdc, 0xef, 0xa5, 0xa0, 0x8a, 0x23, 0x5a,
/* (2^ 53)P */ 0xff, 0x43, 0xea, 0xc4, 0x21, 0x61, 0xa2, 0x1b, 0xb5, 0x32, 0x88, 0x7c, 0x7f, 0xc7, 0xf8, 0x36, 0x9a, 0xf9, 0xdc, 0x0a, 0x0b, 0xea, 0xfb, 0x88, 0xf9, 0xeb, 0x5b, 0xc2, 0x8e, 0x93, 0xa9, 0x5c,
/* (2^ 54)P */ 0xa0, 0xcd, 0xfc, 0x51, 0x5e, 0x6a, 0x43, 0xd5, 0x3b, 0x89, 0xcd, 0xc2, 0x97, 0x47, 0xbc, 0x1d, 0x08, 0x4a, 0x22, 0xd3, 0x65, 0x6a, 0x34, 0x19, 0x66, 0xf4, 0x9a, 0x9b, 0xe4, 0x34, 0x50, 0x0f,
/* (2^ 55)P */ 0x6e, 0xb9, 0xe0, 0xa1, 0x67, 0x39, 0x3c, 0xf2, 0x88, 0x4d, 0x7a, 0x86, 0xfa, 0x08, 0x8b, 0xe5, 0x79, 0x16, 0x34, 0xa7, 0xc6, 0xab, 0x2f, 0xfb, 0x46, 0x69, 0x02, 0xb6, 0x1e, 0x38, 0x75, 0x2a,
/* (2^ 56)P */ 0xac, 0x20, 0x94, 0xc1, 0xe4, 0x3b, 0x0a, 0xc8, 0xdc, 0xb6, 0xf2, 0x81, 0xc6, 0xf6, 0xb1, 0x66, 0x88, 0x33, 0xe9, 0x61, 0x67, 0x03, 0xf7, 0x7c, 0xc4, 0xa4, 0x60, 0xa6, 0xd8, 0xbb, 0xab, 0x25,
/* (2^ 57)P */ 0x98, 0x51, 0xfd, 0x14, 0xba, 0x12, 0xea, 0x91, 0xa9, 0xff, 0x3c, 0x4a, 0xfc, 0x50, 0x49, 0x68, 0x28, 0xad, 0xf5, 0x30, 0x21, 0x84, 0x26, 0xf8, 0x41, 0xa4, 0x01, 0x53, 0xf7, 0x88, 0xa9, 0x3e,
/* (2^ 58)P */ 0x6f, 0x8c, 0x5f, 0x69, 0x9a, 0x10, 0x78, 0xc9, 0xf3, 0xc3, 0x30, 0x05, 0x4a, 0xeb, 0x46, 0x17, 0x95, 0x99, 0x45, 0xb4, 0x77, 0x6d, 0x4d, 0x44, 0xc7, 0x5c, 0x4e, 0x05, 0x8c, 0x2b, 0x95, 0x75,
/* (2^ 59)P */ 0xaa, 0xd6, 0xf4, 0x15, 0x79, 0x3f, 0x70, 0xa3, 0xd8, 0x47, 0x26, 0x2f, 0x20, 0x46, 0xc3, 0x66, 0x4b, 0x64, 0x1d, 0x81, 0xdf, 0x69, 0x14, 0xd0, 0x1f, 0xd7, 0xa5, 0x81, 0x7d, 0xa4, 0xfe, 0x77,
/* (2^ 60)P */ 0x81, 0xa3, 0x7c, 0xf5, 0x9e, 0x52, 0xe9, 0xc5, 0x1a, 0x88, 0x2f, 0xce, 0xb9, 0xb4, 0xee, 0x6e, 0xd6, 0x9b, 0x00, 0xe8, 0x28, 0x1a, 0xe9, 0xb6, 0xec, 0x3f, 0xfc, 0x9a, 0x3e, 0xbe, 0x80, 0x4b,
/* (2^ 61)P */ 0xc5, 0xd2, 0xae, 0x26, 0xc5, 0x73, 0x37, 0x7e, 0x9d, 0xa4, 0xc9, 0x53, 0xb4, 0xfc, 0x4a, 0x1b, 0x4d, 0xb2, 0xff, 0xba, 0xd7, 0xbd, 0x20, 0xa9, 0x0e, 0x40, 0x2d, 0x12, 0x9f, 0x69, 0x54, 0x7c,
/* (2^ 62)P */ 0xc8, 0x4b, 0xa9, 0x4f, 0xe1, 0xc8, 0x46, 0xef, 0x5e, 0xed, 0x52, 0x29, 0xce, 0x74, 0xb0, 0xe0, 0xd5, 0x85, 0xd8, 0xdb, 0xe1, 0x50, 0xa4, 0xbe, 0x2c, 0x71, 0x0f, 0x32, 0x49, 0x86, 0xb6, 0x61,
/* (2^ 63)P */ 0xd1, 0xbd, 0xcc, 0x09, 0x73, 0x5f, 0x48, 0x8a, 0x2d, 0x1a, 0x4d, 0x7d, 0x0d, 0x32, 0x06, 0xbd, 0xf4, 0xbe, 0x2d, 0x32, 0x73, 0x29, 0x23, 0x25, 0x70, 0xf7, 0x17, 0x8c, 0x75, 0xc4, 0x5d, 0x44,
/* (2^ 64)P */ 0x3c, 0x93, 0xc8, 0x7c, 0x17, 0x34, 0x04, 0xdb, 0x9f, 0x05, 0xea, 0x75, 0x21, 0xe8, 0x6f, 0xed, 0x34, 0xdb, 0x53, 0xc0, 0xfd, 0xbe, 0xfe, 0x1e, 0x99, 0xaf, 0x5d, 0xc6, 0x67, 0xe8, 0xdb, 0x4a,
/* (2^ 65)P */ 0xdf, 0x09, 0x06, 0xa9, 0xa2, 0x71, 0xcd, 0x3a, 0x50, 0x40, 0xd0, 0x6d, 0x85, 0x91, 0xe9, 0xe5, 0x3c, 0xc2, 0x57, 0x81, 0x68, 0x9b, 0xc6, 0x1e, 0x4d, 0xfe, 0x5c, 0x88, 0xf6, 0x27, 0x74, 0x69,
/* (2^ 66)P */ 0x51, 0xa8, 0xe1, 0x65, 0x9b, 0x7b, 0xbe, 0xd7, 0xdd, 0x36, 0xc5, 0x22, 0xd5, 0x28, 0x3d, 0xa0, 0x45, 0xb6, 0xd2, 0x8f, 0x65, 0x9d, 0x39, 0x28, 0xe1, 0x41, 0x26, 0x7c, 0xe1, 0xb7, 0xe5, 0x49,
/* (2^ 67)P */ 0xa4, 0x57, 0x04, 0x70, 0x98, 0x3a, 0x8c, 0x6f, 0x78, 0x67, 0xbb, 0x5e, 0xa2, 0xf0, 0x78, 0x50, 0x0f, 0x96, 0x82, 0xc3, 0xcb, 0x3c, 0x3c, 0xd1, 0xb1, 0x84, 0xdf, 0xa7, 0x58, 0x32, 0x00, 0x2e,
/* (2^ 68)P */ 0x1c, 0x6a, 0x29, 0xe6, 0x9b, 0xf3, 0xd1, 0x8a, 0xb2, 0xbf, 0x5f, 0x2a, 0x65, 0xaa, 0xee, 0xc1, 0xcb, 0xf3, 0x26, 0xfd, 0x73, 0x06, 0xee, 0x33, 0xcc, 0x2c, 0x9d, 0xa6, 0x73, 0x61, 0x25, 0x59,
/* (2^ 69)P */ 0x41, 0xfc, 0x18, 0x4e, 0xaa, 0x07, 0xea, 0x41, 0x1e, 0xa5, 0x87, 0x7c, 0x52, 0x19, 0xfc, 0xd9, 0x6f, 0xca, 0x31, 0x58, 0x80, 0xcb, 0xaa, 0xbd, 0x4f, 0x69, 0x16, 0xc9, 0x2d, 0x65, 0x5b, 0x44,
/* (2^ 70)P */ 0x15, 0x23, 0x17, 0xf2, 0xa7, 0xa3, 0x92, 0xce, 0x64, 0x99, 0x1b, 0xe1, 0x2d, 0x28, 0xdc, 0x1e, 0x4a, 0x31, 0x4c, 0xe0, 0xaf, 0x3a, 0x82, 0xa1, 0x86, 0xf5, 0x7c, 0x43, 0x94, 0x2d, 0x0a, 0x79,
/* (2^ 71)P */ 0x09, 0xe0, 0xf6, 0x93, 0xfb, 0x47, 0xc4, 0x71, 0x76, 0x52, 0x84, 0x22, 0x67, 0xa5, 0x22, 0x89, 0x69, 0x51, 0x4f, 0x20, 0x3b, 0x90, 0x70, 0xbf, 0xfe, 0x19, 0xa3, 0x1b, 0x89, 0x89, 0x7a, 0x2f,
/* (2^ 72)P */ 0x0c, 0x14, 0xe2, 0x77, 0xb5, 0x8e, 0xa0, 0x02, 0xf4, 0xdc, 0x7b, 0x42, 0xd4, 0x4e, 0x9a, 0xed, 0xd1, 0x3c, 0x32, 0xe4, 0x44, 0xec, 0x53, 0x52, 0x5b, 0x35, 0xe9, 0x14, 0x3c, 0x36, 0x88, 0x3e,
/* (2^ 73)P */ 0x8c, 0x0b, 0x11, 0x77, 0x42, 0xc1, 0x66, 0xaa, 0x90, 0x33, 0xa2, 0x10, 0x16, 0x39, 0xe0, 0x1a, 0xa2, 0xc2, 0x3f, 0xc9, 0x12, 0xbd, 0x30, 0x20, 0xab, 0xc7, 0x55, 0x95, 0x57, 0x41, 0xe1, 0x3e,
/* (2^ 74)P */ 0x41, 0x7d, 0x6e, 0x6d, 0x3a, 0xde, 0x14, 0x92, 0xfe, 0x7e, 0xf1, 0x07, 0x86, 0xd8, 0xcd, 0x3c, 0x17, 0x12, 0xe1, 0xf8, 0x88, 0x12, 0x4f, 0x67, 0xd0, 0x93, 0x9f, 0x32, 0x0f, 0x25, 0x82, 0x56,
/* (2^ 75)P */ 0x6e, 0x39, 0x2e, 0x6d, 0x13, 0x0b, 0xf0, 0x6c, 0xbf, 0xde, 0x14, 0x10, 0x6f, 0xf8, 0x4c, 0x6e, 0x83, 0x4e, 0xcc, 0xbf, 0xb5, 0xb1, 0x30, 0x59, 0xb6, 0x16, 0xba, 0x8a, 0xb4, 0x69, 0x70, 0x04,
/* (2^ 76)P */ 0x93, 0x07, 0xb2, 0x69, 0xab, 0xe4, 0x4c, 0x0d, 0x9e, 0xfb, 0xd0, 0x97, 0x1a, 0xb9, 0x4d, 0xb2, 0x1d, 0xd0, 0x00, 0x4e, 0xf5, 0x50, 0xfa, 0xcd, 0xb5, 0xdd, 0x8b, 0x36, 0x85, 0x10, 0x1b, 0x22,
/* (2^ 77)P */ 0xd2, 0xd8, 0xe3, 0xb1, 0x68, 0x94, 0xe5, 0xe7, 0x93, 0x2f, 0x12, 0xbd, 0x63, 0x65, 0xc5, 0x53, 0x09, 0x3f, 0x66, 0xe0, 0x03, 0xa9, 0xe8, 0xee, 0x42, 0x3d, 0xbe, 0xcb, 0x62, 0xa6, 0xef, 0x61,
/* (2^ 78)P */ 0x2a, 0xab, 0x6e, 0xde, 0xdd, 0xdd, 0xf8, 0x2c, 0x31, 0xf2, 0x35, 0x14, 0xd5, 0x0a, 0xf8, 0x9b, 0x73, 0x49, 0xf0, 0xc9, 0xce, 0xda, 0xea, 0x5d, 0x27, 0x9b, 0xd2, 0x41, 0x5d, 0x5b, 0x27, 0x29,
/* (2^ 79)P */ 0x4f, 0xf1, 0xeb, 0x95, 0x08, 0x0f, 0xde, 0xcf, 0xa7, 0x05, 0x49, 0x05, 0x6b, 0xb9, 0xaa, 0xb9, 0xfd, 0x20, 0xc4, 0xa1, 0xd9, 0x0d, 0xe8, 0xca, 0xc7, 0xbb, 0x73, 0x16, 0x2f, 0xbf, 0x63, 0x0a,
/* (2^ 80)P */ 0x8c, 0xbc, 0x8f, 0x95, 0x11, 0x6e, 0x2f, 0x09, 0xad, 0x2f, 0x82, 0x04, 0xe8, 0x81, 0x2a, 0x67, 0x17, 0x25, 0xd5, 0x60, 0x15, 0x35, 0xc8, 0xca, 0xf8, 0x92, 0xf1, 0xc8, 0x22, 0x77, 0x3f, 0x6f,
/* (2^ 81)P */ 0xb7, 0x94, 0xe8, 0xc2, 0xcc, 0x90, 0xba, 0xf8, 0x0d, 0x9f, 0xff, 0x38, 0xa4, 0x57, 0x75, 0x2c, 0x59, 0x23, 0xe5, 0x5a, 0x85, 0x1d, 0x4d, 0x89, 0x69, 0x3d, 0x74, 0x7b, 0x15, 0x22, 0xe1, 0x68,
/* (2^ 82)P */ 0xf3, 0x19, 0xb9, 0xcf, 0x70, 0x55, 0x7e, 0xd8, 0xb9, 0x8d, 0x79, 0x95, 0xcd, 0xde, 0x2c, 0x3f, 0xce, 0xa2, 0xc0, 0x10, 0x47, 0x15, 0x21, 0x21, 0xb2, 0xc5, 0x6d, 0x24, 0x15, 0xa1, 0x66, 0x3c,
/* (2^ 83)P */ 0x72, 0xcb, 0x4e, 0x29, 0x62, 0xc5, 0xed, 0xcb, 0x16, 0x0b, 0x28, 0x6a, 0xc3, 0x43, 0x71, 0xba, 0x67, 0x8b, 0x07, 0xd4, 0xef, 0xc2, 0x10, 0x96, 0x1e, 0x4b, 0x6a, 0x94, 0x5d, 0x73, 0x44, 0x61,
/* (2^ 84)P */ 0x50, 0x33, 0x5b, 0xd7, 0x1e, 0x11, 0x6f, 0x53, 0x1b, 0xd8, 0x41, 0x20, 0x8c, 0xdb, 0x11, 0x02, 0x3c, 0x41, 0x10, 0x0e, 0x00, 0xb1, 0x3c, 0xf9, 0x76, 0x88, 0x9e, 0x03, 0x3c, 0xfd, 0x9d, 0x14,
/* (2^ 85)P */ 0x5b, 0x15, 0x63, 0x6b, 0xe4, 0xdd, 0x79, 0xd4, 0x76, 0x79, 0x83, 0x3c, 0xe9, 0x15, 0x6e, 0xb6, 0x38, 0xe0, 0x13, 0x1f, 0x3b, 0xe4, 0xfd, 0xda, 0x35, 0x0b, 0x4b, 0x2e, 0x1a, 0xda, 0xaf, 0x5f,
/* (2^ 86)P */ 0x81, 0x75, 0x19, 0x17, 0xdf, 0xbb, 0x00, 0x36, 0xc2, 0xd2, 0x3c, 0xbe, 0x0b, 0x05, 0x72, 0x39, 0x86, 0xbe, 0xd5, 0xbd, 0x6d, 0x90, 0x38, 0x59, 0x0f, 0x86, 0x9b, 0x3f, 0xe4, 0xe5, 0xfc, 0x34,
/* (2^ 87)P */ 0x02, 0x4d, 0xd1, 0x42, 0xcd, 0xa4, 0xa8, 0x75, 0x65, 0xdf, 0x41, 0x34, 0xc5, 0xab, 0x8d, 0x82, 0xd3, 0x31, 0xe1, 0xd2, 0xed, 0xab, 0xdc, 0x33, 0x5f, 0xd2, 0x14, 0xb8, 0x6f, 0xd7, 0xba, 0x3e,
/* (2^ 88)P */ 0x0f, 0xe1, 0x70, 0x6f, 0x56, 0x6f, 0x90, 0xd4, 0x5a, 0x0f, 0x69, 0x51, 0xaa, 0xf7, 0x12, 0x5d, 0xf2, 0xfc, 0xce, 0x76, 0x6e, 0xb1, 0xad, 0x45, 0x99, 0x29, 0x23, 0xad, 0xae, 0x68, 0xf7, 0x01,
/* (2^ 89)P */ 0xbd, 0xfe, 0x48, 0x62, 0x7b, 0xc7, 0x6c, 0x2b, 0xfd, 0xaf, 0x3a, 0xec, 0x28, 0x06, 0xd3, 0x3c, 0x6a, 0x48, 0xef, 0xd4, 0x80, 0x0b, 0x1c, 0xce, 0x23, 0x6c, 0xf6, 0xa6, 0x2e, 0xff, 0x3b, 0x4c,
/* (2^ 90)P */ 0x5f, 0xeb, 0xea, 0x4a, 0x09, 0xc4, 0x2e, 0x3f, 0xa7, 0x2c, 0x37, 0x6e, 0x28, 0x9b, 0xb1, 0x61, 0x1d, 0x70, 0x2a, 0xde, 0x66, 0xa9, 0xef, 0x5e, 0xef, 0xe3, 0x55, 0xde, 0x65, 0x05, 0xb2, 0x23,
/* (2^ 91)P */ 0x57, 0x85, 0xd5, 0x79, 0x52, 0xca, 0x01, 0xe3, 0x4f, 0x87, 0xc2, 0x27, 0xce, 0xd4, 0xb2, 0x07, 0x67, 0x1d, 0xcf, 0x9d, 0x8a, 0xcd, 0x32, 0xa5, 0x56, 0xff, 0x2b, 0x3f, 0xe2, 0xfe, 0x52, 0x2a,
/* (2^ 92)P */ 0x3d, 0x66, 0xd8, 0x7c, 0xb3, 0xef, 0x24, 0x86, 0x94, 0x75, 0xbd, 0xff, 0x20, 0xac, 0xc7, 0xbb, 0x45, 0x74, 0xd3, 0x82, 0x9c, 0x5e, 0xb8, 0x57, 0x66, 0xec, 0xa6, 0x86, 0xcb, 0x52, 0x30, 0x7b,
/* (2^ 93)P */ 0x1e, 0xe9, 0x25, 0x25, 0xad, 0xf0, 0x82, 0x34, 0xa0, 0xdc, 0x8e, 0xd2, 0x43, 0x80, 0xb6, 0x2c, 0x3a, 0x00, 0x1b, 0x2e, 0x05, 0x6d, 0x4f, 0xaf, 0x0a, 0x1b, 0x78, 0x29, 0x25, 0x8c, 0x5f, 0x18,
/* (2^ 94)P */ 0xd6, 0xe0, 0x0c, 0xd8, 0x5b, 0xde, 0x41, 0xaa, 0xd6, 0xe9, 0x53, 0x68, 0x41, 0xb2, 0x07, 0x94, 0x3a, 0x4c, 0x7f, 0x35, 0x6e, 0xc3, 0x3e, 0x56, 0xce, 0x7b, 0x29, 0x0e, 0xdd, 0xb8, 0xc4, 0x4c,
/* (2^ 95)P */ 0x0e, 0x73, 0xb8, 0xff, 0x52, 0x1a, 0xfc, 0xa2, 0x37, 0x8e, 0x05, 0x67, 0x6e, 0xf1, 0x11, 0x18, 0xe1, 0x4e, 0xdf, 0xcd, 0x66, 0xa3, 0xf9, 0x10, 0x99, 0xf0, 0xb9, 0xa0, 0xc4, 0xa0, 0xf4, 0x72,
/* (2^ 96)P */ 0xa7, 0x4e, 0x3f, 0x66, 0x6f, 0xc0, 0x16, 0x8c, 0xba, 0x0f, 0x97, 0x4e, 0xf7, 0x3a, 0x3b, 0x69, 0x45, 0xc3, 0x9e, 0xd6, 0xf1, 0xe7, 0x02, 0x21, 0x89, 0x80, 0x8a, 0x96, 0xbc, 0x3c, 0xa5, 0x0b,
/* (2^ 97)P */ 0x37, 0x55, 0xa1, 0xfe, 0xc7, 0x9d, 0x3d, 0xca, 0x93, 0x64, 0x53, 0x51, 0xbb, 0x24, 0x68, 0x4c, 0xb1, 0x06, 0x40, 0x84, 0x14, 0x63, 0x88, 0xb9, 0x60, 0xcc, 0x54, 0xb4, 0x2a, 0xa7, 0xd2, 0x40,
/* (2^ 98)P */ 0x75, 0x09, 0x57, 0x12, 0xb7, 0xa1, 0x36, 0x59, 0x57, 0xa6, 0xbd, 0xde, 0x48, 0xd6, 0xb9, 0x91, 0xea, 0x30, 0x43, 0xb6, 0x4b, 0x09, 0x44, 0x33, 0xd0, 0x51, 0xee, 0x12, 0x0d, 0xa1, 0x6b, 0x00,
/* (2^ 99)P */ 0x58, 0x5d, 0xde, 0xf5, 0x68, 0x84, 0x22, 0x19, 0xb0, 0x05, 0xcc, 0x38, 0x4c, 0x2f, 0xb1, 0x0e, 0x90, 0x19, 0x60, 0xd5, 0x9d, 0x9f, 0x03, 0xa1, 0x0b, 0x0e, 0xff, 0x4f, 0xce, 0xd4, 0x02, 0x45,
/* (2^100)P */ 0x89, 0xc1, 0x37, 0x68, 0x10, 0x54, 0x20, 0xeb, 0x3c, 0xb9, 0xd3, 0x6d, 0x4c, 0x54, 0xf6, 0xd0, 0x4f, 0xd7, 0x16, 0xc4, 0x64, 0x70, 0x72, 0x40, 0xf0, 0x2e, 0x50, 0x4b, 0x11, 0xc6, 0x15, 0x6e,
/* (2^101)P */ 0x6b, 0xa7, 0xb1, 0xcf, 0x98, 0xa3, 0xf2, 0x4d, 0xb1, 0xf6, 0xf2, 0x19, 0x74, 0x6c, 0x25, 0x11, 0x43, 0x60, 0x6e, 0x06, 0x62, 0x79, 0x49, 0x4a, 0x44, 0x5b, 0x35, 0x41, 0xab, 0x3a, 0x5b, 0x70,
/* (2^102)P */ 0xd8, 0xb1, 0x97, 0xd7, 0x36, 0xf5, 0x5e, 0x36, 0xdb, 0xf0, 0xdd, 0x22, 0xd6, 0x6b, 0x07, 0x00, 0x88, 0x5a, 0x57, 0xe0, 0xb0, 0x33, 0xbf, 0x3b, 0x4d, 0xca, 0xe4, 0xc8, 0x05, 0xaa, 0x77, 0x37,
/* (2^103)P */ 0x5f, 0xdb, 0x78, 0x55, 0xc8, 0x45, 0x27, 0x39, 0xe2, 0x5a, 0xae, 0xdb, 0x49, 0x41, 0xda, 0x6f, 0x67, 0x98, 0xdc, 0x8a, 0x0b, 0xb0, 0xf0, 0xb1, 0xa3, 0x1d, 0x6f, 0xd3, 0x37, 0x34, 0x96, 0x09,
/* (2^104)P */ 0x53, 0x38, 0xdc, 0xa5, 0x90, 0x4e, 0x82, 0x7e, 0xbd, 0x5c, 0x13, 0x1f, 0x64, 0xf6, 0xb5, 0xcc, 0xcc, 0x8f, 0xce, 0x87, 0x6c, 0xd8, 0x36, 0x67, 0x9f, 0x24, 0x04, 0x66, 0xe2, 0x3c, 0x5f, 0x62,
/* (2^105)P */ 0x3f, 0xf6, 0x02, 0x95, 0x05, 0xc8, 0x8a, 0xaf, 0x69, 0x14, 0x35, 0x2e, 0x0a, 0xe7, 0x05, 0x0c, 0x05, 0x63, 0x4b, 0x76, 0x9c, 0x2e, 0x29, 0x35, 0xc3, 0x3a, 0xe2, 0xc7, 0x60, 0x43, 0x39, 0x1a,
/* (2^106)P */ 0x64, 0x32, 0x18, 0x51, 0x32, 0xd5, 0xc6, 0xd5, 0x4f, 0xb7, 0xc2, 0x43, 0xbd, 0x5a, 0x06, 0x62, 0x9b, 0x3f, 0x97, 0x3b, 0xd0, 0xf5, 0xfb, 0xb5, 0x5e, 0x6e, 0x20, 0x61, 0x36, 0xda, 0xa3, 0x13,
/* (2^107)P */ 0xe5, 0x94, 0x5d, 0x72, 0x37, 0x58, 0xbd, 0xc6, 0xc5, 0x16, 0x50, 0x20, 0x12, 0x09, 0xe3, 0x18, 0x68, 0x3c, 0x03, 0x70, 0x15, 0xce, 0x88, 0x20, 0x87, 0x79, 0x83, 0x5c, 0x49, 0x1f, 0xba, 0x7f,
/* (2^108)P */ 0x9d, 0x07, 0xf9, 0xf2, 0x23, 0x74, 0x8c, 0x5a, 0xc5, 0x3f, 0x02, 0x34, 0x7b, 0x15, 0x35, 0x17, 0x51, 0xb3, 0xfa, 0xd2, 0x9a, 0xb4, 0xf9, 0xe4, 0x3c, 0xe3, 0x78, 0xc8, 0x72, 0xff, 0x91, 0x66,
/* (2^109)P */ 0x3e, 0xff, 0x5e, 0xdc, 0xde, 0x2a, 0x2c, 0x12, 0xf4, 0x6c, 0x95, 0xd8, 0xf1, 0x4b, 0xdd, 0xf8, 0xda, 0x5b, 0x9e, 0x9e, 0x5d, 0x20, 0x86, 0xeb, 0x43, 0xc7, 0x75, 0xd9, 0xb9, 0x92, 0x9b, 0x04,
/* (2^110)P */ 0x5a, 0xc0, 0xf6, 0xb0, 0x30, 0x97, 0x37, 0xa5, 0x53, 0xa5, 0xf3, 0xc6, 0xac, 0xff, 0xa0, 0x72, 0x6d, 0xcd, 0x0d, 0xb2, 0x34, 0x2c, 0x03, 0xb0, 0x4a, 0x16, 0xd5, 0x88, 0xbc, 0x9d, 0x0e, 0x47,
/* (2^111)P */ 0x47, 0xc0, 0x37, 0xa2, 0x0c, 0xf1, 0x9c, 0xb1, 0xa2, 0x81, 0x6c, 0x1f, 0x71, 0x66, 0x54, 0xb6, 0x43, 0x0b, 0xd8, 0x6d, 0xd1, 0x1b, 0x32, 0xb3, 0x8e, 0xbe, 0x5f, 0x0c, 0x60, 0x4f, 0xc1, 0x48,
/* (2^112)P */ 0x03, 0xc8, 0xa6, 0x4a, 0x26, 0x1c, 0x45, 0x66, 0xa6, 0x7d, 0xfa, 0xa4, 0x04, 0x39, 0x6e, 0xb6, 0x95, 0x83, 0x12, 0xb3, 0xb0, 0x19, 0x5f, 0xd4, 0x10, 0xbc, 0xc9, 0xc3, 0x27, 0x26, 0x60, 0x31,
/* (2^113)P */ 0x0d, 0xe1, 0xe4, 0x32, 0x48, 0xdc, 0x20, 0x31, 0xf7, 0x17, 0xc7, 0x56, 0x67, 0xc4, 0x20, 0xeb, 0x94, 0x02, 0x28, 0x67, 0x3f, 0x2e, 0xf5, 0x00, 0x09, 0xc5, 0x30, 0x47, 0xc1, 0x4f, 0x6d, 0x56,
/* (2^114)P */ 0x06, 0x72, 0x83, 0xfd, 0x40, 0x5d, 0x3a, 0x7e, 0x7a, 0x54, 0x59, 0x71, 0xdc, 0x26, 0xe9, 0xc1, 0x95, 0x60, 0x8d, 0xa6, 0xfb, 0x30, 0x67, 0x21, 0xa7, 0xce, 0x69, 0x3f, 0x84, 0xc3, 0xe8, 0x22,
/* (2^115)P */ 0x2b, 0x4b, 0x0e, 0x93, 0xe8, 0x74, 0xd0, 0x33, 0x16, 0x58, 0xd1, 0x84, 0x0e, 0x35, 0xe4, 0xb6, 0x65, 0x23, 0xba, 0xd6, 0x6a, 0xc2, 0x34, 0x55, 0xf3, 0xf3, 0xf1, 0x89, 0x2f, 0xc1, 0x73, 0x77,
/* (2^116)P */ 0xaa, 0x62, 0x79, 0xa5, 0x4d, 0x40, 0xba, 0x8c, 0x56, 0xce, 0x99, 0x19, 0xa8, 0x97, 0x98, 0x5b, 0xfc, 0x92, 0x16, 0x12, 0x2f, 0x86, 0x8e, 0x50, 0x91, 0xc2, 0x93, 0xa0, 0x7f, 0x90, 0x81, 0x3a,
/* (2^117)P */ 0x10, 0xa5, 0x25, 0x47, 0xff, 0xd0, 0xde, 0x0d, 0x03, 0xc5, 0x3f, 0x67, 0x10, 0xcc, 0xd8, 0x10, 0x89, 0x4e, 0x1f, 0x9f, 0x1c, 0x15, 0x9d, 0x5b, 0x4c, 0xa4, 0x09, 0xcb, 0xd5, 0xc1, 0xa5, 0x32,
/* (2^118)P */ 0xfb, 0x41, 0x05, 0xb9, 0x42, 0xa4, 0x0a, 0x1e, 0xdb, 0x85, 0xb4, 0xc1, 0x7c, 0xeb, 0x85, 0x5f, 0xe5, 0xf2, 0x9d, 0x8a, 0xce, 0x95, 0xe5, 0xbe, 0x36, 0x22, 0x42, 0x22, 0xc7, 0x96, 0xe4, 0x25,
/* (2^119)P */ 0xb9, 0xe5, 0x0f, 0xcd, 0x46, 0x3c, 0xdf, 0x5e, 0x88, 0x33, 0xa4, 0xd2, 0x7e, 0x5a, 0xe7, 0x34, 0x52, 0xe3, 0x61, 0xd7, 0x11, 0xde, 0x88, 0xe4, 0x5c, 0x54, 0x85, 0xa0, 0x01, 0x8a, 0x87, 0x0e,
/* (2^120)P */ 0x04, 0xbb, 0x21, 0xe0, 0x77, 0x3c, 0x49, 0xba, 0x9a, 0x89, 0xdf, 0xc7, 0x43, 0x18, 0x4d, 0x2b, 0x67, 0x0d, 0xe8, 0x7a, 0x48, 0x7a, 0xa3, 0x9e, 0x94, 0x17, 0xe4, 0x11, 0x80, 0x95, 0xa9, 0x67,
/* (2^121)P */ 0x65, 0xb0, 0x97, 0x66, 0x1a, 0x05, 0x58, 0x4b, 0xd4, 0xa6, 0x6b, 0x8d, 0x7d, 0x3f, 0xe3, 0x47, 0xc1, 0x46, 0xca, 0x83, 0xd4, 0xa8, 0x4d, 0xbb, 0x0d, 0xdb, 0xc2, 0x81, 0xa1, 0xca, 0xbe, 0x68,
/* (2^122)P */ 0xa5, 0x9a, 0x98, 0x0b, 0xe9, 0x80, 0x89, 0x8d, 0x9b, 0xc9, 0x93, 0x2c, 0x4a, 0xb1, 0x5e, 0xf9, 0xa2, 0x73, 0x6e, 0x79, 0xc4, 0xc7, 0xc6, 0x51, 0x69, 0xb5, 0xef, 0xb5, 0x63, 0x83, 0x22, 0x6e,
/* (2^123)P */ 0xc8, 0x24, 0xd6, 0x2d, 0xb0, 0xc0, 0xbb, 0xc6, 0xee, 0x70, 0x81, 0xec, 0x7d, 0xb4, 0x7e, 0x77, 0xa9, 0xaf, 0xcf, 0x04, 0xa0, 0x15, 0xde, 0x3c, 0x9b, 0xbf, 0x60, 0x71, 0x08, 0xbc, 0xc6, 0x1d,
/* (2^124)P */ 0x02, 0x40, 0xc3, 0xee, 0x43, 0xe0, 0x07, 0x2e, 0x7f, 0xdc, 0x68, 0x7a, 0x67, 0xfc, 0xe9, 0x18, 0x9a, 0x5b, 0xd1, 0x8b, 0x18, 0x03, 0xda, 0xd8, 0x53, 0x82, 0x56, 0x00, 0xbb, 0xc3, 0xfb, 0x48,
/* (2^125)P */ 0xe1, 0x4c, 0x65, 0xfb, 0x4c, 0x7d, 0x54, 0x57, 0xad, 0xe2, 0x58, 0xa0, 0x82, 0x5b, 0x56, 0xd3, 0x78, 0x44, 0x15, 0xbf, 0x0b, 0xaf, 0x3e, 0xf6, 0x18, 0xbb, 0xdf, 0x14, 0xf1, 0x1e, 0x53, 0x47,
/* (2^126)P */ 0x87, 0xc5, 0x78, 0x42, 0x0a, 0x63, 0xec, 0xe1, 0xf3, 0x83, 0x8e, 0xca, 0x46, 0xd5, 0x07, 0x55, 0x2b, 0x0c, 0xdc, 0x3a, 0xc6, 0x35, 0xe1, 0x85, 0x4e, 0x84, 0x82, 0x56, 0xa8, 0xef, 0xa7, 0x0a,
/* (2^127)P */ 0x15, 0xf6, 0xe1, 0xb3, 0xa8, 0x1b, 0x69, 0x72, 0xfa, 0x3f, 0xbe, 0x1f, 0x70, 0xe9, 0xb4, 0x32, 0x68, 0x78, 0xbb, 0x39, 0x2e, 0xd9, 0xb6, 0x97, 0xe8, 0x39, 0x2e, 0xa0, 0xde, 0x53, 0xfe, 0x2c,
/* (2^128)P */ 0xb0, 0x52, 0xcd, 0x85, 0xcd, 0x92, 0x73, 0x68, 0x31, 0x98, 0xe2, 0x10, 0xc9, 0x66, 0xff, 0x27, 0x06, 0x2d, 0x83, 0xa9, 0x56, 0x45, 0x13, 0x97, 0xa0, 0xf8, 0x84, 0x0a, 0x36, 0xb0, 0x9b, 0x26,
/* (2^129)P */ 0x5c, 0xf8, 0x43, 0x76, 0x45, 0x55, 0x6e, 0x70, 0x1b, 0x7d, 0x59, 0x9b, 0x8c, 0xa4, 0x34, 0x37, 0x72, 0xa4, 0xef, 0xc6, 0xe8, 0x91, 0xee, 0x7a, 0xe0, 0xd9, 0xa9, 0x98, 0xc1, 0xab, 0xd6, 0x5c,
/* (2^130)P */ 0x1a, 0xe4, 0x3c, 0xcb, 0x06, 0xde, 0x04, 0x0e, 0x38, 0xe1, 0x02, 0x34, 0x89, 0xeb, 0xc6, 0xd8, 0x72, 0x37, 0x6e, 0x68, 0xbb, 0x59, 0x46, 0x90, 0xc8, 0xa8, 0x6b, 0x74, 0x71, 0xc3, 0x15, 0x72,
/* (2^131)P */ 0xd9, 0xa2, 0xe4, 0xea, 0x7e, 0xa9, 0x12, 0xfd, 0xc5, 0xf2, 0x94, 0x63, 0x51, 0xb7, 0x14, 0x95, 0x94, 0xf2, 0x08, 0x92, 0x80, 0xd5, 0x6f, 0x26, 0xb9, 0x26, 0x9a, 0x61, 0x85, 0x70, 0x84, 0x5c,
/* (2^132)P */ 0xea, 0x94, 0xd6, 0xfe, 0x10, 0x54, 0x98, 0x52, 0x54, 0xd2, 0x2e, 0x4a, 0x93, 0x5b, 0x90, 0x3c, 0x67, 0xe4, 0x3b, 0x2d, 0x69, 0x47, 0xbb, 0x10, 0xe1, 0xe9, 0xe5, 0x69, 0x2d, 0x3d, 0x3b, 0x06,
/* (2^133)P */ 0xeb, 0x7d, 0xa5, 0xdd, 0xee, 0x26, 0x27, 0x47, 0x91, 0x18, 0xf4, 0x10, 0xae, 0xc4, 0xb6, 0xef, 0x14, 0x76, 0x30, 0x7b, 0x91, 0x41, 0x16, 0x2b, 0x7c, 0x5b, 0xf4, 0xc4, 0x4f, 0x55, 0x7c, 0x11,
/* (2^134)P */ 0x12, 0x88, 0x9d, 0x8f, 0x11, 0xf3, 0x7c, 0xc0, 0x39, 0x79, 0x01, 0x50, 0x20, 0xd8, 0xdb, 0x01, 0x27, 0x28, 0x1b, 0x17, 0xf4, 0x03, 0xe8, 0xd7, 0xea, 0x25, 0xd2, 0x87, 0x74, 0xe8, 0x15, 0x10,
/* (2^135)P */ 0x4d, 0xcc, 0x3a, 0xd2, 0xfe, 0xe3, 0x8d, 0xc5, 0x2d, 0xbe, 0xa7, 0x94, 0xc2, 0x91, 0xdb, 0x50, 0x57, 0xf4, 0x9c, 0x1c, 0x3d, 0xd4, 0x94, 0x0b, 0x4a, 0x52, 0x37, 0x6e, 0xfa, 0x40, 0x16, 0x6b,
/* (2^136)P */ 0x09, 0x0d, 0xda, 0x5f, 0x6c, 0x34, 0x2f, 0x69, 0x51, 0x31, 0x4d, 0xfa, 0x59, 0x1c, 0x0b, 0x20, 0x96, 0xa2, 0x77, 0x07, 0x76, 0x6f, 0xc4, 0xb8, 0xcf, 0xfb, 0xfd, 0x3f, 0x5f, 0x39, 0x38, 0x4b,
/* (2^137)P */ 0x71, 0xd6, 0x54, 0xbe, 0x00, 0x5e, 0xd2, 0x18, 0xa6, 0xab, 0xc8, 0xbe, 0x82, 0x05, 0xd5, 0x60, 0x82, 0xb9, 0x78, 0x3b, 0x26, 0x8f, 0xad, 0x87, 0x32, 0x04, 0xda, 0x9c, 0x4e, 0xf6, 0xfd, 0x50,
/* (2^138)P */ 0xf0, 0xdc, 0x78, 0xc5, 0xaa, 0x67, 0xf5, 0x90, 0x3b, 0x13, 0xa3, 0xf2, 0x0e, 0x9b, 0x1e, 0xef, 0x71, 0xde, 0xd9, 0x42, 0x92, 0xba, 0xeb, 0x0e, 0xc7, 0x01, 0x31, 0xf0, 0x9b, 0x3c, 0x47, 0x15,
/* (2^139)P */ 0x95, 0x80, 0xb7, 0x56, 0xae, 0xe8, 0x77, 0x7c, 0x8e, 0x07, 0x6f, 0x6e, 0x66, 0xe7, 0x78, 0xb6, 0x1f, 0xba, 0x48, 0x53, 0x61, 0xb9, 0xa0, 0x2d, 0x0b, 0x3f, 0x73, 0xff, 0xc1, 0x31, 0xf9, 0x7c,
/* (2^140)P */ 0x6c, 0x36, 0x0a, 0x0a, 0xf5, 0x57, 0xb3, 0x26, 0x32, 0xd7, 0x87, 0x2b, 0xf4, 0x8c, 0x70, 0xe9, 0xc0, 0xb2, 0x1c, 0xf9, 0xa5, 0xee, 0x3a, 0xc1, 0x4c, 0xbb, 0x43, 0x11, 0x99, 0x0c, 0xd9, 0x35,
/* (2^141)P */ 0xdc, 0xd9, 0xa0, 0xa9, 0x04, 0xc4, 0xc1, 0x47, 0x51, 0xd2, 0x72, 0x19, 0x45, 0x58, 0x9e, 0x65, 0x31, 0x8c, 0xb3, 0x73, 0xc4, 0xa8, 0x75, 0x38, 0x24, 0x1f, 0x56, 0x79, 0xd3, 0x9e, 0xbd, 0x1f,
/* (2^142)P */ 0x8d, 0xc2, 0x1e, 0xd4, 0x6f, 0xbc, 0xfa, 0x11, 0xca, 0x2d, 0x2a, 0xcd, 0xe3, 0xdf, 0xf8, 0x7e, 0x95, 0x45, 0x40, 0x8c, 0x5d, 0x3b, 0xe7, 0x72, 0x27, 0x2f, 0xb7, 0x54, 0x49, 0xfa, 0x35, 0x61,
/* (2^143)P */ 0x9c, 0xb6, 0x24, 0xde, 0xa2, 0x32, 0xfc, 0xcc, 0x88, 0x5d, 0x09, 0x1f, 0x8c, 0x69, 0x55, 0x3f, 0x29, 0xf9, 0xc3, 0x5a, 0xed, 0x50, 0x33, 0xbe, 0xeb, 0x7e, 0x47, 0xca, 0x06, 0xf8, 0x9b, 0x5e,
/* (2^144)P */ 0x68, 0x9f, 0x30, 0x3c, 0xb6, 0x8f, 0xce, 0xe9, 0xf4, 0xf9, 0xe1, 0x65, 0x35, 0xf6, 0x76, 0x53, 0xf1, 0x93, 0x63, 0x5a, 0xb3, 0xcf, 0xaf, 0xd1, 0x06, 0x35, 0x62, 0xe5, 0xed, 0xa1, 0x32, 0x66,
/* (2^145)P */ 0x4c, 0xed, 0x2d, 0x0c, 0x39, 0x6c, 0x7d, 0x0b, 0x1f, 0xcb, 0x04, 0xdf, 0x81, 0x32, 0xcb, 0x56, 0xc7, 0xc3, 0xec, 0x49, 0x12, 0x5a, 0x30, 0x66, 0x2a, 0xa7, 0x8c, 0xa3, 0x60, 0x8b, 0x58, 0x5d,
/* (2^146)P */ 0x2d, 0xf4, 0xe5, 0xe8, 0x78, 0xbf, 0xec, 0xa6, 0xec, 0x3e, 0x8a, 0x3c, 0x4b, 0xb4, 0xee, 0x86, 0x04, 0x16, 0xd2, 0xfb, 0x48, 0x9c, 0x21, 0xec, 0x31, 0x67, 0xc3, 0x17, 0xf5, 0x1a, 0xaf, 0x1a,
/* (2^147)P */ 0xe7, 0xbd, 0x69, 0x67, 0x83, 0xa2, 0x06, 0xc3, 0xdb, 0x2a, 0x1e, 0x2b, 0x62, 0x80, 0x82, 0x20, 0xa6, 0x94, 0xff, 0xfb, 0x1f, 0xf5, 0x27, 0x80, 0x6b, 0xf2, 0x24, 0x11, 0xce, 0xa1, 0xcf, 0x76,
/* (2^148)P */ 0xb6, 0xab, 0x22, 0x24, 0x56, 0x00, 0xeb, 0x18, 0xc3, 0x29, 0x8c, 0x8f, 0xd5, 0xc4, 0x77, 0xf3, 0x1a, 0x56, 0x31, 0xf5, 0x07, 0xc2, 0xbb, 0x4d, 0x27, 0x8a, 0x12, 0x82, 0xf0, 0xb7, 0x53, 0x02,
/* (2^149)P */ 0xe0, 0x17, 0x2c, 0xb6, 0x1c, 0x09, 0x1f, 0x3d, 0xa9, 0x28, 0x46, 0xd6, 0xab, 0xe1, 0x60, 0x48, 0x53, 0x42, 0x9d, 0x30, 0x36, 0x74, 0xd1, 0x52, 0x76, 0xe5, 0xfa, 0x3e, 0xe1, 0x97, 0x6f, 0x35,
/* (2^150)P */ 0x5b, 0x53, 0x50, 0xa1, 0x1a, 0xe1, 0x51, 0xd3, 0xcc, 0x78, 0xd8, 0x1d, 0xbb, 0x45, 0x6b, 0x3e, 0x98, 0x2c, 0xd9, 0xbe, 0x28, 0x61, 0x77, 0x0c, 0xb8, 0x85, 0x28, 0x03, 0x93, 0xae, 0x34, 0x1d,
/* (2^151)P */ 0xc3, 0xa4, 0x5b, 0xa8, 0x8c, 0x48, 0xa0, 0x4b, 0xce, 0xe6, 0x9c, 0x3c, 0xc3, 0x48, 0x53, 0x98, 0x70, 0xa7, 0xbd, 0x97, 0x6f, 0x4c, 0x12, 0x66, 0x4a, 0x12, 0x54, 0x06, 0x29, 0xa0, 0x81, 0x0f,
/* (2^152)P */ 0xfd, 0x86, 0x9b, 0x56, 0xa6, 0x9c, 0xd0, 0x9e, 0x2d, 0x9a, 0xaf, 0x18, 0xfd, 0x09, 0x10, 0x81, 0x0a, 0xc2, 0xd8, 0x93, 0x3f, 0xd0, 0x08, 0xff, 0x6b, 0xf2, 0xae, 0x9f, 0x19, 0x48, 0xa1, 0x52,
/* (2^153)P */ 0x73, 0x1b, 0x8d, 0x2d, 0xdc, 0xf9, 0x03, 0x3e, 0x70, 0x1a, 0x96, 0x73, 0x18, 0x80, 0x05, 0x42, 0x70, 0x59, 0xa3, 0x41, 0xf0, 0x87, 0xd9, 0xc0, 0x49, 0xd5, 0xc0, 0xa1, 0x15, 0x1f, 0xaa, 0x07,
/* (2^154)P */ 0x24, 0x72, 0xd2, 0x8c, 0xe0, 0x6c, 0xd4, 0xdf, 0x39, 0x42, 0x4e, 0x93, 0x4f, 0x02, 0x0a, 0x6d, 0x59, 0x7b, 0x89, 0x99, 0x63, 0x7a, 0x8a, 0x80, 0xa2, 0x95, 0x3d, 0xe1, 0xe9, 0x56, 0x45, 0x0a,
/* (2^155)P */ 0x45, 0x30, 0xc1, 0xe9, 0x1f, 0x99, 0x1a, 0xd2, 0xb8, 0x51, 0x77, 0xfe, 0x48, 0x85, 0x0e, 0x9b, 0x35, 0x00, 0xf3, 0x4b, 0xcb, 0x43, 0xa6, 0x5d, 0x21, 0xf7, 0x40, 0x39, 0xd6, 0x28, 0xdb, 0x77,
/* (2^156)P */ 0x11, 0x90, 0xdc, 0x4a, 0x61, 0xeb, 0x5e, 0xfc, 0xeb, 0x11, 0xc4, 0xe8, 0x9a, 0x41, 0x29, 0x52, 0x74, 0xcf, 0x1d, 0x7d, 0x78, 0xe7, 0xc3, 0x9e, 0xb5, 0x4c, 0x6e, 0x21, 0x3e, 0x05, 0x0d, 0x34,
/* (2^157)P */ 0xb4, 0xf2, 0x8d, 0xb4, 0x39, 0xaf, 0xc7, 0xca, 0x94, 0x0a, 0xa1, 0x71, 0x28, 0xec, 0xfa, 0xc0, 0xed, 0x75, 0xa5, 0x5c, 0x24, 0x69, 0x0a, 0x14, 0x4c, 0x3a, 0x27, 0x34, 0x71, 0xc3, 0xf1, 0x0c,
/* (2^158)P */ 0xa5, 0xb8, 0x24, 0xc2, 0x6a, 0x30, 0xee, 0xc8, 0xb0, 0x30, 0x49, 0xcb, 0x7c, 0xee, 0xea, 0x57, 0x4f, 0xe7, 0xcb, 0xaa, 0xbd, 0x06, 0xe8, 0xa1, 0x7d, 0x65, 0xeb, 0x2e, 0x74, 0x62, 0x9a, 0x7d,
/* (2^159)P */ 0x30, 0x48, 0x6c, 0x54, 0xef, 0xb6, 0xb6, 0x9e, 0x2e, 0x6e, 0xb3, 0xdd, 0x1f, 0xca, 0x5c, 0x88, 0x05, 0x71, 0x0d, 0xef, 0x83, 0xf3, 0xb9, 0xe6, 0x12, 0x04, 0x2e, 0x9d, 0xef, 0x4f, 0x65, 0x58,
/* (2^160)P */ 0x26, 0x8e, 0x0e, 0xbe, 0xff, 0xc4, 0x05, 0xa9, 0x6e, 0x81, 0x31, 0x9b, 0xdf, 0xe5, 0x2d, 0x94, 0xe1, 0x88, 0x2e, 0x80, 0x3f, 0x72, 0x7d, 0x49, 0x8d, 0x40, 0x2f, 0x60, 0xea, 0x4d, 0x68, 0x30,
/* (2^161)P */ 0x34, 0xcb, 0xe6, 0xa3, 0x78, 0xa2, 0xe5, 0x21, 0xc4, 0x1d, 0x15, 0x5b, 0x6f, 0x6e, 0xfb, 0xae, 0x15, 0xca, 0x77, 0x9d, 0x04, 0x8e, 0x0b, 0xb3, 0x81, 0x89, 0xb9, 0x53, 0xcf, 0xc9, 0xc3, 0x28,
/* (2^162)P */ 0x2a, 0xdd, 0x6c, 0x55, 0x21, 0xb7, 0x7f, 0x28, 0x74, 0x22, 0x02, 0x97, 0xa8, 0x7c, 0x31, 0x0d, 0x58, 0x32, 0x54, 0x3a, 0x42, 0xc7, 0x68, 0x74, 0x2f, 0x64, 0xb5, 0x4e, 0x46, 0x11, 0x7f, 0x4a,
/* (2^163)P */ 0xa6, 0x3a, 0x19, 0x4d, 0x77, 0xa4, 0x37, 0xa2, 0xa1, 0x29, 0x21, 0xa9, 0x6e, 0x98, 0x65, 0xd8, 0x88, 0x1a, 0x7c, 0xf8, 0xec, 0x15, 0xc5, 0x24, 0xeb, 0xf5, 0x39, 0x5f, 0x57, 0x03, 0x40, 0x60,
/* (2^164)P */ 0x27, 0x9b, 0x0a, 0x57, 0x89, 0xf1, 0xb9, 0x47, 0x78, 0x4b, 0x5e, 0x46, 0xde, 0xce, 0x98, 0x2b, 0x20, 0x5c, 0xb8, 0xdb, 0x51, 0xf5, 0x6d, 0x02, 0x01, 0x19, 0xe2, 0x47, 0x10, 0xd9, 0xfc, 0x74,
/* (2^165)P */ 0xa3, 0xbf, 0xc1, 0x23, 0x0a, 0xa9, 0xe2, 0x13, 0xf6, 0x19, 0x85, 0x47, 0x4e, 0x07, 0xb0, 0x0c, 0x44, 0xcf, 0xf6, 0x3a, 0xbe, 0xcb, 0xf1, 0x5f, 0xbe, 0x2d, 0x81, 0xbe, 0x38, 0x54, 0xfe, 0x67,
/* (2^166)P */ 0xb0, 0x05, 0x0f, 0xa4, 0x4f, 0xf6, 0x3c, 0xd1, 0x87, 0x37, 0x28, 0x32, 0x2f, 0xfb, 0x4d, 0x05, 0xea, 0x2a, 0x0d, 0x7f, 0x5b, 0x91, 0x73, 0x41, 0x4e, 0x0d, 0x61, 0x1f, 0x4f, 0x14, 0x2f, 0x48,
/* (2^167)P */ 0x34, 0x82, 0x7f, 0xb4, 0x01, 0x02, 0x21, 0xf6, 0x90, 0xb9, 0x70, 0x9e, 0x92, 0xe1, 0x0a, 0x5d, 0x7c, 0x56, 0x49, 0xb0, 0x55, 0xf4, 0xd7, 0xdc, 0x01, 0x6f, 0x91, 0xf0, 0xf1, 0xd0, 0x93, 0x7e,
/* (2^168)P */ 0xfa, 0xb4, 0x7d, 0x8a, 0xf1, 0xcb, 0x79, 0xdd, 0x2f, 0xc6, 0x74, 0x6f, 0xbf, 0x91, 0x83, 0xbe, 0xbd, 0x91, 0x82, 0x4b, 0xd1, 0x45, 0x71, 0x02, 0x05, 0x17, 0xbf, 0x2c, 0xea, 0x73, 0x5a, 0x58,
/* (2^169)P */ 0xb2, 0x0d, 0x8a, 0x92, 0x3e, 0xa0, 0x5c, 0x48, 0xe7, 0x57, 0x28, 0x74, 0xa5, 0x01, 0xfc, 0x10, 0xa7, 0x51, 0xd5, 0xd6, 0xdb, 0x2e, 0x48, 0x2f, 0x8a, 0xdb, 0x8f, 0x04, 0xb5, 0x33, 0x04, 0x0f,
/* (2^170)P */ 0x47, 0x62, 0xdc, 0xd7, 0x8d, 0x2e, 0xda, 0x60, 0x9a, 0x81, 0xd4, 0x8c, 0xd3, 0xc9, 0xb4, 0x88, 0x97, 0x66, 0xf6, 0x01, 0xc0, 0x3a, 0x03, 0x13, 0x75, 0x7d, 0x36, 0x3b, 0xfe, 0x24, 0x3b, 0x27,
/* (2^171)P */ 0xd4, 0xb9, 0xb3, 0x31, 0x6a, 0xf6, 0xe8, 0xc6, 0xd5, 0x49, 0xdf, 0x94, 0xa4, 0x14, 0x15, 0x28, 0xa7, 0x3d, 0xb2, 0xc8, 0xdf, 0x6f, 0x72, 0xd1, 0x48, 0xe5, 0xde, 0x03, 0xd1, 0xe7, 0x3a, 0x4b,
/* (2^172)P */ 0x7e, 0x9d, 0x4b, 0xce, 0x19, 0x6e, 0x25, 0xc6, 0x1c, 0xc6, 0xe3, 0x86, 0xf1, 0x5c, 0x5c, 0xff, 0x45, 0xc1, 0x8e, 0x4b, 0xa3, 0x3c, 0xc6, 0xac, 0x74, 0x65, 0xe6, 0xfe, 0x88, 0x18, 0x62, 0x74,
/* (2^173)P */ 0x1e, 0x0a, 0x29, 0x45, 0x96, 0x40, 0x6f, 0x95, 0x2e, 0x96, 0x3a, 0x26, 0xe3, 0xf8, 0x0b, 0xef, 0x7b, 0x64, 0xc2, 0x5e, 0xeb, 0x50, 0x6a, 0xed, 0x02, 0x75, 0xca, 0x9d, 0x3a, 0x28, 0x94, 0x06,
/* (2^174)P */ 0xd1, 0xdc, 0xa2, 0x43, 0x36, 0x96, 0x9b, 0x76, 0x53, 0x53, 0xfc, 0x09, 0xea, 0xc8, 0xb7, 0x42, 0xab, 0x7e, 0x39, 0x13, 0xee, 0x2a, 0x00, 0x4f, 0x3a, 0xd6, 0xb7, 0x19, 0x2c, 0x5e, 0x00, 0x63,
/* (2^175)P */ 0xea, 0x3b, 0x02, 0x63, 0xda, 0x36, 0x67, 0xca, 0xb7, 0x99, 0x2a, 0xb1, 0x6d, 0x7f, 0x6c, 0x96, 0xe1, 0xc5, 0x37, 0xc5, 0x90, 0x93, 0xe0, 0xac, 0xee, 0x89, 0xaa, 0xa1, 0x63, 0x60, 0x69, 0x0b,
/* (2^176)P */ 0xe5, 0x56, 0x8c, 0x28, 0x97, 0x3e, 0xb0, 0xeb, 0xe8, 0x8b, 0x8c, 0x93, 0x9f, 0x9f, 0x2a, 0x43, 0x71, 0x7f, 0x71, 0x5b, 0x3d, 0xa9, 0xa5, 0xa6, 0x97, 0x9d, 0x8f, 0xe1, 0xc3, 0xb4, 0x5f, 0x1a,
/* (2^177)P */ 0xce, 0xcd, 0x60, 0x1c, 0xad, 0xe7, 0x94, 0x1c, 0xa0, 0xc4, 0x02, 0xfc, 0x43, 0x2a, 0x20, 0xee, 0x20, 0x6a, 0xc4, 0x67, 0xd8, 0xe4, 0xaf, 0x8d, 0x58, 0x7b, 0xc2, 0x8a, 0x3c, 0x26, 0x10, 0x0a,
/* (2^178)P */ 0x4a, 0x2a, 0x43, 0xe4, 0xdf, 0xa9, 0xde, 0xd0, 0xc5, 0x77, 0x92, 0xbe, 0x7b, 0xf8, 0x6a, 0x85, 0x1a, 0xc7, 0x12, 0xc2, 0xac, 0x72, 0x84, 0xce, 0x91, 0x1e, 0xbb, 0x9b, 0x6d, 0x1b, 0x15, 0x6f,
/* (2^179)P */ 0x6a, 0xd5, 0xee, 0x7c, 0x52, 0x6c, 0x77, 0x26, 0xec, 0xfa, 0xf8, 0xfb, 0xb7, 0x1c, 0x21, 0x7d, 0xcc, 0x09, 0x46, 0xfd, 0xa6, 0x66, 0xae, 0x37, 0x42, 0x0c, 0x77, 0xd2, 0x02, 0xb7, 0x81, 0x1f,
/* (2^180)P */ 0x92, 0x83, 0xc5, 0xea, 0x57, 0xb0, 0xb0, 0x2f, 0x9d, 0x4e, 0x74, 0x29, 0xfe, 0x89, 0xdd, 0xe1, 0xf8, 0xb4, 0xbe, 0x17, 0xeb, 0xf8, 0x64, 0xc9, 0x1e, 0xd4, 0xa2, 0xc9, 0x73, 0x10, 0x57, 0x29,
/* (2^181)P */ 0x54, 0xe2, 0xc0, 0x81, 0x89, 0xa1, 0x48, 0xa9, 0x30, 0x28, 0xb2, 0x65, 0x9b, 0x36, 0xf6, 0x2d, 0xc6, 0xd3, 0xcf, 0x5f, 0xd7, 0xb2, 0x3e, 0xa3, 0x1f, 0xa0, 0x99, 0x41, 0xec, 0xd6, 0x8c, 0x07,
/* (2^182)P */ 0x2f, 0x0d, 0x90, 0xad, 0x41, 0x4a, 0x58, 0x4a, 0x52, 0x4c, 0xc7, 0xe2, 0x78, 0x2b, 0x14, 0x32, 0x78, 0xc9, 0x31, 0x84, 0x33, 0xe8, 0xc4, 0x68, 0xc2, 0x9f, 0x68, 0x08, 0x90, 0xea, 0x69, 0x7f,
/* (2^183)P */ 0x65, 0x82, 0xa3, 0x46, 0x1e, 0xc8, 0xf2, 0x52, 0xfd, 0x32, 0xa8, 0x04, 0x2d, 0x07, 0x78, 0xfd, 0x94, 0x9e, 0x35, 0x25, 0xfa, 0xd5, 0xd7, 0x8c, 0xd2, 0x29, 0xcc, 0x54, 0x74, 0x1b, 0xe7, 0x4d,
/* (2^184)P */ 0xc9, 0x6a, 0xda, 0x1e, 0xad, 0x60, 0xeb, 0x42, 0x3a, 0x9c, 0xc0, 0xdb, 0xdf, 0x37, 0xad, 0x0a, 0x91, 0xc1, 0x3c, 0xe3, 0x71, 0x4b, 0x00, 0x81, 0x3c, 0x80, 0x22, 0x51, 0x34, 0xbe, 0xe6, 0x44,
/* (2^185)P */ 0xdb, 0x20, 0x19, 0xba, 0x88, 0x83, 0xfe, 0x03, 0x08, 0xb0, 0x0d, 0x15, 0x32, 0x7c, 0xd5, 0xf5, 0x29, 0x0c, 0xf6, 0x1a, 0x28, 0xc4, 0xc8, 0x49, 0xee, 0x1a, 0x70, 0xde, 0x18, 0xb5, 0xed, 0x21,
/* (2^186)P */ 0x99, 0xdc, 0x06, 0x8f, 0x41, 0x3e, 0xb6, 0x7f, 0xb8, 0xd7, 0x66, 0xc1, 0x99, 0x0d, 0x46, 0xa4, 0x83, 0x0a, 0x52, 0xce, 0x48, 0x52, 0xdd, 0x24, 0x58, 0x83, 0x92, 0x2b, 0x71, 0xad, 0xc3, 0x5e,
/* (2^187)P */ 0x0f, 0x93, 0x17, 0xbd, 0x5f, 0x2a, 0x02, 0x15, 0xe3, 0x70, 0x25, 0xd8, 0x77, 0x4a, 0xf6, 0xa4, 0x12, 0x37, 0x78, 0x15, 0x69, 0x8d, 0xbc, 0x12, 0xbb, 0x0a, 0x62, 0xfc, 0xc0, 0x94, 0x81, 0x49,
/* (2^188)P */ 0x82, 0x6c, 0x68, 0x55, 0xd2, 0xd9, 0xa2, 0x38, 0xf0, 0x21, 0x3e, 0x19, 0xd9, 0x6b, 0x5c, 0x78, 0x84, 0x54, 0x4a, 0xb2, 0x1a, 0xc8, 0xd5, 0xe4, 0x89, 0x09, 0xe2, 0xb2, 0x60, 0x78, 0x30, 0x56,
/* (2^189)P */ 0xc4, 0x74, 0x4d, 0x8b, 0xf7, 0x55, 0x9d, 0x42, 0x31, 0x01, 0x35, 0x43, 0x46, 0x83, 0xf1, 0x22, 0xff, 0x1f, 0xc7, 0x98, 0x45, 0xc2, 0x60, 0x1e, 0xef, 0x83, 0x99, 0x97, 0x14, 0xf0, 0xf2, 0x59,
/* (2^190)P */ 0x44, 0x4a, 0x49, 0xeb, 0x56, 0x7d, 0xa4, 0x46, 0x8e, 0xa1, 0x36, 0xd6, 0x54, 0xa8, 0x22, 0x3e, 0x3b, 0x1c, 0x49, 0x74, 0x52, 0xe1, 0x46, 0xb3, 0xe7, 0xcd, 0x90, 0x53, 0x4e, 0xfd, 0xea, 0x2c,
/* (2^191)P */ 0x75, 0x66, 0x0d, 0xbe, 0x38, 0x85, 0x8a, 0xba, 0x23, 0x8e, 0x81, 0x50, 0xbb, 0x74, 0x90, 0x4b, 0xc3, 0x04, 0xd3, 0x85, 0x90, 0xb8, 0xda, 0xcb, 0xc4, 0x92, 0x61, 0xe5, 0xe0, 0x4f, 0xa2, 0x61,
/* (2^192)P */ 0xcb, 0x5b, 0x52, 0xdb, 0xe6, 0x15, 0x76, 0xcb, 0xca, 0xe4, 0x67, 0xa5, 0x35, 0x8c, 0x7d, 0xdd, 0x69, 0xdd, 0xfc, 0xca, 0x3a, 0x15, 0xb4, 0xe6, 0x66, 0x97, 0x3c, 0x7f, 0x09, 0x8e, 0x66, 0x2d,
/* (2^193)P */ 0xf0, 0x5e, 0xe5, 0x5c, 0x26, 0x7e, 0x7e, 0xa5, 0x67, 0xb9, 0xd4, 0x7c, 0x52, 0x4e, 0x9f, 0x5d, 0xe5, 0xd1, 0x2f, 0x49, 0x06, 0x36, 0xc8, 0xfb, 0xae, 0xf7, 0xc3, 0xb7, 0xbe, 0x52, 0x0d, 0x09,
/* (2^194)P */ 0x7c, 0x4d, 0x7b, 0x1e, 0x5a, 0x51, 0xb9, 0x09, 0xc0, 0x44, 0xda, 0x99, 0x25, 0x6a, 0x26, 0x1f, 0x04, 0x55, 0xc5, 0xe2, 0x48, 0x95, 0xc4, 0xa1, 0xcc, 0x15, 0x6f, 0x12, 0x87, 0x42, 0xf0, 0x7e,
/* (2^195)P */ 0x15, 0xef, 0x30, 0xbd, 0x9d, 0x65, 0xd1, 0xfe, 0x7b, 0x27, 0xe0, 0xc4, 0xee, 0xb9, 0x4a, 0x8b, 0x91, 0x32, 0xdf, 0xa5, 0x36, 0x62, 0x4d, 0x88, 0x88, 0xf7, 0x5c, 0xbf, 0xa6, 0x6e, 0xd9, 0x1f,
/* (2^196)P */ 0x9a, 0x0d, 0x19, 0x1f, 0x98, 0x61, 0xa1, 0x42, 0xc1, 0x52, 0x60, 0x7e, 0x50, 0x49, 0xd8, 0x61, 0xd5, 0x2c, 0x5a, 0x28, 0xbf, 0x13, 0xe1, 0x9f, 0xd8, 0x85, 0xad, 0xdb, 0x76, 0xd6, 0x22, 0x7c,
/* (2^197)P */ 0x7d, 0xd2, 0xfb, 0x2b, 0xed, 0x70, 0xe7, 0x82, 0xa5, 0xf5, 0x96, 0xe9, 0xec, 0xb2, 0x05, 0x4c, 0x50, 0x01, 0x90, 0xb0, 0xc2, 0xa9, 0x40, 0xcd, 0x64, 0xbf, 0xd9, 0x13, 0x92, 0x31, 0x95, 0x58,
/* (2^198)P */ 0x08, 0x2e, 0xea, 0x3f, 0x70, 0x5d, 0xcc, 0xe7, 0x8c, 0x18, 0xe2, 0x58, 0x12, 0x49, 0x0c, 0xb5, 0xf0, 0x5b, 0x20, 0x48, 0xaa, 0x0b, 0xe3, 0xcc, 0x62, 0x2d, 0xa3, 0xcf, 0x9c, 0x65, 0x7c, 0x53,
/* (2^199)P */ 0x88, 0xc0, 0xcf, 0x98, 0x3a, 0x62, 0xb6, 0x37, 0xa4, 0xac, 0xd6, 0xa4, 0x1f, 0xed, 0x9b, 0xfe, 0xb0, 0xd1, 0xa8, 0x56, 0x8e, 0x9b, 0xd2, 0x04, 0x75, 0x95, 0x51, 0x0b, 0xc4, 0x71, 0x5f, 0x72,
/* (2^200)P */ 0xe6, 0x9c, 0x33, 0xd0, 0x9c, 0xf8, 0xc7, 0x28, 0x8b, 0xc1, 0xdd, 0x69, 0x44, 0xb1, 0x67, 0x83, 0x2c, 0x65, 0xa1, 0xa6, 0x83, 0xda, 0x3a, 0x88, 0x17, 0x6c, 0x4d, 0x03, 0x74, 0x19, 0x5f, 0x58,
/* (2^201)P */ 0x88, 0x91, 0xb1, 0xf1, 0x66, 0xb2, 0xcf, 0x89, 0x17, 0x52, 0xc3, 0xe7, 0x63, 0x48, 0x3b, 0xe6, 0x6a, 0x52, 0xc0, 0xb4, 0xa6, 0x9d, 0x8c, 0xd8, 0x35, 0x46, 0x95, 0xf0, 0x9d, 0x5c, 0x03, 0x3e,
/* (2^202)P */ 0x9d, 0xde, 0x45, 0xfb, 0x12, 0x54, 0x9d, 0xdd, 0x0d, 0xf4, 0xcf, 0xe4, 0x32, 0x45, 0x68, 0xdd, 0x1c, 0x67, 0x1d, 0x15, 0x9b, 0x99, 0x5c, 0x4b, 0x90, 0xf6, 0xe7, 0x11, 0xc8, 0x2c, 0x8c, 0x2d,
/* (2^203)P */ 0x40, 0x5d, 0x05, 0x90, 0x1d, 0xbe, 0x54, 0x7f, 0x40, 0xaf, 0x4a, 0x46, 0xdf, 0xc5, 0x64, 0xa4, 0xbe, 0x17, 0xe9, 0xf0, 0x24, 0x96, 0x97, 0x33, 0x30, 0x6b, 0x35, 0x27, 0xc5, 0x8d, 0x01, 0x2c,
/* (2^204)P */ 0xd4, 0xb3, 0x30, 0xe3, 0x24, 0x50, 0x41, 0xa5, 0xd3, 0x52, 0x16, 0x69, 0x96, 0x3d, 0xff, 0x73, 0xf1, 0x59, 0x9b, 0xef, 0xc4, 0x42, 0xec, 0x94, 0x5a, 0x8e, 0xd0, 0x18, 0x16, 0x20, 0x47, 0x07,
/* (2^205)P */ 0x53, 0x1c, 0x41, 0xca, 0x8a, 0xa4, 0x6c, 0x4d, 0x19, 0x61, 0xa6, 0xcf, 0x2f, 0x5f, 0x41, 0x66, 0xff, 0x27, 0xe2, 0x51, 0x00, 0xd4, 0x4d, 0x9c, 0xeb, 0xf7, 0x02, 0x9a, 0xc0, 0x0b, 0x81, 0x59,
/* (2^206)P */ 0x1d, 0x10, 0xdc, 0xb3, 0x71, 0xb1, 0x7e, 0x2a, 0x8e, 0xf6, 0xfe, 0x9f, 0xb9, 0x5a, 0x1c, 0x44, 0xea, 0x59, 0xb3, 0x93, 0x9b, 0x5c, 0x02, 0x32, 0x2f, 0x11, 0x9d, 0x1e, 0xa7, 0xe0, 0x8c, 0x5e,
/* (2^207)P */ 0xfd, 0x03, 0x95, 0x42, 0x92, 0xcb, 0xcc, 0xbf, 0x55, 0x5d, 0x09, 0x2f, 0x75, 0xba, 0x71, 0xd2, 0x1e, 0x09, 0x2d, 0x97, 0x5e, 0xad, 0x5e, 0x34, 0xba, 0x03, 0x31, 0xa8, 0x11, 0xdf, 0xc8, 0x18,
/* (2^208)P */ 0x4c, 0x0f, 0xed, 0x9a, 0x9a, 0x94, 0xcd, 0x90, 0x7e, 0xe3, 0x60, 0x66, 0xcb, 0xf4, 0xd1, 0xc5, 0x0b, 0x2e, 0xc5, 0x56, 0x2d, 0xc5, 0xca, 0xb8, 0x0d, 0x8e, 0x80, 0xc5, 0x00, 0xe4, 0x42, 0x6e,
/* (2^209)P */ 0x23, 0xfd, 0xae, 0xee, 0x66, 0x69, 0xb4, 0xa3, 0xca, 0xcd, 0x9e, 0xe3, 0x0b, 0x1f, 0x4f, 0x0c, 0x1d, 0xa5, 0x83, 0xd6, 0xc9, 0xc8, 0x9d, 0x18, 0x1b, 0x35, 0x09, 0x4c, 0x05, 0x7f, 0xf2, 0x51,
/* (2^210)P */ 0x82, 0x06, 0x32, 0x2a, 0xcd, 0x7c, 0x48, 0x4c, 0x96, 0x1c, 0xdf, 0xb3, 0x5b, 0xa9, 0x7e, 0x58, 0xe8, 0xb8, 0x5c, 0x55, 0x9e, 0xf7, 0xcc, 0xc8, 0x3d, 0xd7, 0x06, 0xa2, 0x29, 0xc8, 0x7d, 0x54,
/* (2^211)P */ 0x06, 0x9b, 0xc3, 0x80, 0xcd, 0xa6, 0x22, 0xb8, 0xc6, 0xd4, 0x00, 0x20, 0x73, 0x54, 0x6d, 0xe9, 0x4d, 0x3b, 0x46, 0x91, 0x6f, 0x5b, 0x53, 0x28, 0x1d, 0x6e, 0x48, 0xe2, 0x60, 0x46, 0x8f, 0x22,
/* (2^212)P */ 0xbf, 0x3a, 0x8d, 0xde, 0x38, 0x95, 0x79, 0x98, 0x6e, 0xca, 0xeb, 0x45, 0x00, 0x33, 0xd8, 0x8c, 0x38, 0xe7, 0x21, 0x82, 0x00, 0x2a, 0x95, 0x79, 0xbb, 0xd2, 0x5c, 0x53, 0xa7, 0xe1, 0x22, 0x43,
/* (2^213)P */ 0x1c, 0x80, 0xd1, 0x19, 0x18, 0xc1, 0x14, 0xb1, 0xc7, 0x5e, 0x3f, 0x4f, 0xd8, 0xe4, 0x16, 0x20, 0x4c, 0x0f, 0x26, 0x09, 0xf4, 0x2d, 0x0e, 0xdd, 0x66, 0x72, 0x5f, 0xae, 0xc0, 0x62, 0xc3, 0x5e,
/* (2^214)P */ 0xee, 0xb4, 0xb2, 0xb8, 0x18, 0x2b, 0x46, 0xc0, 0xfb, 0x1a, 0x4d, 0x27, 0x50, 0xd9, 0xc8, 0x7c, 0xd2, 0x02, 0x6b, 0x43, 0x05, 0x71, 0x5f, 0xf2, 0xd3, 0xcc, 0xf9, 0xbf, 0xdc, 0xf8, 0xbb, 0x43,
/* (2^215)P */ 0xdf, 0xe9, 0x39, 0xa0, 0x67, 0x17, 0xad, 0xb6, 0x83, 0x35, 0x9d, 0xf6, 0xa8, 0x4d, 0x71, 0xb0, 0xf5, 0x31, 0x29, 0xb4, 0x18, 0xfa, 0x55, 0x5e, 0x61, 0x09, 0xc6, 0x33, 0x8f, 0x55, 0xd5, 0x4e,
/* (2^216)P */ 0xdd, 0xa5, 0x47, 0xc6, 0x01, 0x79, 0xe3, 0x1f, 0x57, 0xd3, 0x81, 0x80, 0x1f, 0xdf, 0x3d, 0x59, 0xa6, 0xd7, 0x3f, 0x81, 0xfd, 0xa4, 0x49, 0x02, 0x61, 0xaf, 0x9c, 0x4e, 0x27, 0xca, 0xac, 0x69,
/* (2^217)P */ 0xc9, 0x21, 0x07, 0x33, 0xea, 0xa3, 0x7b, 0x04, 0xa0, 0x1e, 0x7e, 0x0e, 0xc2, 0x3f, 0x42, 0x83, 0x60, 0x4a, 0x31, 0x01, 0xaf, 0xc0, 0xf4, 0x1d, 0x27, 0x95, 0x28, 0x89, 0xab, 0x2d, 0xa6, 0x09,
/* (2^218)P */ 0x00, 0xcb, 0xc6, 0x9c, 0xa4, 0x25, 0xb3, 0xa5, 0xb6, 0x6c, 0xb5, 0x54, 0xc6, 0x5d, 0x4b, 0xe9, 0xa0, 0x94, 0xc9, 0xad, 0x79, 0x87, 0xe2, 0x3b, 0xad, 0x4a, 0x3a, 0xba, 0xf8, 0xe8, 0x96, 0x42,
/* (2^219)P */ 0xab, 0x1e, 0x45, 0x1e, 0x76, 0x89, 0x86, 0x32, 0x4a, 0x59, 0x59, 0xff, 0x8b, 0x59, 0x4d, 0x2e, 0x4a, 0x08, 0xa7, 0xd7, 0x53, 0x68, 0xb9, 0x49, 0xa8, 0x20, 0x14, 0x60, 0x19, 0xa3, 0x80, 0x49,
/* (2^220)P */ 0x42, 0x2c, 0x55, 0x2f, 0xe1, 0xb9, 0x65, 0x95, 0x96, 0xfe, 0x00, 0x71, 0xdb, 0x18, 0x53, 0x8a, 0xd7, 0xd0, 0xad, 0x43, 0x4d, 0x0b, 0xc9, 0x05, 0xda, 0x4e, 0x5d, 0x6a, 0xd6, 0x4c, 0x8b, 0x53,
/* (2^221)P */ 0x9f, 0x03, 0x9f, 0xe8, 0xc3, 0x4f, 0xe9, 0xf4, 0x45, 0x80, 0x61, 0x6f, 0xf2, 0x9a, 0x2c, 0x59, 0x50, 0x95, 0x4b, 0xfd, 0xb5, 0x6e, 0xa3, 0x08, 0x19, 0x14, 0xed, 0xc2, 0xf6, 0xfa, 0xff, 0x25,
/* (2^222)P */ 0x54, 0xd3, 0x79, 0xcc, 0x59, 0x44, 0x43, 0x34, 0x6b, 0x47, 0xd5, 0xb1, 0xb4, 0xbf, 0xec, 0xee, 0x99, 0x5d, 0x61, 0x61, 0xa0, 0x34, 0xeb, 0xdd, 0x73, 0xb7, 0x64, 0xeb, 0xcc, 0xce, 0x29, 0x51,
/* (2^223)P */ 0x20, 0x35, 0x99, 0x94, 0x58, 0x21, 0x43, 0xee, 0x3b, 0x0b, 0x4c, 0xf1, 0x7c, 0x9c, 0x2f, 0x77, 0xd5, 0xda, 0xbe, 0x06, 0xe3, 0xfc, 0xe2, 0xd2, 0x97, 0x6a, 0xf0, 0x46, 0xb5, 0x42, 0x5f, 0x71,
/* (2^224)P */ 0x1a, 0x5f, 0x5b, 0xda, 0xce, 0xcd, 0x4e, 0x43, 0xa9, 0x41, 0x97, 0xa4, 0x15, 0x71, 0xa1, 0x0d, 0x2e, 0xad, 0xed, 0x73, 0x7c, 0xd7, 0x0b, 0x68, 0x41, 0x90, 0xdd, 0x4e, 0x35, 0x02, 0x7c, 0x48,
/* (2^225)P */ 0xc4, 0xd9, 0x0e, 0xa7, 0xf3, 0xef, 0xef, 0xb8, 0x02, 0xe3, 0x57, 0xe8, 0xa3, 0x2a, 0xa3, 0x56, 0xa0, 0xa5, 0xa2, 0x48, 0xbd, 0x68, 0x3a, 0xdf, 0x44, 0xc4, 0x76, 0x31, 0xb7, 0x50, 0xf6, 0x07,
/* (2^226)P */ 0xb1, 0xcc, 0xe0, 0x26, 0x16, 0x9b, 0x8b, 0xe3, 0x36, 0xfb, 0x09, 0x8b, 0xc1, 0x53, 0xe0, 0x79, 0x64, 0x49, 0xf9, 0xc9, 0x19, 0x03, 0xd9, 0x56, 0xc4, 0xf5, 0x9f, 0xac, 0xe7, 0x41, 0xa9, 0x1c,
/* (2^227)P */ 0xbb, 0xa0, 0x2f, 0x16, 0x29, 0xdf, 0xc4, 0x49, 0x05, 0x33, 0xb3, 0x82, 0x32, 0xcf, 0x88, 0x84, 0x7d, 0x43, 0xbb, 0xca, 0x14, 0xda, 0xdf, 0x95, 0x86, 0xad, 0xd5, 0x64, 0x82, 0xf7, 0x91, 0x33,
/* (2^228)P */ 0x5d, 0x09, 0xb5, 0xe2, 0x6a, 0xe0, 0x9a, 0x72, 0x46, 0xa9, 0x59, 0x32, 0xd7, 0x58, 0x8a, 0xd5, 0xed, 0x21, 0x39, 0xd1, 0x62, 0x42, 0x83, 0xe9, 0x92, 0xb5, 0x4b, 0xa5, 0xfa, 0xda, 0xfe, 0x27,
/* (2^229)P */ 0xbb, 0x48, 0xad, 0x29, 0xb8, 0xc5, 0x9d, 0xa9, 0x60, 0xe2, 0x9e, 0x49, 0x42, 0x57, 0x02, 0x5f, 0xfd, 0x13, 0x75, 0x5d, 0xcd, 0x8e, 0x2c, 0x80, 0x38, 0xd9, 0x6d, 0x3f, 0xef, 0xb3, 0xce, 0x78,
/* (2^230)P */ 0x94, 0x5d, 0x13, 0x8a, 0x4f, 0xf4, 0x42, 0xc3, 0xa3, 0xdd, 0x8c, 0x82, 0x44, 0xdb, 0x9e, 0x7b, 0xe7, 0xcf, 0x37, 0x05, 0x1a, 0xd1, 0x36, 0x94, 0xc8, 0xb4, 0x1a, 0xec, 0x64, 0xb1, 0x64, 0x50,
/* (2^231)P */ 0xfc, 0xb2, 0x7e, 0xd3, 0xcf, 0xec, 0x20, 0x70, 0xfc, 0x25, 0x0d, 0xd9, 0x3e, 0xea, 0x31, 0x1f, 0x34, 0xbb, 0xa1, 0xdf, 0x7b, 0x0d, 0x93, 0x1b, 0x44, 0x30, 0x11, 0x48, 0x7a, 0x46, 0x44, 0x53,
/* (2^232)P */ 0xfb, 0x6d, 0x5e, 0xf2, 0x70, 0x31, 0x07, 0x70, 0xc8, 0x4c, 0x11, 0x50, 0x1a, 0xdc, 0x85, 0xe3, 0x00, 0x4f, 0xfc, 0xc8, 0x8a, 0x69, 0x48, 0x23, 0xd8, 0x40, 0xdd, 0x84, 0x52, 0xa5, 0x77, 0x2a,
/* (2^233)P */ 0xe4, 0x6c, 0x8c, 0xc9, 0xe0, 0xaf, 0x06, 0xfe, 0xe4, 0xd6, 0xdf, 0xdd, 0x96, 0xdf, 0x35, 0xc2, 0xd3, 0x1e, 0xbf, 0x33, 0x1e, 0xd0, 0x28, 0x14, 0xaf, 0xbd, 0x00, 0x93, 0xec, 0x68, 0x57, 0x78,
/* (2^234)P */ 0x3b, 0xb6, 0xde, 0x91, 0x7a, 0xe5, 0x02, 0x97, 0x80, 0x8b, 0xce, 0xe5, 0xbf, 0xb8, 0xbd, 0x61, 0xac, 0x58, 0x1d, 0x3d, 0x6f, 0x42, 0x5b, 0x64, 0xbc, 0x57, 0xa5, 0x27, 0x22, 0xa8, 0x04, 0x48,
/* (2^235)P */ 0x01, 0x26, 0x4d, 0xb4, 0x8a, 0x04, 0x57, 0x8e, 0x35, 0x69, 0x3a, 0x4b, 0x1a, 0x50, 0xd6, 0x68, 0x93, 0xc2, 0xe1, 0xf9, 0xc3, 0x9e, 0x9c, 0xc3, 0xe2, 0x63, 0xde, 0xd4, 0x57, 0xf2, 0x72, 0x41,
/* (2^236)P */ 0x01, 0x64, 0x0c, 0x33, 0x50, 0xb4, 0x68, 0xd3, 0x91, 0x23, 0x8f, 0x41, 0x17, 0x30, 0x0d, 0x04, 0x0d, 0xd9, 0xb7, 0x90, 0x60, 0xbb, 0x34, 0x2c, 0x1f, 0xd5, 0xdf, 0x8f, 0x22, 0x49, 0xf6, 0x16,
/* (2^237)P */ 0xf5, 0x8e, 0x92, 0x2b, 0x8e, 0x81, 0xa6, 0xbe, 0x72, 0x1e, 0xc1, 0xcd, 0x91, 0xcf, 0x8c, 0xe2, 0xcd, 0x36, 0x7a, 0xe7, 0x68, 0xaa, 0x4a, 0x59, 0x0f, 0xfd, 0x7f, 0x6c, 0x80, 0x34, 0x30, 0x31,
/* (2^238)P */ 0x65, 0xbd, 0x49, 0x22, 0xac, 0x27, 0x9d, 0x8a, 0x12, 0x95, 0x8e, 0x01, 0x64, 0xb4, 0xa3, 0x19, 0xc7, 0x7e, 0xb3, 0x52, 0xf3, 0xcf, 0x6c, 0xc2, 0x21, 0x7b, 0x79, 0x1d, 0x34, 0x68, 0x6f, 0x05,
/* (2^239)P */ 0x27, 0x23, 0xfd, 0x7e, 0x75, 0xd6, 0x79, 0x5e, 0x15, 0xfe, 0x3a, 0x55, 0xb6, 0xbc, 0xbd, 0xfa, 0x60, 0x5a, 0xaf, 0x6e, 0x2c, 0x22, 0xe7, 0xd3, 0x3b, 0x74, 0xae, 0x4d, 0x6d, 0xc7, 0x46, 0x70,
/* (2^240)P */ 0x55, 0x4a, 0x8d, 0xb1, 0x72, 0xe8, 0x0b, 0x66, 0x96, 0x14, 0x4e, 0x57, 0x18, 0x25, 0x99, 0x19, 0xbb, 0xdc, 0x2b, 0x30, 0x3a, 0x05, 0x03, 0xc1, 0x8e, 0x8e, 0x21, 0x0b, 0x80, 0xe9, 0xd8, 0x3e,
/* (2^241)P */ 0x3e, 0xe0, 0x75, 0xfa, 0x39, 0x92, 0x0b, 0x7b, 0x83, 0xc0, 0x33, 0x46, 0x68, 0xfb, 0xe9, 0xef, 0x93, 0x77, 0x1a, 0x39, 0xbe, 0x5f, 0xa3, 0x98, 0x34, 0xfe, 0xd0, 0xe2, 0x0f, 0x51, 0x65, 0x60,
/* (2^242)P */ 0x0c, 0xad, 0xab, 0x48, 0x85, 0x66, 0xcb, 0x55, 0x27, 0xe5, 0x87, 0xda, 0x48, 0x45, 0x58, 0xb4, 0xdd, 0xc1, 0x07, 0x01, 0xea, 0xec, 0x43, 0x2c, 0x35, 0xde, 0x72, 0x93, 0x80, 0x28, 0x60, 0x52,
/* (2^243)P */ 0x1f, 0x3b, 0x21, 0xf9, 0x6a, 0xc5, 0x15, 0x34, 0xdb, 0x98, 0x7e, 0x01, 0x4d, 0x1a, 0xee, 0x5b, 0x9b, 0x70, 0xcf, 0xb5, 0x05, 0xb1, 0xf6, 0x13, 0xb6, 0x9a, 0xb2, 0x82, 0x34, 0x0e, 0xf2, 0x5f,
/* (2^244)P */ 0x90, 0x6c, 0x2e, 0xcc, 0x75, 0x9c, 0xa2, 0x0a, 0x06, 0xe2, 0x70, 0x3a, 0xca, 0x73, 0x7d, 0xfc, 0x15, 0xc5, 0xb5, 0xc4, 0x8f, 0xc3, 0x9f, 0x89, 0x07, 0xc2, 0xff, 0x24, 0xb1, 0x86, 0x03, 0x25,
/* (2^245)P */ 0x56, 0x2b, 0x3d, 0xae, 0xd5, 0x28, 0xea, 0x54, 0xce, 0x60, 0xde, 0xd6, 0x9d, 0x14, 0x13, 0x99, 0xc1, 0xd6, 0x06, 0x8f, 0xc5, 0x4f, 0x69, 0x16, 0xc7, 0x8f, 0x01, 0xeb, 0x75, 0x39, 0xb2, 0x46,
/* (2^246)P */ 0xe2, 0xb4, 0xb7, 0xb4, 0x0f, 0x6a, 0x0a, 0x47, 0xde, 0x53, 0x72, 0x8f, 0x5a, 0x47, 0x92, 0x5d, 0xdb, 0x3a, 0xbd, 0x2f, 0xb5, 0xe5, 0xee, 0xab, 0x68, 0x69, 0x80, 0xa0, 0x01, 0x08, 0xa2, 0x7f,
/* (2^247)P */ 0xd2, 0x14, 0x77, 0x9f, 0xf1, 0xfa, 0xf3, 0x76, 0xc3, 0x60, 0x46, 0x2f, 0xc1, 0x40, 0xe8, 0xb3, 0x4e, 0x74, 0x12, 0xf2, 0x8d, 0xcd, 0xb4, 0x0f, 0xd2, 0x2d, 0x3a, 0x1d, 0x25, 0x5a, 0x06, 0x4b,
/* (2^248)P */ 0x4a, 0xcd, 0x77, 0x3d, 0x38, 0xde, 0xeb, 0x5c, 0xb1, 0x9c, 0x2c, 0x88, 0xdf, 0x39, 0xdf, 0x6a, 0x59, 0xf7, 0x9a, 0xb0, 0x2e, 0x24, 0xdd, 0xa2, 0x22, 0x64, 0x5f, 0x0e, 0xe5, 0xc0, 0x47, 0x31,
/* (2^249)P */ 0xdb, 0x50, 0x13, 0x1d, 0x10, 0xa5, 0x4c, 0x16, 0x62, 0xc9, 0x3f, 0xc3, 0x79, 0x34, 0xd1, 0xf8, 0x08, 0xda, 0xe5, 0x13, 0x4d, 0xce, 0x40, 0xe6, 0xba, 0xf8, 0x61, 0x50, 0xc4, 0xe0, 0xde, 0x4b,
/* (2^250)P */ 0xc9, 0xb1, 0xed, 0xa4, 0xc1, 0x6d, 0xc4, 0xd7, 0x8a, 0xd9, 0x7f, 0x43, 0xb6, 0xd7, 0x14, 0x55, 0x0b, 0xc0, 0xa1, 0xb2, 0x6b, 0x2f, 0x94, 0x58, 0x0e, 0x71, 0x70, 0x1d, 0xab, 0xb2, 0xff, 0x2d,
/* (2^251)P */ 0x68, 0x6d, 0x8b, 0xc1, 0x2f, 0xcf, 0xdf, 0xcc, 0x67, 0x61, 0x80, 0xb7, 0xa8, 0xcb, 0xeb, 0xa8, 0xe3, 0x37, 0x29, 0x5e, 0xf9, 0x97, 0x06, 0x98, 0x8c, 0x6e, 0x12, 0xd0, 0x1c, 0xba, 0xfb, 0x02,
/* (2^252)P */ 0x65, 0x45, 0xff, 0xad, 0x60, 0xc3, 0x98, 0xcb, 0x19, 0x15, 0xdb, 0x4b, 0xd2, 0x01, 0x71, 0x44, 0xd5, 0x15, 0xfb, 0x75, 0x74, 0xc8, 0xc4, 0x98, 0x7d, 0xa2, 0x22, 0x6e, 0x6d, 0xc7, 0xf8, 0x05,
/* (2^253)P */ 0x94, 0xf4, 0xb9, 0xfe, 0xdf, 0xe5, 0x69, 0xab, 0x75, 0x6b, 0x40, 0x18, 0x9d, 0xc7, 0x09, 0xae, 0x1d, 0x2d, 0xa4, 0x94, 0xfb, 0x45, 0x9b, 0x19, 0x84, 0xfa, 0x2a, 0xae, 0xeb, 0x0a, 0x71, 0x79,
/* (2^254)P */ 0xdf, 0xd2, 0x34, 0xf3, 0xa7, 0xed, 0xad, 0xa6, 0xb4, 0x57, 0x2a, 0xaf, 0x51, 0x9c, 0xde, 0x7b, 0xa8, 0xea, 0xdc, 0x86, 0x4f, 0xc6, 0x8f, 0xa9, 0x7b, 0xd0, 0x0e, 0xc2, 0x35, 0x03, 0xbe, 0x6b,
/* (2^255)P */ 0x44, 0x43, 0x98, 0x53, 0xbe, 0xdc, 0x7f, 0x66, 0xa8, 0x49, 0x59, 0x00, 0x1c, 0xbc, 0x72, 0x07, 0x8e, 0xd6, 0xbe, 0x4e, 0x9f, 0xa4, 0x07, 0xba, 0xbf, 0x30, 0xdf, 0xba, 0x85, 0xb0, 0xa7, 0x1f,
}

104
vendor/github.com/cloudflare/circl/dh/x448/curve.go generated vendored Normal file
View File

@ -0,0 +1,104 @@
package x448
import (
fp "github.com/cloudflare/circl/math/fp448"
)
// ladderJoye calculates a fixed-point multiplication with the generator point.
// The algorithm is the right-to-left Joye's ladder as described
// in "How to precompute a ladder" in SAC'2017.
func ladderJoye(k *Key) {
w := [5]fp.Elt{} // [mu,x1,z1,x2,z2] order must be preserved.
w[1] = fp.Elt{ // x1 = S
0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
}
fp.SetOne(&w[2]) // z1 = 1
w[3] = fp.Elt{ // x2 = G-S
0x20, 0x27, 0x9d, 0xc9, 0x7d, 0x19, 0xb1, 0xac,
0xf8, 0xba, 0x69, 0x1c, 0xff, 0x33, 0xac, 0x23,
0x51, 0x1b, 0xce, 0x3a, 0x64, 0x65, 0xbd, 0xf1,
0x23, 0xf8, 0xc1, 0x84, 0x9d, 0x45, 0x54, 0x29,
0x67, 0xb9, 0x81, 0x1c, 0x03, 0xd1, 0xcd, 0xda,
0x7b, 0xeb, 0xff, 0x1a, 0x88, 0x03, 0xcf, 0x3a,
0x42, 0x44, 0x32, 0x01, 0x25, 0xb7, 0xfa, 0xf0,
}
fp.SetOne(&w[4]) // z2 = 1
const n = 448
const h = 2
swap := uint(1)
for s := 0; s < n-h; s++ {
i := (s + h) / 8
j := (s + h) % 8
bit := uint((k[i] >> uint(j)) & 1)
copy(w[0][:], tableGenerator[s*Size:(s+1)*Size])
diffAdd(&w, swap^bit)
swap = bit
}
for s := 0; s < h; s++ {
double(&w[1], &w[2])
}
toAffine((*[fp.Size]byte)(k), &w[1], &w[2])
}
// ladderMontgomery calculates a generic scalar point multiplication
// The algorithm implemented is the left-to-right Montgomery's ladder.
func ladderMontgomery(k, xP *Key) {
w := [5]fp.Elt{} // [x1, x2, z2, x3, z3] order must be preserved.
w[0] = *(*fp.Elt)(xP) // x1 = xP
fp.SetOne(&w[1]) // x2 = 1
w[3] = *(*fp.Elt)(xP) // x3 = xP
fp.SetOne(&w[4]) // z3 = 1
move := uint(0)
for s := 448 - 1; s >= 0; s-- {
i := s / 8
j := s % 8
bit := uint((k[i] >> uint(j)) & 1)
ladderStep(&w, move^bit)
move = bit
}
toAffine((*[fp.Size]byte)(k), &w[1], &w[2])
}
func toAffine(k *[fp.Size]byte, x, z *fp.Elt) {
fp.Inv(z, z)
fp.Mul(x, x, z)
_ = fp.ToBytes(k[:], x)
}
var lowOrderPoints = [3]fp.Elt{
{ /* (0,_,1) point of order 2 on Curve448 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
},
{ /* (1,_,1) a point of order 4 on the twist of Curve448 */
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
},
{ /* (-1,_,1) point of order 4 on Curve448 */
0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
},
}

View File

@ -0,0 +1,30 @@
//go:build amd64 && !purego
// +build amd64,!purego
package x448
import (
fp "github.com/cloudflare/circl/math/fp448"
"golang.org/x/sys/cpu"
)
var hasBmi2Adx = cpu.X86.HasBMI2 && cpu.X86.HasADX
var _ = hasBmi2Adx
func double(x, z *fp.Elt) { doubleAmd64(x, z) }
func diffAdd(w *[5]fp.Elt, b uint) { diffAddAmd64(w, b) }
func ladderStep(w *[5]fp.Elt, b uint) { ladderStepAmd64(w, b) }
func mulA24(z, x *fp.Elt) { mulA24Amd64(z, x) }
//go:noescape
func doubleAmd64(x, z *fp.Elt)
//go:noescape
func diffAddAmd64(w *[5]fp.Elt, b uint)
//go:noescape
func ladderStepAmd64(w *[5]fp.Elt, b uint)
//go:noescape
func mulA24Amd64(z, x *fp.Elt)

View File

@ -0,0 +1,111 @@
#define ladderStepLeg \
addSub(x2,z2) \
addSub(x3,z3) \
integerMulLeg(b0,x2,z3) \
integerMulLeg(b1,x3,z2) \
reduceFromDoubleLeg(t0,b0) \
reduceFromDoubleLeg(t1,b1) \
addSub(t0,t1) \
cselect(x2,x3,regMove) \
cselect(z2,z3,regMove) \
integerSqrLeg(b0,t0) \
integerSqrLeg(b1,t1) \
reduceFromDoubleLeg(x3,b0) \
reduceFromDoubleLeg(z3,b1) \
integerMulLeg(b0,x1,z3) \
reduceFromDoubleLeg(z3,b0) \
integerSqrLeg(b0,x2) \
integerSqrLeg(b1,z2) \
reduceFromDoubleLeg(x2,b0) \
reduceFromDoubleLeg(z2,b1) \
subtraction(t0,x2,z2) \
multiplyA24Leg(t1,t0) \
additionLeg(t1,t1,z2) \
integerMulLeg(b0,x2,z2) \
integerMulLeg(b1,t0,t1) \
reduceFromDoubleLeg(x2,b0) \
reduceFromDoubleLeg(z2,b1)
#define ladderStepBmi2Adx \
addSub(x2,z2) \
addSub(x3,z3) \
integerMulAdx(b0,x2,z3) \
integerMulAdx(b1,x3,z2) \
reduceFromDoubleAdx(t0,b0) \
reduceFromDoubleAdx(t1,b1) \
addSub(t0,t1) \
cselect(x2,x3,regMove) \
cselect(z2,z3,regMove) \
integerSqrAdx(b0,t0) \
integerSqrAdx(b1,t1) \
reduceFromDoubleAdx(x3,b0) \
reduceFromDoubleAdx(z3,b1) \
integerMulAdx(b0,x1,z3) \
reduceFromDoubleAdx(z3,b0) \
integerSqrAdx(b0,x2) \
integerSqrAdx(b1,z2) \
reduceFromDoubleAdx(x2,b0) \
reduceFromDoubleAdx(z2,b1) \
subtraction(t0,x2,z2) \
multiplyA24Adx(t1,t0) \
additionAdx(t1,t1,z2) \
integerMulAdx(b0,x2,z2) \
integerMulAdx(b1,t0,t1) \
reduceFromDoubleAdx(x2,b0) \
reduceFromDoubleAdx(z2,b1)
#define difAddLeg \
addSub(x1,z1) \
integerMulLeg(b0,z1,ui) \
reduceFromDoubleLeg(z1,b0) \
addSub(x1,z1) \
integerSqrLeg(b0,x1) \
integerSqrLeg(b1,z1) \
reduceFromDoubleLeg(x1,b0) \
reduceFromDoubleLeg(z1,b1) \
integerMulLeg(b0,x1,z2) \
integerMulLeg(b1,z1,x2) \
reduceFromDoubleLeg(x1,b0) \
reduceFromDoubleLeg(z1,b1)
#define difAddBmi2Adx \
addSub(x1,z1) \
integerMulAdx(b0,z1,ui) \
reduceFromDoubleAdx(z1,b0) \
addSub(x1,z1) \
integerSqrAdx(b0,x1) \
integerSqrAdx(b1,z1) \
reduceFromDoubleAdx(x1,b0) \
reduceFromDoubleAdx(z1,b1) \
integerMulAdx(b0,x1,z2) \
integerMulAdx(b1,z1,x2) \
reduceFromDoubleAdx(x1,b0) \
reduceFromDoubleAdx(z1,b1)
#define doubleLeg \
addSub(x1,z1) \
integerSqrLeg(b0,x1) \
integerSqrLeg(b1,z1) \
reduceFromDoubleLeg(x1,b0) \
reduceFromDoubleLeg(z1,b1) \
subtraction(t0,x1,z1) \
multiplyA24Leg(t1,t0) \
additionLeg(t1,t1,z1) \
integerMulLeg(b0,x1,z1) \
integerMulLeg(b1,t0,t1) \
reduceFromDoubleLeg(x1,b0) \
reduceFromDoubleLeg(z1,b1)
#define doubleBmi2Adx \
addSub(x1,z1) \
integerSqrAdx(b0,x1) \
integerSqrAdx(b1,z1) \
reduceFromDoubleAdx(x1,b0) \
reduceFromDoubleAdx(z1,b1) \
subtraction(t0,x1,z1) \
multiplyA24Adx(t1,t0) \
additionAdx(t1,t1,z1) \
integerMulAdx(b0,x1,z1) \
integerMulAdx(b1,t0,t1) \
reduceFromDoubleAdx(x1,b0) \
reduceFromDoubleAdx(z1,b1)

View File

@ -0,0 +1,193 @@
// +build amd64
#include "textflag.h"
// Depends on circl/math/fp448 package
#include "../../math/fp448/fp_amd64.h"
#include "curve_amd64.h"
// CTE_A24 is (A+2)/4 from Curve448
#define CTE_A24 39082
#define Size 56
// multiplyA24Leg multiplies x times CTE_A24 and stores in z
// Uses: AX, DX, R8-R15, FLAGS
// Instr: x86_64, cmov, adx
#define multiplyA24Leg(z,x) \
MOVQ $CTE_A24, R15; \
MOVQ 0+x, AX; MULQ R15; MOVQ AX, R8; ;;;;;;;;;;;; MOVQ DX, R9; \
MOVQ 8+x, AX; MULQ R15; ADDQ AX, R9; ADCQ $0, DX; MOVQ DX, R10; \
MOVQ 16+x, AX; MULQ R15; ADDQ AX, R10; ADCQ $0, DX; MOVQ DX, R11; \
MOVQ 24+x, AX; MULQ R15; ADDQ AX, R11; ADCQ $0, DX; MOVQ DX, R12; \
MOVQ 32+x, AX; MULQ R15; ADDQ AX, R12; ADCQ $0, DX; MOVQ DX, R13; \
MOVQ 40+x, AX; MULQ R15; ADDQ AX, R13; ADCQ $0, DX; MOVQ DX, R14; \
MOVQ 48+x, AX; MULQ R15; ADDQ AX, R14; ADCQ $0, DX; \
MOVQ DX, AX; \
SHLQ $32, AX; \
ADDQ DX, R8; MOVQ $0, DX; \
ADCQ $0, R9; \
ADCQ $0, R10; \
ADCQ AX, R11; \
ADCQ $0, R12; \
ADCQ $0, R13; \
ADCQ $0, R14; \
ADCQ $0, DX; \
MOVQ DX, AX; \
SHLQ $32, AX; \
ADDQ DX, R8; \
ADCQ $0, R9; \
ADCQ $0, R10; \
ADCQ AX, R11; \
ADCQ $0, R12; \
ADCQ $0, R13; \
ADCQ $0, R14; \
MOVQ R8, 0+z; \
MOVQ R9, 8+z; \
MOVQ R10, 16+z; \
MOVQ R11, 24+z; \
MOVQ R12, 32+z; \
MOVQ R13, 40+z; \
MOVQ R14, 48+z;
// multiplyA24Adx multiplies x times CTE_A24 and stores in z
// Uses: AX, DX, R8-R14, FLAGS
// Instr: x86_64, bmi2
#define multiplyA24Adx(z,x) \
MOVQ $CTE_A24, DX; \
MULXQ 0+x, R8, R9; \
MULXQ 8+x, AX, R10; ADDQ AX, R9; \
MULXQ 16+x, AX, R11; ADCQ AX, R10; \
MULXQ 24+x, AX, R12; ADCQ AX, R11; \
MULXQ 32+x, AX, R13; ADCQ AX, R12; \
MULXQ 40+x, AX, R14; ADCQ AX, R13; \
MULXQ 48+x, AX, DX; ADCQ AX, R14; \
;;;;;;;;;;;;;;;;;;;; ADCQ $0, DX; \
MOVQ DX, AX; \
SHLQ $32, AX; \
ADDQ DX, R8; MOVQ $0, DX; \
ADCQ $0, R9; \
ADCQ $0, R10; \
ADCQ AX, R11; \
ADCQ $0, R12; \
ADCQ $0, R13; \
ADCQ $0, R14; \
ADCQ $0, DX; \
MOVQ DX, AX; \
SHLQ $32, AX; \
ADDQ DX, R8; \
ADCQ $0, R9; \
ADCQ $0, R10; \
ADCQ AX, R11; \
ADCQ $0, R12; \
ADCQ $0, R13; \
ADCQ $0, R14; \
MOVQ R8, 0+z; \
MOVQ R9, 8+z; \
MOVQ R10, 16+z; \
MOVQ R11, 24+z; \
MOVQ R12, 32+z; \
MOVQ R13, 40+z; \
MOVQ R14, 48+z;
#define mulA24Legacy \
multiplyA24Leg(0(DI),0(SI))
#define mulA24Bmi2Adx \
multiplyA24Adx(0(DI),0(SI))
// func mulA24Amd64(z, x *fp448.Elt)
TEXT ·mulA24Amd64(SB),NOSPLIT,$0-16
MOVQ z+0(FP), DI
MOVQ x+8(FP), SI
CHECK_BMI2ADX(LMA24, mulA24Legacy, mulA24Bmi2Adx)
// func ladderStepAmd64(w *[5]fp448.Elt, b uint)
// ladderStepAmd64 calculates a point addition and doubling as follows:
// (x2,z2) = 2*(x2,z2) and (x3,z3) = (x2,z2)+(x3,z3) using as a difference (x1,-).
// w = {x1,x2,z2,x3,z4} are five fp255.Elt of 56 bytes.
// stack = (t0,t1) are two fp.Elt of fp.Size bytes, and
// (b0,b1) are two-double precision fp.Elt of 2*fp.Size bytes.
TEXT ·ladderStepAmd64(SB),NOSPLIT,$336-16
// Parameters
#define regWork DI
#define regMove SI
#define x1 0*Size(regWork)
#define x2 1*Size(regWork)
#define z2 2*Size(regWork)
#define x3 3*Size(regWork)
#define z3 4*Size(regWork)
// Local variables
#define t0 0*Size(SP)
#define t1 1*Size(SP)
#define b0 2*Size(SP)
#define b1 4*Size(SP)
MOVQ w+0(FP), regWork
MOVQ b+8(FP), regMove
CHECK_BMI2ADX(LLADSTEP, ladderStepLeg, ladderStepBmi2Adx)
#undef regWork
#undef regMove
#undef x1
#undef x2
#undef z2
#undef x3
#undef z3
#undef t0
#undef t1
#undef b0
#undef b1
// func diffAddAmd64(work *[5]fp.Elt, swap uint)
// diffAddAmd64 calculates a differential point addition using a precomputed point.
// (x1,z1) = (x1,z1)+(mu) using a difference point (x2,z2)
// work = {mu,x1,z1,x2,z2} are five fp448.Elt of 56 bytes, and
// stack = (b0,b1) are two-double precision fp.Elt of 2*fp.Size bytes.
// This is Equation 7 at https://eprint.iacr.org/2017/264.
TEXT ·diffAddAmd64(SB),NOSPLIT,$224-16
// Parameters
#define regWork DI
#define regSwap SI
#define ui 0*Size(regWork)
#define x1 1*Size(regWork)
#define z1 2*Size(regWork)
#define x2 3*Size(regWork)
#define z2 4*Size(regWork)
// Local variables
#define b0 0*Size(SP)
#define b1 2*Size(SP)
MOVQ w+0(FP), regWork
MOVQ b+8(FP), regSwap
cswap(x1,x2,regSwap)
cswap(z1,z2,regSwap)
CHECK_BMI2ADX(LDIFADD, difAddLeg, difAddBmi2Adx)
#undef regWork
#undef regSwap
#undef ui
#undef x1
#undef z1
#undef x2
#undef z2
#undef b0
#undef b1
// func doubleAmd64(x, z *fp448.Elt)
// doubleAmd64 calculates a point doubling (x1,z1) = 2*(x1,z1).
// stack = (t0,t1) are two fp.Elt of fp.Size bytes, and
// (b0,b1) are two-double precision fp.Elt of 2*fp.Size bytes.
TEXT ·doubleAmd64(SB),NOSPLIT,$336-16
// Parameters
#define x1 0(DI)
#define z1 0(SI)
// Local variables
#define t0 0*Size(SP)
#define t1 1*Size(SP)
#define b0 2*Size(SP)
#define b1 4*Size(SP)
MOVQ x+0(FP), DI
MOVQ z+8(FP), SI
CHECK_BMI2ADX(LDOUB,doubleLeg,doubleBmi2Adx)
#undef x1
#undef z1
#undef t0
#undef t1
#undef b0
#undef b1

View File

@ -0,0 +1,100 @@
package x448
import (
"encoding/binary"
"math/bits"
"github.com/cloudflare/circl/math/fp448"
)
func doubleGeneric(x, z *fp448.Elt) {
t0, t1 := &fp448.Elt{}, &fp448.Elt{}
fp448.AddSub(x, z)
fp448.Sqr(x, x)
fp448.Sqr(z, z)
fp448.Sub(t0, x, z)
mulA24Generic(t1, t0)
fp448.Add(t1, t1, z)
fp448.Mul(x, x, z)
fp448.Mul(z, t0, t1)
}
func diffAddGeneric(w *[5]fp448.Elt, b uint) {
mu, x1, z1, x2, z2 := &w[0], &w[1], &w[2], &w[3], &w[4]
fp448.Cswap(x1, x2, b)
fp448.Cswap(z1, z2, b)
fp448.AddSub(x1, z1)
fp448.Mul(z1, z1, mu)
fp448.AddSub(x1, z1)
fp448.Sqr(x1, x1)
fp448.Sqr(z1, z1)
fp448.Mul(x1, x1, z2)
fp448.Mul(z1, z1, x2)
}
func ladderStepGeneric(w *[5]fp448.Elt, b uint) {
x1, x2, z2, x3, z3 := &w[0], &w[1], &w[2], &w[3], &w[4]
t0 := &fp448.Elt{}
t1 := &fp448.Elt{}
fp448.AddSub(x2, z2)
fp448.AddSub(x3, z3)
fp448.Mul(t0, x2, z3)
fp448.Mul(t1, x3, z2)
fp448.AddSub(t0, t1)
fp448.Cmov(x2, x3, b)
fp448.Cmov(z2, z3, b)
fp448.Sqr(x3, t0)
fp448.Sqr(z3, t1)
fp448.Mul(z3, x1, z3)
fp448.Sqr(x2, x2)
fp448.Sqr(z2, z2)
fp448.Sub(t0, x2, z2)
mulA24Generic(t1, t0)
fp448.Add(t1, t1, z2)
fp448.Mul(x2, x2, z2)
fp448.Mul(z2, t0, t1)
}
func mulA24Generic(z, x *fp448.Elt) {
const A24 = 39082
const n = 8
var xx [7]uint64
for i := range xx {
xx[i] = binary.LittleEndian.Uint64(x[i*n : (i+1)*n])
}
h0, l0 := bits.Mul64(xx[0], A24)
h1, l1 := bits.Mul64(xx[1], A24)
h2, l2 := bits.Mul64(xx[2], A24)
h3, l3 := bits.Mul64(xx[3], A24)
h4, l4 := bits.Mul64(xx[4], A24)
h5, l5 := bits.Mul64(xx[5], A24)
h6, l6 := bits.Mul64(xx[6], A24)
l1, c0 := bits.Add64(h0, l1, 0)
l2, c1 := bits.Add64(h1, l2, c0)
l3, c2 := bits.Add64(h2, l3, c1)
l4, c3 := bits.Add64(h3, l4, c2)
l5, c4 := bits.Add64(h4, l5, c3)
l6, c5 := bits.Add64(h5, l6, c4)
l7, _ := bits.Add64(h6, 0, c5)
l0, c0 = bits.Add64(l0, l7, 0)
l1, c1 = bits.Add64(l1, 0, c0)
l2, c2 = bits.Add64(l2, 0, c1)
l3, c3 = bits.Add64(l3, l7<<32, c2)
l4, c4 = bits.Add64(l4, 0, c3)
l5, c5 = bits.Add64(l5, 0, c4)
l6, l7 = bits.Add64(l6, 0, c5)
xx[0], c0 = bits.Add64(l0, l7, 0)
xx[1], c1 = bits.Add64(l1, 0, c0)
xx[2], c2 = bits.Add64(l2, 0, c1)
xx[3], c3 = bits.Add64(l3, l7<<32, c2)
xx[4], c4 = bits.Add64(l4, 0, c3)
xx[5], c5 = bits.Add64(l5, 0, c4)
xx[6], _ = bits.Add64(l6, 0, c5)
for i := range xx {
binary.LittleEndian.PutUint64(z[i*n:(i+1)*n], xx[i])
}
}

View File

@ -0,0 +1,11 @@
//go:build !amd64 || purego
// +build !amd64 purego
package x448
import fp "github.com/cloudflare/circl/math/fp448"
func double(x, z *fp.Elt) { doubleGeneric(x, z) }
func diffAdd(w *[5]fp.Elt, b uint) { diffAddGeneric(w, b) }
func ladderStep(w *[5]fp.Elt, b uint) { ladderStepGeneric(w, b) }
func mulA24(z, x *fp.Elt) { mulA24Generic(z, x) }

19
vendor/github.com/cloudflare/circl/dh/x448/doc.go generated vendored Normal file
View File

@ -0,0 +1,19 @@
/*
Package x448 provides Diffie-Hellman functions as specified in RFC-7748.
Validation of public keys.
The Diffie-Hellman function, as described in RFC-7748 [1], works for any
public key. However, if a different protocol requires contributory
behaviour [2,3], then the public keys must be validated against low-order
points [3,4]. To do that, the Shared function performs this validation
internally and returns false when the public key is invalid (i.e., it
is a low-order point).
References:
- [1] RFC7748 by Langley, Hamburg, Turner (https://rfc-editor.org/rfc/rfc7748.txt)
- [2] Curve25519 by Bernstein (https://cr.yp.to/ecdh.html)
- [3] Bernstein (https://cr.yp.to/ecdh.html#validate)
- [4] Cremers&Jackson (https://eprint.iacr.org/2019/526)
*/
package x448

46
vendor/github.com/cloudflare/circl/dh/x448/key.go generated vendored Normal file
View File

@ -0,0 +1,46 @@
package x448
import (
"crypto/subtle"
fp "github.com/cloudflare/circl/math/fp448"
)
// Size is the length in bytes of a X448 key.
const Size = 56
// Key represents a X448 key.
type Key [Size]byte
func (k *Key) clamp(in *Key) *Key {
*k = *in
k[0] &= 252
k[55] |= 128
return k
}
// isValidPubKey verifies if the public key is not a low-order point.
func (k *Key) isValidPubKey() bool {
fp.Modp((*fp.Elt)(k))
var isLowOrder int
for _, P := range lowOrderPoints {
isLowOrder |= subtle.ConstantTimeCompare(P[:], k[:])
}
return isLowOrder == 0
}
// KeyGen obtains a public key given a secret key.
func KeyGen(public, secret *Key) {
ladderJoye(public.clamp(secret))
}
// Shared calculates Alice's shared key from Alice's secret key and Bob's
// public key returning true on success. A failure case happens when the public
// key is a low-order point, thus the shared key is all-zeros and the function
// returns false.
func Shared(shared, secret, public *Key) bool {
validPk := *public
ok := validPk.isValidPubKey()
ladderMontgomery(shared.clamp(secret), &validPk)
return ok
}

460
vendor/github.com/cloudflare/circl/dh/x448/table.go generated vendored Normal file
View File

@ -0,0 +1,460 @@
package x448
import fp "github.com/cloudflare/circl/math/fp448"
// tableGenerator contains the set of points:
//
// t[i] = (xi+1)/(xi-1),
//
// where (xi,yi) = 2^iG and G is the generator point
// Size = (448)*(448/8) = 25088 bytes.
var tableGenerator = [448 * fp.Size]byte{
/* (2^ 0)P */ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f,
/* (2^ 1)P */ 0x37, 0xfa, 0xaa, 0x0d, 0x86, 0xa6, 0x24, 0xe9, 0x6c, 0x95, 0x08, 0x34, 0xba, 0x1a, 0x81, 0x3a, 0xae, 0x01, 0xa5, 0xa7, 0x05, 0x85, 0x96, 0x00, 0x06, 0x5a, 0xd7, 0xff, 0xee, 0x8e, 0x8f, 0x94, 0xd2, 0xdc, 0xd7, 0xfc, 0xe7, 0xe5, 0x99, 0x1d, 0x05, 0x46, 0x43, 0xe8, 0xbc, 0x12, 0xb7, 0xeb, 0x30, 0x5e, 0x7a, 0x85, 0x68, 0xed, 0x9d, 0x28,
/* (2^ 2)P */ 0xf1, 0x7d, 0x08, 0x2b, 0x32, 0x4a, 0x62, 0x80, 0x36, 0xe7, 0xa4, 0x76, 0x5a, 0x2a, 0x1e, 0xf7, 0x9e, 0x3c, 0x40, 0x46, 0x9a, 0x1b, 0x61, 0xc1, 0xbf, 0x1a, 0x1b, 0xae, 0x91, 0x80, 0xa3, 0x76, 0x6c, 0xd4, 0x8f, 0xa4, 0xee, 0x26, 0x39, 0x23, 0xa4, 0x80, 0xf4, 0x66, 0x92, 0xe4, 0xe1, 0x18, 0x76, 0xc5, 0xe2, 0x19, 0x87, 0xd5, 0xc3, 0xe8,
/* (2^ 3)P */ 0xfb, 0xc9, 0xf0, 0x07, 0xf2, 0x93, 0xd8, 0x50, 0x36, 0xed, 0xfb, 0xbd, 0xb2, 0xd3, 0xfc, 0xdf, 0xd5, 0x2a, 0x6e, 0x26, 0x09, 0xce, 0xd4, 0x07, 0x64, 0x9f, 0x40, 0x74, 0xad, 0x98, 0x2f, 0x1c, 0xb6, 0xdc, 0x2d, 0x42, 0xff, 0xbf, 0x97, 0xd8, 0xdb, 0xef, 0x99, 0xca, 0x73, 0x99, 0x1a, 0x04, 0x3b, 0x56, 0x2c, 0x1f, 0x87, 0x9d, 0x9f, 0x03,
/* (2^ 4)P */ 0x4c, 0x35, 0x97, 0xf7, 0x81, 0x2c, 0x84, 0xa6, 0xe0, 0xcb, 0xce, 0x37, 0x4c, 0x21, 0x1c, 0x67, 0xfa, 0xab, 0x18, 0x4d, 0xef, 0xd0, 0xf0, 0x44, 0xa9, 0xfb, 0xc0, 0x8e, 0xda, 0x57, 0xa1, 0xd8, 0xeb, 0x87, 0xf4, 0x17, 0xea, 0x66, 0x0f, 0x16, 0xea, 0xcd, 0x5f, 0x3e, 0x88, 0xea, 0x09, 0x68, 0x40, 0xdf, 0x43, 0xcc, 0x54, 0x61, 0x58, 0xaa,
/* (2^ 5)P */ 0x8d, 0xe7, 0x59, 0xd7, 0x5e, 0x63, 0x37, 0xa7, 0x3f, 0xd1, 0x49, 0x85, 0x01, 0xdd, 0x5e, 0xb3, 0xe6, 0x29, 0xcb, 0x25, 0x93, 0xdd, 0x08, 0x96, 0x83, 0x52, 0x76, 0x85, 0xf5, 0x5d, 0x02, 0xbf, 0xe9, 0x6d, 0x15, 0x27, 0xc1, 0x09, 0xd1, 0x14, 0x4d, 0x6e, 0xe8, 0xaf, 0x59, 0x58, 0x34, 0x9d, 0x2a, 0x99, 0x85, 0x26, 0xbe, 0x4b, 0x1e, 0xb9,
/* (2^ 6)P */ 0x8d, 0xce, 0x94, 0xe2, 0x18, 0x56, 0x0d, 0x82, 0x8e, 0xdf, 0x85, 0x01, 0x8f, 0x93, 0x3c, 0xc6, 0xbd, 0x61, 0xfb, 0xf4, 0x22, 0xc5, 0x16, 0x87, 0xd1, 0xb1, 0x9e, 0x09, 0xc5, 0x83, 0x2e, 0x4a, 0x07, 0x88, 0xee, 0xe0, 0x29, 0x8d, 0x2e, 0x1f, 0x88, 0xad, 0xfd, 0x18, 0x93, 0xb7, 0xed, 0x42, 0x86, 0x78, 0xf0, 0xb8, 0x70, 0xbe, 0x01, 0x67,
/* (2^ 7)P */ 0xdf, 0x62, 0x2d, 0x94, 0xc7, 0x35, 0x23, 0xda, 0x27, 0xbb, 0x2b, 0xdb, 0x30, 0x80, 0x68, 0x16, 0xa3, 0xae, 0xd7, 0xd2, 0xa7, 0x7c, 0xbf, 0x6a, 0x1d, 0x83, 0xde, 0x96, 0x0a, 0x43, 0xb6, 0x30, 0x37, 0xd6, 0xee, 0x63, 0x59, 0x9a, 0xbf, 0xa3, 0x30, 0x6c, 0xaf, 0x0c, 0xee, 0x3d, 0xcb, 0x35, 0x4b, 0x55, 0x5f, 0x84, 0x85, 0xcb, 0x4f, 0x1e,
/* (2^ 8)P */ 0x9d, 0x04, 0x68, 0x89, 0xa4, 0xa9, 0x0d, 0x87, 0xc1, 0x70, 0xf1, 0xeb, 0xfb, 0x47, 0x0a, 0xf0, 0xde, 0x67, 0xb7, 0x94, 0xcd, 0x36, 0x43, 0xa5, 0x49, 0x43, 0x67, 0xc3, 0xee, 0x3c, 0x6b, 0xec, 0xd0, 0x1a, 0xf4, 0xad, 0xef, 0x06, 0x4a, 0xe8, 0x46, 0x24, 0xd7, 0x93, 0xbf, 0xf0, 0xe3, 0x81, 0x61, 0xec, 0xea, 0x64, 0xfe, 0x67, 0xeb, 0xc7,
/* (2^ 9)P */ 0x95, 0x45, 0x79, 0xcf, 0x2c, 0xfd, 0x9b, 0xfe, 0x84, 0x46, 0x4b, 0x8f, 0xa1, 0xcf, 0xc3, 0x04, 0x94, 0x78, 0xdb, 0xc9, 0xa6, 0x01, 0x75, 0xa4, 0xb4, 0x93, 0x72, 0x43, 0xa7, 0x7d, 0xda, 0x31, 0x38, 0x54, 0xab, 0x4e, 0x3f, 0x89, 0xa6, 0xab, 0x57, 0xc0, 0x16, 0x65, 0xdb, 0x92, 0x96, 0xe4, 0xc8, 0xae, 0xe7, 0x4c, 0x7a, 0xeb, 0xbb, 0x5a,
/* (2^ 10)P */ 0xbe, 0xfe, 0x86, 0xc3, 0x97, 0xe0, 0x6a, 0x18, 0x20, 0x21, 0xca, 0x22, 0x55, 0xa1, 0xeb, 0xf5, 0x74, 0xe5, 0xc9, 0x59, 0xa7, 0x92, 0x65, 0x15, 0x08, 0x71, 0xd1, 0x09, 0x7e, 0x83, 0xfc, 0xbc, 0x5a, 0x93, 0x38, 0x0d, 0x43, 0x42, 0xfd, 0x76, 0x30, 0xe8, 0x63, 0x60, 0x09, 0x8d, 0x6c, 0xd3, 0xf8, 0x56, 0x3d, 0x68, 0x47, 0xab, 0xa0, 0x1d,
/* (2^ 11)P */ 0x38, 0x50, 0x1c, 0xb1, 0xac, 0x88, 0x8f, 0x38, 0xe3, 0x69, 0xe6, 0xfc, 0x4f, 0x8f, 0xe1, 0x9b, 0xb1, 0x1a, 0x09, 0x39, 0x19, 0xdf, 0xcd, 0x98, 0x7b, 0x64, 0x42, 0xf6, 0x11, 0xea, 0xc7, 0xe8, 0x92, 0x65, 0x00, 0x2c, 0x75, 0xb5, 0x94, 0x1e, 0x5b, 0xa6, 0x66, 0x81, 0x77, 0xf3, 0x39, 0x94, 0xac, 0xbd, 0xe4, 0x2a, 0x66, 0x84, 0x9c, 0x60,
/* (2^ 12)P */ 0xb5, 0xb6, 0xd9, 0x03, 0x67, 0xa4, 0xa8, 0x0a, 0x4a, 0x2b, 0x9d, 0xfa, 0x13, 0xe1, 0x99, 0x25, 0x4a, 0x5c, 0x67, 0xb9, 0xb2, 0xb7, 0xdd, 0x1e, 0xaf, 0xeb, 0x63, 0x41, 0xb6, 0xb9, 0xa0, 0x87, 0x0a, 0xe0, 0x06, 0x07, 0xaa, 0x97, 0xf8, 0xf9, 0x38, 0x4f, 0xdf, 0x0c, 0x40, 0x7c, 0xc3, 0x98, 0xa9, 0x74, 0xf1, 0x5d, 0xda, 0xd1, 0xc0, 0x0a,
/* (2^ 13)P */ 0xf2, 0x0a, 0xab, 0xab, 0x94, 0x50, 0xf0, 0xa3, 0x6f, 0xc6, 0x66, 0xba, 0xa6, 0xdc, 0x44, 0xdd, 0xd6, 0x08, 0xf4, 0xd3, 0xed, 0xb1, 0x40, 0x93, 0xee, 0xf6, 0xb8, 0x8e, 0xb4, 0x7c, 0xb9, 0x82, 0xc9, 0x9d, 0x45, 0x3b, 0x8e, 0x10, 0xcb, 0x70, 0x1e, 0xba, 0x3c, 0x62, 0x50, 0xda, 0xa9, 0x93, 0xb5, 0xd7, 0xd0, 0x6f, 0x29, 0x52, 0x95, 0xae,
/* (2^ 14)P */ 0x14, 0x68, 0x69, 0x23, 0xa8, 0x44, 0x87, 0x9e, 0x22, 0x91, 0xe8, 0x92, 0xdf, 0xf7, 0xae, 0xba, 0x1c, 0x96, 0xe1, 0xc3, 0x94, 0xed, 0x6c, 0x95, 0xae, 0x96, 0xa7, 0x15, 0x9f, 0xf1, 0x17, 0x11, 0x92, 0x42, 0xd5, 0xcd, 0x18, 0xe7, 0xa9, 0xb5, 0x2f, 0xcd, 0xde, 0x6c, 0xc9, 0x7d, 0xfc, 0x7e, 0xbd, 0x7f, 0x10, 0x3d, 0x01, 0x00, 0x8d, 0x95,
/* (2^ 15)P */ 0x3b, 0x76, 0x72, 0xae, 0xaf, 0x84, 0xf2, 0xf7, 0xd1, 0x6d, 0x13, 0x9c, 0x47, 0xe1, 0xb7, 0xa3, 0x19, 0x16, 0xee, 0x75, 0x45, 0xf6, 0x1a, 0x7b, 0x78, 0x49, 0x79, 0x05, 0x86, 0xf0, 0x7f, 0x9f, 0xfc, 0xc4, 0xbd, 0x86, 0xf3, 0x41, 0xa7, 0xfe, 0x01, 0xd5, 0x67, 0x16, 0x10, 0x5b, 0xa5, 0x16, 0xf3, 0x7f, 0x60, 0xce, 0xd2, 0x0c, 0x8e, 0x4b,
/* (2^ 16)P */ 0x4a, 0x07, 0x99, 0x4a, 0x0f, 0x74, 0x91, 0x14, 0x68, 0xb9, 0x48, 0xb7, 0x44, 0x77, 0x9b, 0x4a, 0xe0, 0x68, 0x0e, 0x43, 0x4d, 0x98, 0x98, 0xbf, 0xa8, 0x3a, 0xb7, 0x6d, 0x2a, 0x9a, 0x77, 0x5f, 0x62, 0xf5, 0x6b, 0x4a, 0xb7, 0x7d, 0xe5, 0x09, 0x6b, 0xc0, 0x8b, 0x9c, 0x88, 0x37, 0x33, 0xf2, 0x41, 0xac, 0x22, 0x1f, 0xcf, 0x3b, 0x82, 0x34,
/* (2^ 17)P */ 0x00, 0xc3, 0x78, 0x42, 0x32, 0x2e, 0xdc, 0xda, 0xb1, 0x96, 0x21, 0xa4, 0xe4, 0xbb, 0xe9, 0x9d, 0xbb, 0x0f, 0x93, 0xed, 0x26, 0x3d, 0xb5, 0xdb, 0x94, 0x31, 0x37, 0x07, 0xa2, 0xb2, 0xd5, 0x99, 0x0d, 0x93, 0xe1, 0xce, 0x3f, 0x0b, 0x96, 0x82, 0x47, 0xfe, 0x60, 0x6f, 0x8f, 0x61, 0x88, 0xd7, 0x05, 0x95, 0x0b, 0x46, 0x06, 0xb7, 0x32, 0x06,
/* (2^ 18)P */ 0x44, 0xf5, 0x34, 0xdf, 0x2f, 0x9c, 0x5d, 0x9f, 0x53, 0x5c, 0x42, 0x8f, 0xc9, 0xdc, 0xd8, 0x40, 0xa2, 0xe7, 0x6a, 0x4a, 0x05, 0xf7, 0x86, 0x77, 0x2b, 0xae, 0x37, 0xed, 0x48, 0xfb, 0xf7, 0x62, 0x7c, 0x17, 0x59, 0x92, 0x41, 0x61, 0x93, 0x38, 0x30, 0xd1, 0xef, 0x54, 0x54, 0x03, 0x17, 0x57, 0x91, 0x15, 0x11, 0x33, 0xb5, 0xfa, 0xfb, 0x17,
/* (2^ 19)P */ 0x29, 0xbb, 0xd4, 0xb4, 0x9c, 0xf1, 0x72, 0x94, 0xce, 0x6a, 0x29, 0xa8, 0x89, 0x18, 0x19, 0xf7, 0xb7, 0xcc, 0xee, 0x9a, 0x02, 0xe3, 0xc0, 0xb1, 0xe0, 0xee, 0x83, 0x78, 0xb4, 0x9e, 0x07, 0x87, 0xdf, 0xb0, 0x82, 0x26, 0x4e, 0xa4, 0x0c, 0x33, 0xaf, 0x40, 0x59, 0xb6, 0xdd, 0x52, 0x45, 0xf0, 0xb4, 0xf6, 0xe8, 0x4e, 0x4e, 0x79, 0x1a, 0x5d,
/* (2^ 20)P */ 0x27, 0x33, 0x4d, 0x4c, 0x6b, 0x4f, 0x75, 0xb1, 0xbc, 0x1f, 0xab, 0x5b, 0x2b, 0xf0, 0x1c, 0x57, 0x86, 0xdd, 0xfd, 0x60, 0xb0, 0x8c, 0xe7, 0x9a, 0xe5, 0x5c, 0xeb, 0x11, 0x3a, 0xda, 0x22, 0x25, 0x99, 0x06, 0x8d, 0xf4, 0xaf, 0x29, 0x7a, 0xc9, 0xe5, 0xd2, 0x16, 0x9e, 0xd4, 0x63, 0x1d, 0x64, 0xa6, 0x47, 0x96, 0x37, 0x6f, 0x93, 0x2c, 0xcc,
/* (2^ 21)P */ 0xc1, 0x94, 0x74, 0x86, 0x75, 0xf2, 0x91, 0x58, 0x23, 0x85, 0x63, 0x76, 0x54, 0xc7, 0xb4, 0x8c, 0xbc, 0x4e, 0xc4, 0xa7, 0xba, 0xa0, 0x55, 0x26, 0x71, 0xd5, 0x33, 0x72, 0xc9, 0xad, 0x1e, 0xf9, 0x5d, 0x78, 0x70, 0x93, 0x4e, 0x85, 0xfc, 0x39, 0x06, 0x73, 0x76, 0xff, 0xe8, 0x64, 0x69, 0x42, 0x45, 0xb2, 0x69, 0xb5, 0x32, 0xe7, 0x2c, 0xde,
/* (2^ 22)P */ 0xde, 0x16, 0xd8, 0x33, 0x49, 0x32, 0xe9, 0x0e, 0x3a, 0x60, 0xee, 0x2e, 0x24, 0x75, 0xe3, 0x9c, 0x92, 0x07, 0xdb, 0xad, 0x92, 0xf5, 0x11, 0xdf, 0xdb, 0xb0, 0x17, 0x5c, 0xd6, 0x1a, 0x70, 0x00, 0xb7, 0xe2, 0x18, 0xec, 0xdc, 0xc2, 0x02, 0x93, 0xb3, 0xc8, 0x3f, 0x4f, 0x1b, 0x96, 0xe6, 0x33, 0x8c, 0xfb, 0xcc, 0xa5, 0x4e, 0xe8, 0xe7, 0x11,
/* (2^ 23)P */ 0x05, 0x7a, 0x74, 0x52, 0xf8, 0xdf, 0x0d, 0x7c, 0x6a, 0x1a, 0x4e, 0x9a, 0x02, 0x1d, 0xae, 0x77, 0xf8, 0x8e, 0xf9, 0xa2, 0x38, 0x54, 0x50, 0xb2, 0x2c, 0x08, 0x9d, 0x9b, 0x9f, 0xfb, 0x2b, 0x06, 0xde, 0x9d, 0xc2, 0x03, 0x0b, 0x22, 0x2b, 0x10, 0x5b, 0x3a, 0x73, 0x29, 0x8e, 0x3e, 0x37, 0x08, 0x2c, 0x3b, 0xf8, 0x80, 0xc1, 0x66, 0x1e, 0x98,
/* (2^ 24)P */ 0xd8, 0xd6, 0x3e, 0xcd, 0x63, 0x8c, 0x2b, 0x41, 0x81, 0xc0, 0x0c, 0x06, 0x87, 0xd6, 0xe7, 0x92, 0xfe, 0xf1, 0x0c, 0x4a, 0x84, 0x5b, 0xaf, 0x40, 0x53, 0x6f, 0x60, 0xd6, 0x6b, 0x76, 0x4b, 0xc2, 0xad, 0xc9, 0xb6, 0xb6, 0x6a, 0xa2, 0xb3, 0xf5, 0xf5, 0xc2, 0x55, 0x83, 0xb2, 0xd3, 0xe9, 0x41, 0x6c, 0x63, 0x51, 0xb8, 0x81, 0x74, 0xc8, 0x2c,
/* (2^ 25)P */ 0xb2, 0xaf, 0x1c, 0xee, 0x07, 0xb0, 0x58, 0xa8, 0x2c, 0x6a, 0xc9, 0x2d, 0x62, 0x28, 0x75, 0x0c, 0x40, 0xb6, 0x11, 0x33, 0x96, 0x80, 0x28, 0x6d, 0xd5, 0x9e, 0x87, 0x90, 0x01, 0x66, 0x1d, 0x1c, 0xf8, 0xb4, 0x92, 0xac, 0x38, 0x18, 0x05, 0xc2, 0x4c, 0x4b, 0x54, 0x7d, 0x80, 0x46, 0x87, 0x2d, 0x99, 0x8e, 0x70, 0x80, 0x69, 0x71, 0x8b, 0xed,
/* (2^ 26)P */ 0x37, 0xa7, 0x6b, 0x71, 0x36, 0x75, 0x8e, 0xff, 0x0f, 0x42, 0xda, 0x5a, 0x46, 0xa6, 0x97, 0x79, 0x7e, 0x30, 0xb3, 0x8f, 0xc7, 0x3a, 0xa0, 0xcb, 0x1d, 0x9c, 0x78, 0x77, 0x36, 0xc2, 0xe7, 0xf4, 0x2f, 0x29, 0x07, 0xb1, 0x07, 0xfd, 0xed, 0x1b, 0x39, 0x77, 0x06, 0x38, 0x77, 0x0f, 0x50, 0x31, 0x12, 0xbf, 0x92, 0xbf, 0x72, 0x79, 0x54, 0xa9,
/* (2^ 27)P */ 0xbd, 0x4d, 0x46, 0x6b, 0x1a, 0x80, 0x46, 0x2d, 0xed, 0xfd, 0x64, 0x6d, 0x94, 0xbc, 0x4a, 0x6e, 0x0c, 0x12, 0xf6, 0x12, 0xab, 0x54, 0x88, 0xd3, 0x85, 0xac, 0x51, 0xae, 0x6f, 0xca, 0xc4, 0xb7, 0xec, 0x22, 0x54, 0x6d, 0x80, 0xb2, 0x1c, 0x63, 0x33, 0x76, 0x6b, 0x8e, 0x6d, 0x59, 0xcd, 0x73, 0x92, 0x5f, 0xff, 0xad, 0x10, 0x35, 0x70, 0x5f,
/* (2^ 28)P */ 0xb3, 0x84, 0xde, 0xc8, 0x04, 0x43, 0x63, 0xfa, 0x29, 0xd9, 0xf0, 0x69, 0x65, 0x5a, 0x0c, 0xe8, 0x2e, 0x0b, 0xfe, 0xb0, 0x7a, 0x42, 0xb3, 0xc3, 0xfc, 0xe6, 0xb8, 0x92, 0x29, 0xae, 0xed, 0xec, 0xd5, 0xe8, 0x4a, 0xa1, 0xbd, 0x3b, 0xd3, 0xc0, 0x07, 0xab, 0x65, 0x65, 0x35, 0x9a, 0xa6, 0x5e, 0x78, 0x18, 0x76, 0x1c, 0x15, 0x49, 0xe6, 0x75,
/* (2^ 29)P */ 0x45, 0xb3, 0x92, 0xa9, 0xc3, 0xb8, 0x11, 0x68, 0x64, 0x3a, 0x83, 0x5d, 0xa8, 0x94, 0x6a, 0x9d, 0xaa, 0x27, 0x9f, 0x98, 0x5d, 0xc0, 0x29, 0xf0, 0xc0, 0x4b, 0x14, 0x3c, 0x05, 0xe7, 0xf8, 0xbd, 0x38, 0x22, 0x96, 0x75, 0x65, 0x5e, 0x0d, 0x3f, 0xbb, 0x6f, 0xe8, 0x3f, 0x96, 0x76, 0x9f, 0xba, 0xd9, 0x44, 0x92, 0x96, 0x22, 0xe7, 0x52, 0xe7,
/* (2^ 30)P */ 0xf4, 0xa3, 0x95, 0x90, 0x47, 0xdf, 0x7d, 0xdc, 0xf4, 0x13, 0x87, 0x67, 0x7d, 0x4f, 0x9d, 0xa0, 0x00, 0x46, 0x72, 0x08, 0xc3, 0xa2, 0x7a, 0x3e, 0xe7, 0x6d, 0x52, 0x7c, 0x11, 0x36, 0x50, 0x83, 0x89, 0x64, 0xcb, 0x1f, 0x08, 0x83, 0x46, 0xcb, 0xac, 0xa6, 0xd8, 0x9c, 0x1b, 0xe8, 0x05, 0x47, 0xc7, 0x26, 0x06, 0x83, 0x39, 0xe9, 0xb1, 0x1c,
/* (2^ 31)P */ 0x11, 0xe8, 0xc8, 0x42, 0xbf, 0x30, 0x9c, 0xa3, 0xf1, 0x85, 0x96, 0x95, 0x4f, 0x4f, 0x52, 0xa2, 0xf5, 0x8b, 0x68, 0x24, 0x16, 0xac, 0x9b, 0xa9, 0x27, 0x28, 0x0e, 0x84, 0x03, 0x46, 0x22, 0x5f, 0xf7, 0x0d, 0xa6, 0x85, 0x88, 0xc1, 0x45, 0x4b, 0x85, 0x1a, 0x10, 0x7f, 0xc9, 0x94, 0x20, 0xb0, 0x04, 0x28, 0x12, 0x30, 0xb9, 0xe6, 0x40, 0x6b,
/* (2^ 32)P */ 0xac, 0x1b, 0x57, 0xb6, 0x42, 0xdb, 0x81, 0x8d, 0x76, 0xfd, 0x9b, 0x1c, 0x29, 0x30, 0xd5, 0x3a, 0xcc, 0x53, 0xd9, 0x26, 0x7a, 0x0f, 0x9c, 0x2e, 0x79, 0xf5, 0x62, 0xeb, 0x61, 0x9d, 0x9b, 0x80, 0x39, 0xcd, 0x60, 0x2e, 0x1f, 0x08, 0x22, 0xbc, 0x19, 0xb3, 0x2a, 0x43, 0x44, 0xf2, 0x4e, 0x66, 0xf4, 0x36, 0xa6, 0xa7, 0xbc, 0xa4, 0x15, 0x7e,
/* (2^ 33)P */ 0xc1, 0x90, 0x8a, 0xde, 0xff, 0x78, 0xc3, 0x73, 0x16, 0xee, 0x76, 0xa0, 0x84, 0x60, 0x8d, 0xe6, 0x82, 0x0f, 0xde, 0x4e, 0xc5, 0x99, 0x34, 0x06, 0x90, 0x44, 0x55, 0xf8, 0x91, 0xd8, 0xe1, 0xe4, 0x2c, 0x8a, 0xde, 0x94, 0x1e, 0x78, 0x25, 0x3d, 0xfd, 0xd8, 0x59, 0x7d, 0xaf, 0x6e, 0xbe, 0x96, 0xbe, 0x3c, 0x16, 0x23, 0x0f, 0x4c, 0xa4, 0x28,
/* (2^ 34)P */ 0xba, 0x11, 0x35, 0x57, 0x03, 0xb6, 0xf4, 0x24, 0x89, 0xb8, 0x5a, 0x0d, 0x50, 0x9c, 0xaa, 0x51, 0x7f, 0xa4, 0x0e, 0xfc, 0x71, 0xb3, 0x3b, 0xf1, 0x96, 0x50, 0x23, 0x15, 0xf5, 0xf5, 0xd4, 0x23, 0xdc, 0x8b, 0x26, 0x9e, 0xae, 0xb7, 0x50, 0xcd, 0xc4, 0x25, 0xf6, 0x75, 0x40, 0x9c, 0x37, 0x79, 0x33, 0x60, 0xd4, 0x4b, 0x13, 0x32, 0xee, 0xe2,
/* (2^ 35)P */ 0x43, 0xb8, 0x56, 0x59, 0xf0, 0x68, 0x23, 0xb3, 0xea, 0x70, 0x58, 0x4c, 0x1e, 0x5a, 0x16, 0x54, 0x03, 0xb2, 0xf4, 0x73, 0xb6, 0xd9, 0x5c, 0x9c, 0x6f, 0xcf, 0x82, 0x2e, 0x54, 0x15, 0x46, 0x2c, 0xa3, 0xda, 0x4e, 0x87, 0xf5, 0x2b, 0xba, 0x91, 0xa3, 0xa0, 0x89, 0xba, 0x48, 0x2b, 0xfa, 0x64, 0x02, 0x7f, 0x78, 0x03, 0xd1, 0xe8, 0x3b, 0xe9,
/* (2^ 36)P */ 0x15, 0xa4, 0x71, 0xd4, 0x0c, 0x24, 0xe9, 0x07, 0xa1, 0x43, 0xf4, 0x7f, 0xbb, 0xa2, 0xa6, 0x6b, 0xfa, 0xb7, 0xea, 0x58, 0xd1, 0x96, 0xb0, 0x24, 0x5c, 0xc7, 0x37, 0x4e, 0x60, 0x0f, 0x40, 0xf2, 0x2f, 0x44, 0x70, 0xea, 0x80, 0x63, 0xfe, 0xfc, 0x46, 0x59, 0x12, 0x27, 0xb5, 0x27, 0xfd, 0xb7, 0x73, 0x0b, 0xca, 0x8b, 0xc2, 0xd3, 0x71, 0x08,
/* (2^ 37)P */ 0x26, 0x0e, 0xd7, 0x52, 0x6f, 0xf1, 0xf2, 0x9d, 0xb8, 0x3d, 0xbd, 0xd4, 0x75, 0x97, 0xd8, 0xbf, 0xa8, 0x86, 0x96, 0xa5, 0x80, 0xa0, 0x45, 0x75, 0xf6, 0x77, 0x71, 0xdb, 0x77, 0x96, 0x55, 0x99, 0x31, 0xd0, 0x4f, 0x34, 0xf4, 0x35, 0x39, 0x41, 0xd3, 0x7d, 0xf7, 0xe2, 0x74, 0xde, 0xbe, 0x5b, 0x1f, 0x39, 0x10, 0x21, 0xa3, 0x4d, 0x3b, 0xc8,
/* (2^ 38)P */ 0x04, 0x00, 0x2a, 0x45, 0xb2, 0xaf, 0x9b, 0x18, 0x6a, 0xeb, 0x96, 0x28, 0xa4, 0x77, 0xd0, 0x13, 0xcf, 0x17, 0x65, 0xe8, 0xc5, 0x81, 0x28, 0xad, 0x39, 0x7a, 0x0b, 0xaa, 0x55, 0x2b, 0xf3, 0xfc, 0x86, 0x40, 0xad, 0x0d, 0x1e, 0x28, 0xa2, 0x2d, 0xc5, 0xd6, 0x04, 0x15, 0xa2, 0x30, 0x3d, 0x12, 0x8e, 0xd6, 0xb5, 0xf7, 0x69, 0xbb, 0x84, 0x20,
/* (2^ 39)P */ 0xd7, 0x7a, 0x77, 0x2c, 0xfb, 0x81, 0x80, 0xe9, 0x1e, 0xc6, 0x36, 0x31, 0x79, 0xc3, 0x7c, 0xa9, 0x57, 0x6b, 0xb5, 0x70, 0xfb, 0xe4, 0xa1, 0xff, 0xfd, 0x21, 0xa5, 0x7c, 0xfa, 0x44, 0xba, 0x0d, 0x96, 0x3d, 0xc4, 0x5c, 0x39, 0x52, 0x87, 0xd7, 0x22, 0x0f, 0x52, 0x88, 0x91, 0x87, 0x96, 0xac, 0xfa, 0x3b, 0xdf, 0xdc, 0x83, 0x8c, 0x99, 0x29,
/* (2^ 40)P */ 0x98, 0x6b, 0x3a, 0x8d, 0x83, 0x17, 0xe1, 0x62, 0xd8, 0x80, 0x4c, 0x97, 0xce, 0x6b, 0xaa, 0x10, 0xa7, 0xc4, 0xe9, 0xeb, 0xa5, 0xfb, 0xc9, 0xdd, 0x2d, 0xeb, 0xfc, 0x9a, 0x71, 0xcd, 0x68, 0x6e, 0xc0, 0x35, 0x64, 0x62, 0x1b, 0x95, 0x12, 0xe8, 0x53, 0xec, 0xf0, 0xf4, 0x86, 0x86, 0x78, 0x18, 0xc4, 0xc6, 0xbc, 0x5a, 0x59, 0x8f, 0x7c, 0x7e,
/* (2^ 41)P */ 0x7f, 0xd7, 0x1e, 0xc5, 0x83, 0xdc, 0x1f, 0xbe, 0x0b, 0xcf, 0x2e, 0x01, 0x01, 0xed, 0xac, 0x17, 0x3b, 0xed, 0xa4, 0x30, 0x96, 0x0e, 0x14, 0x7e, 0x19, 0x2b, 0xa5, 0x67, 0x1e, 0xb3, 0x34, 0x03, 0xa8, 0xbb, 0x0a, 0x7d, 0x08, 0x2d, 0xd5, 0x53, 0x19, 0x6f, 0x13, 0xd5, 0xc0, 0x90, 0x8a, 0xcc, 0xc9, 0x5c, 0xab, 0x24, 0xd7, 0x03, 0xf6, 0x57,
/* (2^ 42)P */ 0x49, 0xcb, 0xb4, 0x96, 0x5f, 0xa6, 0xf8, 0x71, 0x6f, 0x59, 0xad, 0x05, 0x24, 0x2d, 0xaf, 0x67, 0xa8, 0xbe, 0x95, 0xdf, 0x0d, 0x28, 0x5a, 0x7f, 0x6e, 0x87, 0x8c, 0x6e, 0x67, 0x0c, 0xf4, 0xe0, 0x1c, 0x30, 0xc2, 0x66, 0xae, 0x20, 0xa1, 0x34, 0xec, 0x9c, 0xbc, 0xae, 0x3d, 0xa1, 0x28, 0x28, 0x95, 0x1d, 0xc9, 0x3a, 0xa8, 0xfd, 0xfc, 0xa1,
/* (2^ 43)P */ 0xe2, 0x2b, 0x9d, 0xed, 0x02, 0x99, 0x67, 0xbb, 0x2e, 0x16, 0x62, 0x05, 0x70, 0xc7, 0x27, 0xb9, 0x1c, 0x3f, 0xf2, 0x11, 0x01, 0xd8, 0x51, 0xa4, 0x18, 0x92, 0xa9, 0x5d, 0xfb, 0xa9, 0xe4, 0x42, 0xba, 0x38, 0x34, 0x1a, 0x4a, 0xc5, 0x6a, 0x37, 0xde, 0xa7, 0x0c, 0xb4, 0x7e, 0x7f, 0xde, 0xa6, 0xee, 0xcd, 0x55, 0x57, 0x05, 0x06, 0xfd, 0x5d,
/* (2^ 44)P */ 0x2f, 0x32, 0xcf, 0x2e, 0x2c, 0x7b, 0xbe, 0x9a, 0x0c, 0x57, 0x35, 0xf8, 0x87, 0xda, 0x9c, 0xec, 0x48, 0xf2, 0xbb, 0xe2, 0xda, 0x10, 0x58, 0x20, 0xc6, 0xd3, 0x87, 0xe9, 0xc7, 0x26, 0xd1, 0x9a, 0x46, 0x87, 0x90, 0xda, 0xdc, 0xde, 0xc3, 0xb3, 0xf2, 0xe8, 0x6f, 0x4a, 0xe6, 0xe8, 0x9d, 0x98, 0x36, 0x20, 0x03, 0x47, 0x15, 0x3f, 0x64, 0x59,
/* (2^ 45)P */ 0xd4, 0x71, 0x49, 0x0a, 0x67, 0x97, 0xaa, 0x3f, 0xf4, 0x1b, 0x3a, 0x6e, 0x5e, 0x17, 0xcc, 0x0a, 0x8f, 0x81, 0x6a, 0x41, 0x38, 0x77, 0x40, 0x8a, 0x11, 0x42, 0x62, 0xd2, 0x50, 0x32, 0x79, 0x78, 0x28, 0xc2, 0x2e, 0x10, 0x01, 0x94, 0x30, 0x4f, 0x7f, 0x18, 0x17, 0x56, 0x85, 0x4e, 0xad, 0xf7, 0xcb, 0x87, 0x3c, 0x3f, 0x50, 0x2c, 0xc0, 0xba,
/* (2^ 46)P */ 0xbc, 0x30, 0x8e, 0x65, 0x8e, 0x57, 0x5b, 0x38, 0x7a, 0xd4, 0x95, 0x52, 0x7a, 0x32, 0x59, 0x69, 0xcd, 0x9d, 0x47, 0x34, 0x5b, 0x55, 0xa5, 0x24, 0x60, 0xdd, 0xc0, 0xc1, 0x62, 0x73, 0x44, 0xae, 0x4c, 0x9c, 0x65, 0x55, 0x1b, 0x9d, 0x8a, 0x29, 0xb0, 0x1a, 0x52, 0xa8, 0xf1, 0xe6, 0x9a, 0xb3, 0xf6, 0xa3, 0xc9, 0x0a, 0x70, 0x7d, 0x0f, 0xee,
/* (2^ 47)P */ 0x77, 0xd3, 0xe5, 0x8e, 0xfa, 0x00, 0xeb, 0x1b, 0x7f, 0xdc, 0x68, 0x3f, 0x92, 0xbd, 0xb7, 0x0b, 0xb7, 0xb5, 0x24, 0xdf, 0xc5, 0x67, 0x53, 0xd4, 0x36, 0x79, 0xc4, 0x7b, 0x57, 0xbc, 0x99, 0x97, 0x60, 0xef, 0xe4, 0x01, 0xa1, 0xa7, 0xaa, 0x12, 0x36, 0x29, 0xb1, 0x03, 0xc2, 0x83, 0x1c, 0x2b, 0x83, 0xef, 0x2e, 0x2c, 0x23, 0x92, 0xfd, 0xd1,
/* (2^ 48)P */ 0x94, 0xef, 0x03, 0x59, 0xfa, 0x8a, 0x18, 0x76, 0xee, 0x58, 0x08, 0x4d, 0x44, 0xce, 0xf1, 0x52, 0x33, 0x49, 0xf6, 0x69, 0x71, 0xe3, 0xa9, 0xbc, 0x86, 0xe3, 0x43, 0xde, 0x33, 0x7b, 0x90, 0x8b, 0x3e, 0x7d, 0xd5, 0x4a, 0xf0, 0x23, 0x99, 0xa6, 0xea, 0x5f, 0x08, 0xe5, 0xb9, 0x49, 0x8b, 0x0d, 0x6a, 0x21, 0xab, 0x07, 0x62, 0xcd, 0xc4, 0xbe,
/* (2^ 49)P */ 0x61, 0xbf, 0x70, 0x14, 0xfa, 0x4e, 0x9e, 0x7c, 0x0c, 0xf8, 0xb2, 0x48, 0x71, 0x62, 0x83, 0xd6, 0xd1, 0xdc, 0x9c, 0x29, 0x66, 0xb1, 0x34, 0x9c, 0x8d, 0xe6, 0x88, 0xaf, 0xbe, 0xdc, 0x4d, 0xeb, 0xb0, 0xe7, 0x28, 0xae, 0xb2, 0x05, 0x56, 0xc6, 0x0e, 0x10, 0x26, 0xab, 0x2c, 0x59, 0x72, 0x03, 0x66, 0xfe, 0x8f, 0x2c, 0x51, 0x2d, 0xdc, 0xae,
/* (2^ 50)P */ 0xdc, 0x63, 0xf1, 0x8b, 0x5c, 0x65, 0x0b, 0xf1, 0xa6, 0x22, 0xe2, 0xd9, 0xdb, 0x49, 0xb1, 0x3c, 0x47, 0xc2, 0xfe, 0xac, 0x86, 0x07, 0x52, 0xec, 0xb0, 0x08, 0x69, 0xfb, 0xd1, 0x06, 0xdc, 0x48, 0x5c, 0x3d, 0xb2, 0x4d, 0xb8, 0x1a, 0x4e, 0xda, 0xb9, 0xc1, 0x2b, 0xab, 0x4b, 0x62, 0x81, 0x21, 0x9a, 0xfc, 0x3d, 0x39, 0x83, 0x11, 0x36, 0xeb,
/* (2^ 51)P */ 0x94, 0xf3, 0x17, 0xef, 0xf9, 0x60, 0x54, 0xc3, 0xd7, 0x27, 0x35, 0xc5, 0x98, 0x5e, 0xf6, 0x63, 0x6c, 0xa0, 0x4a, 0xd3, 0xa3, 0x98, 0xd9, 0x42, 0xe3, 0xf1, 0xf8, 0x81, 0x96, 0xa9, 0xea, 0x6d, 0x4b, 0x8e, 0x33, 0xca, 0x94, 0x0d, 0xa0, 0xf7, 0xbb, 0x64, 0xa3, 0x36, 0x6f, 0xdc, 0x5a, 0x94, 0x42, 0xca, 0x06, 0xb2, 0x2b, 0x9a, 0x9f, 0x71,
/* (2^ 52)P */ 0xec, 0xdb, 0xa6, 0x1f, 0xdf, 0x15, 0x36, 0xa3, 0xda, 0x8a, 0x7a, 0xb6, 0xa7, 0xe3, 0xaf, 0x52, 0xe0, 0x8d, 0xe8, 0xf2, 0x44, 0x20, 0xeb, 0xa1, 0x20, 0xc4, 0x65, 0x3c, 0x7c, 0x6c, 0x49, 0xed, 0x2f, 0x66, 0x23, 0x68, 0x61, 0x91, 0x40, 0x9f, 0x50, 0x19, 0xd1, 0x84, 0xa7, 0xe2, 0xed, 0x34, 0x37, 0xe3, 0xe4, 0x11, 0x7f, 0x87, 0x55, 0x0f,
/* (2^ 53)P */ 0xb3, 0xa1, 0x0f, 0xb0, 0x48, 0xc0, 0x4d, 0x96, 0xa7, 0xcf, 0x5a, 0x81, 0xb8, 0x4a, 0x46, 0xef, 0x0a, 0xd3, 0x40, 0x7e, 0x02, 0xe3, 0x63, 0xaa, 0x50, 0xd1, 0x2a, 0x37, 0x22, 0x4a, 0x7f, 0x4f, 0xb6, 0xf9, 0x01, 0x82, 0x78, 0x3d, 0x93, 0x14, 0x11, 0x8a, 0x90, 0x60, 0xcd, 0x45, 0x4e, 0x7b, 0x42, 0xb9, 0x3e, 0x6e, 0x68, 0x1f, 0x36, 0x41,
/* (2^ 54)P */ 0x13, 0x73, 0x0e, 0x4f, 0x79, 0x93, 0x9e, 0x29, 0x70, 0x7b, 0x4a, 0x59, 0x1a, 0x9a, 0xf4, 0x55, 0x08, 0xf0, 0xdb, 0x17, 0x58, 0xec, 0x64, 0xad, 0x7f, 0x29, 0xeb, 0x3f, 0x85, 0x4e, 0x60, 0x28, 0x98, 0x1f, 0x73, 0x4e, 0xe6, 0xa8, 0xab, 0xd5, 0xd6, 0xfc, 0xa1, 0x36, 0x6d, 0x15, 0xc6, 0x13, 0x83, 0xa0, 0xc2, 0x6e, 0xd9, 0xdb, 0xc9, 0xcc,
/* (2^ 55)P */ 0xff, 0xd8, 0x52, 0xa3, 0xdc, 0x99, 0xcf, 0x3e, 0x19, 0xb3, 0x68, 0xd0, 0xb5, 0x0d, 0xb8, 0xee, 0x3f, 0xef, 0x6e, 0xc0, 0x38, 0x28, 0x44, 0x92, 0x78, 0x91, 0x1a, 0x08, 0x78, 0x6c, 0x65, 0x24, 0xf3, 0xa2, 0x3d, 0xf2, 0xe5, 0x79, 0x62, 0x69, 0x29, 0xf4, 0x22, 0xc5, 0xdb, 0x6a, 0xae, 0xf4, 0x44, 0xa3, 0x6f, 0xc7, 0x86, 0xab, 0xef, 0xef,
/* (2^ 56)P */ 0xbf, 0x54, 0x9a, 0x09, 0x5d, 0x17, 0xd0, 0xde, 0xfb, 0xf5, 0xca, 0xff, 0x13, 0x20, 0x88, 0x82, 0x3a, 0xe2, 0xd0, 0x3b, 0xfb, 0x05, 0x76, 0xd1, 0xc0, 0x02, 0x71, 0x3b, 0x94, 0xe8, 0xc9, 0x84, 0xcf, 0xa4, 0xe9, 0x28, 0x7b, 0xf5, 0x09, 0xc3, 0x2b, 0x22, 0x40, 0xf1, 0x68, 0x24, 0x24, 0x7d, 0x9f, 0x6e, 0xcd, 0xfe, 0xb0, 0x19, 0x61, 0xf5,
/* (2^ 57)P */ 0xe8, 0x63, 0x51, 0xb3, 0x95, 0x6b, 0x7b, 0x74, 0x92, 0x52, 0x45, 0xa4, 0xed, 0xea, 0x0e, 0x0d, 0x2b, 0x01, 0x1e, 0x2c, 0xbc, 0x91, 0x06, 0x69, 0xdb, 0x1f, 0xb5, 0x77, 0x1d, 0x56, 0xf5, 0xb4, 0x02, 0x80, 0x49, 0x56, 0x12, 0xce, 0x86, 0x05, 0xc9, 0xd9, 0xae, 0xf3, 0x6d, 0xe6, 0x3f, 0x40, 0x52, 0xe9, 0x49, 0x2b, 0x31, 0x06, 0x86, 0x14,
/* (2^ 58)P */ 0xf5, 0x09, 0x3b, 0xd2, 0xff, 0xdf, 0x11, 0xa5, 0x1c, 0x99, 0xe8, 0x1b, 0xa4, 0x2c, 0x7d, 0x8e, 0xc8, 0xf7, 0x03, 0x46, 0xfa, 0xb6, 0xde, 0x73, 0x91, 0x7e, 0x5a, 0x7a, 0xd7, 0x9a, 0x5b, 0x80, 0x24, 0x62, 0x5e, 0x92, 0xf1, 0xa3, 0x45, 0xa3, 0x43, 0x92, 0x8a, 0x2a, 0x5b, 0x0c, 0xb4, 0xc8, 0xad, 0x1c, 0xb6, 0x6c, 0x5e, 0x81, 0x18, 0x91,
/* (2^ 59)P */ 0x96, 0xb3, 0xca, 0x2b, 0xe3, 0x7a, 0x59, 0x72, 0x17, 0x74, 0x29, 0x21, 0xe7, 0x78, 0x07, 0xad, 0xda, 0xb6, 0xcd, 0xf9, 0x27, 0x4d, 0xc8, 0xf2, 0x98, 0x22, 0xca, 0xf2, 0x33, 0x74, 0x7a, 0xdd, 0x1e, 0x71, 0xec, 0xe3, 0x3f, 0xe2, 0xa2, 0xd2, 0x38, 0x75, 0xb0, 0xd0, 0x0a, 0xcf, 0x7d, 0x36, 0xdc, 0x49, 0x38, 0x25, 0x34, 0x4f, 0x20, 0x9a,
/* (2^ 60)P */ 0x2b, 0x6e, 0x04, 0x0d, 0x4f, 0x3d, 0x3b, 0x24, 0xf6, 0x4e, 0x5e, 0x0a, 0xbd, 0x48, 0x96, 0xba, 0x81, 0x8f, 0x39, 0x82, 0x13, 0xe6, 0x72, 0xf3, 0x0f, 0xb6, 0x94, 0xf4, 0xc5, 0x90, 0x74, 0x91, 0xa8, 0xf2, 0xc9, 0xca, 0x9a, 0x4d, 0x98, 0xf2, 0xdf, 0x52, 0x4e, 0x97, 0x2f, 0xeb, 0x84, 0xd3, 0xaf, 0xc2, 0xcc, 0xfb, 0x4c, 0x26, 0x4b, 0xe4,
/* (2^ 61)P */ 0x12, 0x9e, 0xfb, 0x9d, 0x78, 0x79, 0x99, 0xdd, 0xb3, 0x0b, 0x2e, 0x56, 0x41, 0x8e, 0x3f, 0x39, 0xb8, 0x97, 0x89, 0x53, 0x9b, 0x8a, 0x3c, 0x40, 0x9d, 0xa4, 0x6c, 0x2e, 0x31, 0x71, 0xc6, 0x0a, 0x41, 0xd4, 0x95, 0x06, 0x5e, 0xc1, 0xab, 0xc2, 0x14, 0xc4, 0xc7, 0x15, 0x08, 0x3a, 0xad, 0x7a, 0xb4, 0x62, 0xa3, 0x0c, 0x90, 0xf4, 0x47, 0x08,
/* (2^ 62)P */ 0x7f, 0xec, 0x09, 0x82, 0xf5, 0x94, 0x09, 0x93, 0x32, 0xd3, 0xdc, 0x56, 0x80, 0x7b, 0x5b, 0x22, 0x80, 0x6a, 0x96, 0x72, 0xb1, 0xc2, 0xd9, 0xa1, 0x8b, 0x66, 0x42, 0x16, 0xe2, 0x07, 0xb3, 0x2d, 0xf1, 0x75, 0x35, 0x72, 0xc7, 0x98, 0xbe, 0x63, 0x3b, 0x20, 0x75, 0x05, 0xc1, 0x3e, 0x31, 0x5a, 0xf7, 0xaa, 0xae, 0x4b, 0xdb, 0x1d, 0xd0, 0x74,
/* (2^ 63)P */ 0x36, 0x5c, 0x74, 0xe6, 0x5d, 0x59, 0x3f, 0x15, 0x4b, 0x4d, 0x4e, 0x67, 0x41, 0xfe, 0x98, 0x1f, 0x49, 0x76, 0x91, 0x0f, 0x9b, 0xf4, 0xaf, 0x86, 0xaf, 0x66, 0x19, 0xed, 0x46, 0xf1, 0x05, 0x9a, 0xcc, 0xd1, 0x14, 0x1f, 0x82, 0x12, 0x8e, 0xe6, 0xf4, 0xc3, 0x42, 0x5c, 0x4e, 0x33, 0x93, 0xbe, 0x30, 0xe7, 0x64, 0xa9, 0x35, 0x00, 0x4d, 0xf9,
/* (2^ 64)P */ 0x1f, 0xc1, 0x1e, 0xb7, 0xe3, 0x7c, 0xfa, 0xa3, 0x6b, 0x76, 0xaf, 0x9c, 0x05, 0x85, 0x4a, 0xa9, 0xfb, 0xe3, 0x7e, 0xf2, 0x49, 0x56, 0xdc, 0x2f, 0x57, 0x10, 0xba, 0x37, 0xb2, 0x62, 0xf5, 0x6b, 0xe5, 0x8f, 0x0a, 0x87, 0xd1, 0x6a, 0xcb, 0x9d, 0x07, 0xd0, 0xf6, 0x38, 0x99, 0x2c, 0x61, 0x4a, 0x4e, 0xd8, 0xd2, 0x88, 0x29, 0x99, 0x11, 0x95,
/* (2^ 65)P */ 0x6f, 0xdc, 0xd5, 0xd6, 0xd6, 0xa7, 0x4c, 0x46, 0x93, 0x65, 0x62, 0x23, 0x95, 0x32, 0x9c, 0xde, 0x40, 0x41, 0x68, 0x2c, 0x18, 0x4e, 0x5a, 0x8c, 0xc0, 0xc5, 0xc5, 0xea, 0x5c, 0x45, 0x0f, 0x60, 0x78, 0x39, 0xb6, 0x36, 0x23, 0x12, 0xbc, 0x21, 0x9a, 0xf8, 0x91, 0xac, 0xc4, 0x70, 0xdf, 0x85, 0x8e, 0x3c, 0xec, 0x22, 0x04, 0x98, 0xa8, 0xaa,
/* (2^ 66)P */ 0xcc, 0x52, 0x10, 0x5b, 0x4b, 0x6c, 0xc5, 0xfa, 0x3e, 0xd4, 0xf8, 0x1c, 0x04, 0x14, 0x48, 0x33, 0xd9, 0xfc, 0x5f, 0xb0, 0xa5, 0x48, 0x8c, 0x45, 0x8a, 0xee, 0x3e, 0xa7, 0xc1, 0x2e, 0x34, 0xca, 0xf6, 0xc9, 0xeb, 0x10, 0xbb, 0xe1, 0x59, 0x84, 0x25, 0xe8, 0x81, 0x70, 0xc0, 0x09, 0x42, 0xa7, 0x3b, 0x0d, 0x33, 0x00, 0xb5, 0x77, 0xbe, 0x25,
/* (2^ 67)P */ 0xcd, 0x1f, 0xbc, 0x7d, 0xef, 0xe5, 0xca, 0x91, 0xaf, 0xa9, 0x59, 0x6a, 0x09, 0xca, 0xd6, 0x1b, 0x3d, 0x55, 0xde, 0xa2, 0x6a, 0x80, 0xd6, 0x95, 0x47, 0xe4, 0x5f, 0x68, 0x54, 0x08, 0xdf, 0x29, 0xba, 0x2a, 0x02, 0x84, 0xe8, 0xe9, 0x00, 0x77, 0x99, 0x36, 0x03, 0xf6, 0x4a, 0x3e, 0x21, 0x81, 0x7d, 0xb8, 0xa4, 0x8a, 0xa2, 0x05, 0xef, 0xbc,
/* (2^ 68)P */ 0x7c, 0x59, 0x5f, 0x66, 0xd9, 0xb7, 0x83, 0x43, 0x8a, 0xa1, 0x8d, 0x51, 0x70, 0xba, 0xf2, 0x9b, 0x95, 0xc0, 0x4b, 0x4c, 0xa0, 0x14, 0xd3, 0xa4, 0x5d, 0x4a, 0x37, 0x36, 0x97, 0x31, 0x1e, 0x12, 0xe7, 0xbb, 0x08, 0x67, 0xa5, 0x23, 0xd7, 0xfb, 0x97, 0xd8, 0x6a, 0x03, 0xb1, 0xf8, 0x7f, 0xda, 0x58, 0xd9, 0x3f, 0x73, 0x4a, 0x53, 0xe1, 0x7b,
/* (2^ 69)P */ 0x55, 0x83, 0x98, 0x78, 0x6c, 0x56, 0x5e, 0xed, 0xf7, 0x23, 0x3e, 0x4c, 0x7d, 0x09, 0x2d, 0x09, 0x9c, 0x58, 0x8b, 0x32, 0xca, 0xfe, 0xbf, 0x47, 0x03, 0xeb, 0x4d, 0xe7, 0xeb, 0x9c, 0x83, 0x05, 0x68, 0xaa, 0x80, 0x89, 0x44, 0xf9, 0xd4, 0xdc, 0xdb, 0xb1, 0xdb, 0x77, 0xac, 0xf9, 0x2a, 0xae, 0x35, 0xac, 0x74, 0xb5, 0x95, 0x62, 0x18, 0x85,
/* (2^ 70)P */ 0xab, 0x82, 0x7e, 0x10, 0xd7, 0xe6, 0x57, 0xd1, 0x66, 0x12, 0x31, 0x9c, 0x9c, 0xa6, 0x27, 0x59, 0x71, 0x2e, 0xeb, 0xa0, 0x68, 0xc5, 0x87, 0x51, 0xf4, 0xca, 0x3f, 0x98, 0x56, 0xb0, 0x89, 0xb1, 0xc7, 0x7b, 0x46, 0xb3, 0xae, 0x36, 0xf2, 0xee, 0x15, 0x1a, 0x60, 0xf4, 0x50, 0x76, 0x4f, 0xc4, 0x53, 0x0d, 0x36, 0x4d, 0x31, 0xb1, 0x20, 0x51,
/* (2^ 71)P */ 0xf7, 0x1d, 0x8c, 0x1b, 0x5e, 0xe5, 0x02, 0x6f, 0xc5, 0xa5, 0xe0, 0x5f, 0xc6, 0xb6, 0x63, 0x43, 0xaf, 0x3c, 0x19, 0x6c, 0xf4, 0xaf, 0xa4, 0x33, 0xb1, 0x0a, 0x37, 0x3d, 0xd9, 0x4d, 0xe2, 0x29, 0x24, 0x26, 0x94, 0x7c, 0x02, 0xe4, 0xe2, 0xf2, 0xbe, 0xbd, 0xac, 0x1b, 0x48, 0xb8, 0xdd, 0xe9, 0x0d, 0x9a, 0x50, 0x1a, 0x98, 0x71, 0x6e, 0xdc,
/* (2^ 72)P */ 0x9f, 0x40, 0xb1, 0xb3, 0x66, 0x28, 0x6c, 0xfe, 0xa6, 0x7d, 0xf8, 0x3e, 0xb8, 0xf3, 0xde, 0x52, 0x76, 0x52, 0xa3, 0x92, 0x98, 0x23, 0xab, 0x4f, 0x88, 0x97, 0xfc, 0x22, 0xe1, 0x6b, 0x67, 0xcd, 0x13, 0x95, 0xda, 0x65, 0xdd, 0x3b, 0x67, 0x3f, 0x5f, 0x4c, 0xf2, 0x8a, 0xad, 0x98, 0xa7, 0x94, 0x24, 0x45, 0x87, 0x11, 0x7c, 0x75, 0x79, 0x85,
/* (2^ 73)P */ 0x70, 0xbf, 0xf9, 0x3b, 0xa9, 0x44, 0x57, 0x72, 0x96, 0xc9, 0xa4, 0x98, 0x65, 0xbf, 0x87, 0xb3, 0x3a, 0x39, 0x12, 0xde, 0xe5, 0x39, 0x01, 0x4f, 0xf7, 0xc0, 0x71, 0x52, 0x36, 0x85, 0xb3, 0x18, 0xf8, 0x14, 0xc0, 0x6d, 0xae, 0x9e, 0x4f, 0xb0, 0x72, 0x87, 0xac, 0x5c, 0xd1, 0x6c, 0x41, 0x6c, 0x90, 0x9d, 0x22, 0x81, 0xe4, 0x2b, 0xea, 0xe5,
/* (2^ 74)P */ 0xfc, 0xea, 0x1a, 0x65, 0xd9, 0x49, 0x6a, 0x39, 0xb5, 0x96, 0x72, 0x7b, 0x32, 0xf1, 0xd0, 0xe9, 0x45, 0xd9, 0x31, 0x55, 0xc7, 0x34, 0xe9, 0x5a, 0xec, 0x73, 0x0b, 0x03, 0xc4, 0xb3, 0xe6, 0xc9, 0x5e, 0x0a, 0x17, 0xfe, 0x53, 0x66, 0x7f, 0x21, 0x18, 0x74, 0x54, 0x1b, 0xc9, 0x49, 0x16, 0xd2, 0x48, 0xaf, 0x5b, 0x47, 0x7b, 0xeb, 0xaa, 0xc9,
/* (2^ 75)P */ 0x47, 0x04, 0xf5, 0x5a, 0x87, 0x77, 0x9e, 0x21, 0x34, 0x4e, 0x83, 0x88, 0xaf, 0x02, 0x1d, 0xb0, 0x5a, 0x1d, 0x1d, 0x7d, 0x8d, 0x2c, 0xd3, 0x8d, 0x63, 0xa9, 0x45, 0xfb, 0x15, 0x6d, 0x86, 0x45, 0xcd, 0x38, 0x0e, 0xf7, 0x37, 0x79, 0xed, 0x6d, 0x5a, 0xbc, 0x32, 0xcc, 0x66, 0xf1, 0x3a, 0xb2, 0x87, 0x6f, 0x70, 0x71, 0xd9, 0xf2, 0xfa, 0x7b,
/* (2^ 76)P */ 0x68, 0x07, 0xdc, 0x61, 0x40, 0xe4, 0xec, 0x32, 0xc8, 0xbe, 0x66, 0x30, 0x54, 0x80, 0xfd, 0x13, 0x7a, 0xef, 0xae, 0xed, 0x2e, 0x00, 0x6d, 0x3f, 0xbd, 0xfc, 0x91, 0x24, 0x53, 0x7f, 0x63, 0x9d, 0x2e, 0xe3, 0x76, 0xe0, 0xf3, 0xe1, 0x8f, 0x7a, 0xc4, 0x77, 0x0c, 0x91, 0xc0, 0xc2, 0x18, 0x6b, 0x04, 0xad, 0xb6, 0x70, 0x9a, 0x64, 0xc5, 0x82,
/* (2^ 77)P */ 0x7f, 0xea, 0x13, 0xd8, 0x9e, 0xfc, 0x5b, 0x06, 0xb5, 0x4f, 0xda, 0x38, 0xe0, 0x9c, 0xd2, 0x3a, 0xc1, 0x1c, 0x62, 0x70, 0x7f, 0xc6, 0x24, 0x0a, 0x47, 0x04, 0x01, 0xc4, 0x55, 0x09, 0xd1, 0x7a, 0x07, 0xba, 0xa3, 0x80, 0x4f, 0xc1, 0x65, 0x36, 0x6d, 0xc0, 0x10, 0xcf, 0x94, 0xa9, 0xa2, 0x01, 0x44, 0xd1, 0xf9, 0x1c, 0x4c, 0xfb, 0xf8, 0x99,
/* (2^ 78)P */ 0x6c, 0xb9, 0x6b, 0xee, 0x43, 0x5b, 0xb9, 0xbb, 0xee, 0x2e, 0x52, 0xc1, 0xc6, 0xb9, 0x61, 0xd2, 0x93, 0xa5, 0xaf, 0x52, 0xf4, 0xa4, 0x1a, 0x51, 0x61, 0xa7, 0xcb, 0x9e, 0xbb, 0x56, 0x65, 0xe2, 0xbf, 0x75, 0xb9, 0x9c, 0x50, 0x96, 0x60, 0x81, 0x74, 0x47, 0xc0, 0x04, 0x88, 0x71, 0x76, 0x39, 0x9a, 0xa7, 0xb1, 0x4e, 0x43, 0x15, 0xe0, 0xbb,
/* (2^ 79)P */ 0xbb, 0xce, 0xe2, 0xbb, 0xf9, 0x17, 0x0f, 0x82, 0x40, 0xad, 0x73, 0xe3, 0xeb, 0x3b, 0x06, 0x1a, 0xcf, 0x8e, 0x6e, 0x28, 0xb8, 0x26, 0xd9, 0x5b, 0xb7, 0xb3, 0xcf, 0xb4, 0x6a, 0x1c, 0xbf, 0x7f, 0xb8, 0xb5, 0x79, 0xcf, 0x45, 0x68, 0x7d, 0xc5, 0xeb, 0xf3, 0xbe, 0x39, 0x40, 0xfc, 0x07, 0x90, 0x7a, 0x62, 0xad, 0x86, 0x08, 0x71, 0x25, 0xe1,
/* (2^ 80)P */ 0x9b, 0x46, 0xac, 0xef, 0xc1, 0x4e, 0xa1, 0x97, 0x95, 0x76, 0xf9, 0x1b, 0xc2, 0xb2, 0x6a, 0x41, 0xea, 0x80, 0x3d, 0xe9, 0x08, 0x52, 0x5a, 0xe3, 0xf2, 0x08, 0xc5, 0xea, 0x39, 0x3f, 0x44, 0x71, 0x4d, 0xea, 0x0d, 0x05, 0x23, 0xe4, 0x2e, 0x3c, 0x89, 0xfe, 0x12, 0x8a, 0x95, 0x42, 0x0a, 0x68, 0xea, 0x5a, 0x28, 0x06, 0x9e, 0xe3, 0x5f, 0xe0,
/* (2^ 81)P */ 0x00, 0x61, 0x6c, 0x98, 0x9b, 0xe7, 0xb9, 0x06, 0x1c, 0xc5, 0x1b, 0xed, 0xbe, 0xc8, 0xb3, 0xea, 0x87, 0xf0, 0xc4, 0x24, 0x7d, 0xbb, 0x5d, 0xa4, 0x1d, 0x7a, 0x16, 0x00, 0x55, 0x94, 0x67, 0x78, 0xbd, 0x58, 0x02, 0x82, 0x90, 0x53, 0x76, 0xd4, 0x72, 0x99, 0x51, 0x6f, 0x7b, 0xcf, 0x80, 0x30, 0x31, 0x3b, 0x01, 0xc7, 0xc1, 0xef, 0xe6, 0x42,
/* (2^ 82)P */ 0xe2, 0x35, 0xaf, 0x4b, 0x79, 0xc6, 0x12, 0x24, 0x99, 0xc0, 0x68, 0xb0, 0x43, 0x3e, 0xe5, 0xef, 0xe2, 0x29, 0xea, 0xb8, 0xb3, 0xbc, 0x6a, 0x53, 0x2c, 0x69, 0x18, 0x5a, 0xf9, 0x15, 0xae, 0x66, 0x58, 0x18, 0xd3, 0x2d, 0x4b, 0x00, 0xfd, 0x84, 0xab, 0x4f, 0xae, 0x70, 0x6b, 0x9e, 0x9a, 0xdf, 0x83, 0xfd, 0x2e, 0x3c, 0xcf, 0xf8, 0x88, 0x5b,
/* (2^ 83)P */ 0xa4, 0x90, 0x31, 0x85, 0x13, 0xcd, 0xdf, 0x64, 0xc9, 0xa1, 0x0b, 0xe7, 0xb6, 0x73, 0x8a, 0x1b, 0x22, 0x78, 0x4c, 0xd4, 0xae, 0x48, 0x18, 0x00, 0x00, 0xa8, 0x9f, 0x06, 0xf9, 0xfb, 0x2d, 0xc3, 0xb1, 0x2a, 0xbc, 0x13, 0x99, 0x57, 0xaf, 0xf0, 0x8d, 0x61, 0x54, 0x29, 0xd5, 0xf2, 0x72, 0x00, 0x96, 0xd1, 0x85, 0x12, 0x8a, 0xf0, 0x23, 0xfb,
/* (2^ 84)P */ 0x69, 0xc7, 0xdb, 0xd9, 0x92, 0x75, 0x08, 0x9b, 0xeb, 0xa5, 0x93, 0xd1, 0x1a, 0xf4, 0xf5, 0xaf, 0xe6, 0xc4, 0x4a, 0x0d, 0x35, 0x26, 0x39, 0x9d, 0xd3, 0x17, 0x3e, 0xae, 0x2d, 0xbf, 0x73, 0x9f, 0xb7, 0x74, 0x91, 0xd1, 0xd8, 0x5c, 0x14, 0xf9, 0x75, 0xdf, 0xeb, 0xc2, 0x22, 0xd8, 0x14, 0x8d, 0x86, 0x23, 0x4d, 0xd1, 0x2d, 0xdb, 0x6b, 0x42,
/* (2^ 85)P */ 0x8c, 0xda, 0xc6, 0xf8, 0x71, 0xba, 0x2b, 0x06, 0x78, 0xae, 0xcc, 0x3a, 0xe3, 0xe3, 0xa1, 0x8b, 0xe2, 0x34, 0x6d, 0x28, 0x9e, 0x46, 0x13, 0x4d, 0x9e, 0xa6, 0x73, 0x49, 0x65, 0x79, 0x88, 0xb9, 0x3a, 0xd1, 0x6d, 0x2f, 0x48, 0x2b, 0x0a, 0x7f, 0x58, 0x20, 0x37, 0xf4, 0x0e, 0xbb, 0x4a, 0x95, 0x58, 0x0c, 0x88, 0x30, 0xc4, 0x74, 0xdd, 0xfd,
/* (2^ 86)P */ 0x6d, 0x13, 0x4e, 0x89, 0x2d, 0xa9, 0xa3, 0xed, 0x09, 0xe3, 0x0e, 0x71, 0x3e, 0x4a, 0xab, 0x90, 0xde, 0x03, 0xeb, 0x56, 0x46, 0x60, 0x06, 0xf5, 0x71, 0xe5, 0xee, 0x9b, 0xef, 0xff, 0xc4, 0x2c, 0x9f, 0x37, 0x48, 0x45, 0x94, 0x12, 0x41, 0x81, 0x15, 0x70, 0x91, 0x99, 0x5e, 0x56, 0x6b, 0xf4, 0xa6, 0xc9, 0xf5, 0x69, 0x9d, 0x78, 0x37, 0x57,
/* (2^ 87)P */ 0xf3, 0x51, 0x57, 0x7e, 0x43, 0x6f, 0xc6, 0x67, 0x59, 0x0c, 0xcf, 0x94, 0xe6, 0x3d, 0xb5, 0x07, 0xc9, 0x77, 0x48, 0xc9, 0x68, 0x0d, 0x98, 0x36, 0x62, 0x35, 0x38, 0x1c, 0xf5, 0xc5, 0xec, 0x66, 0x78, 0xfe, 0x47, 0xab, 0x26, 0xd6, 0x44, 0xb6, 0x06, 0x0f, 0x89, 0xe3, 0x19, 0x40, 0x1a, 0xe7, 0xd8, 0x65, 0x55, 0xf7, 0x1a, 0xfc, 0xa3, 0x0e,
/* (2^ 88)P */ 0x0e, 0x30, 0xa6, 0xb7, 0x58, 0x60, 0x62, 0x2a, 0x6c, 0x13, 0xa8, 0x14, 0x9b, 0xb8, 0xf2, 0x70, 0xd8, 0xb1, 0x71, 0x88, 0x8c, 0x18, 0x31, 0x25, 0x93, 0x90, 0xb4, 0xc7, 0x49, 0xd8, 0xd4, 0xdb, 0x1e, 0x1e, 0x7f, 0xaa, 0xba, 0xc9, 0xf2, 0x5d, 0xa9, 0x3a, 0x43, 0xb4, 0x5c, 0xee, 0x7b, 0xc7, 0x97, 0xb7, 0x66, 0xd7, 0x23, 0xd9, 0x22, 0x59,
/* (2^ 89)P */ 0x28, 0x19, 0xa6, 0xf9, 0x89, 0x20, 0x78, 0xd4, 0x6d, 0xcb, 0x79, 0x8f, 0x61, 0x6f, 0xb2, 0x5c, 0x4f, 0xa6, 0x54, 0x84, 0x95, 0x24, 0x36, 0x64, 0xcb, 0x39, 0xe7, 0x8f, 0x97, 0x9c, 0x5c, 0x3c, 0xfb, 0x51, 0x11, 0x01, 0x17, 0xdb, 0xc9, 0x9b, 0x51, 0x03, 0x9a, 0xe9, 0xe5, 0x24, 0x1e, 0xf5, 0xda, 0xe0, 0x48, 0x02, 0x23, 0xd0, 0x2c, 0x81,
/* (2^ 90)P */ 0x42, 0x1b, 0xe4, 0x91, 0x85, 0x2a, 0x0c, 0xd2, 0x28, 0x66, 0x57, 0x9e, 0x33, 0x8d, 0x25, 0x71, 0x10, 0x65, 0x76, 0xa2, 0x8c, 0x21, 0x86, 0x81, 0x15, 0xc2, 0x27, 0xeb, 0x54, 0x2d, 0x4f, 0x6c, 0xe6, 0xd6, 0x24, 0x9c, 0x1a, 0x12, 0xb8, 0x81, 0xe2, 0x0a, 0xf3, 0xd3, 0xf0, 0xd3, 0xe1, 0x74, 0x1f, 0x9b, 0x11, 0x47, 0xd0, 0xcf, 0xb6, 0x54,
/* (2^ 91)P */ 0x26, 0x45, 0xa2, 0x10, 0xd4, 0x2d, 0xae, 0xc0, 0xb0, 0xe8, 0x86, 0xb3, 0xc7, 0xea, 0x70, 0x87, 0x61, 0xb5, 0xa5, 0x55, 0xbe, 0x88, 0x1d, 0x7a, 0xd9, 0x6f, 0xeb, 0x83, 0xe2, 0x44, 0x7f, 0x98, 0x04, 0xd6, 0x50, 0x9d, 0xa7, 0x86, 0x66, 0x09, 0x63, 0xe1, 0xed, 0x72, 0xb1, 0xe4, 0x1d, 0x3a, 0xfd, 0x47, 0xce, 0x1c, 0xaa, 0x3b, 0x8f, 0x1b,
/* (2^ 92)P */ 0xf4, 0x3c, 0x4a, 0xb6, 0xc2, 0x9c, 0xe0, 0x2e, 0xb7, 0x38, 0xea, 0x61, 0x35, 0x97, 0x10, 0x90, 0xae, 0x22, 0x48, 0xb3, 0xa9, 0xc6, 0x7a, 0xbb, 0x23, 0xf2, 0xf8, 0x1b, 0xa7, 0xa1, 0x79, 0xcc, 0xc4, 0xf8, 0x08, 0x76, 0x8a, 0x5a, 0x1c, 0x1b, 0xc5, 0x33, 0x91, 0xa9, 0xb8, 0xb9, 0xd3, 0xf8, 0x49, 0xcd, 0xe5, 0x82, 0x43, 0xf7, 0xca, 0x68,
/* (2^ 93)P */ 0x38, 0xba, 0xae, 0x44, 0xfe, 0x57, 0x64, 0x56, 0x7c, 0x0e, 0x9c, 0xca, 0xff, 0xa9, 0x82, 0xbb, 0x38, 0x4a, 0xa7, 0xf7, 0x47, 0xab, 0xbe, 0x6d, 0x23, 0x0b, 0x8a, 0xed, 0xc2, 0xb9, 0x8f, 0xf1, 0xec, 0x91, 0x44, 0x73, 0x64, 0xba, 0xd5, 0x8f, 0x37, 0x38, 0x0d, 0xd5, 0xf8, 0x73, 0x57, 0xb6, 0xc2, 0x45, 0xdc, 0x25, 0xb2, 0xb6, 0xea, 0xd9,
/* (2^ 94)P */ 0xbf, 0xe9, 0x1a, 0x40, 0x4d, 0xcc, 0xe6, 0x1d, 0x70, 0x1a, 0x65, 0xcc, 0x34, 0x2c, 0x37, 0x2c, 0x2d, 0x6b, 0x6d, 0xe5, 0x2f, 0x19, 0x9e, 0xe4, 0xe1, 0xaa, 0xd4, 0xab, 0x54, 0xf4, 0xa8, 0xe4, 0x69, 0x2d, 0x8e, 0x4d, 0xd7, 0xac, 0xb0, 0x5b, 0xfe, 0xe3, 0x26, 0x07, 0xc3, 0xf8, 0x1b, 0x43, 0xa8, 0x1d, 0x64, 0xa5, 0x25, 0x88, 0xbb, 0x77,
/* (2^ 95)P */ 0x92, 0xcd, 0x6e, 0xa0, 0x79, 0x04, 0x18, 0xf4, 0x11, 0x58, 0x48, 0xb5, 0x3c, 0x7b, 0xd1, 0xcc, 0xd3, 0x14, 0x2c, 0xa0, 0xdd, 0x04, 0x44, 0x11, 0xb3, 0x6d, 0x2f, 0x0d, 0xf5, 0x2a, 0x75, 0x5d, 0x1d, 0xda, 0x86, 0x8d, 0x7d, 0x6b, 0x32, 0x68, 0xb6, 0x6c, 0x64, 0x9e, 0xde, 0x80, 0x88, 0xce, 0x08, 0xbf, 0x0b, 0xe5, 0x8e, 0x4f, 0x1d, 0xfb,
/* (2^ 96)P */ 0xaf, 0xe8, 0x85, 0xbf, 0x7f, 0x37, 0x8d, 0x66, 0x7c, 0xd5, 0xd3, 0x96, 0xa5, 0x81, 0x67, 0x95, 0xff, 0x48, 0xde, 0xde, 0xd7, 0x7a, 0x46, 0x34, 0xb1, 0x13, 0x70, 0x29, 0xed, 0x87, 0x90, 0xb0, 0x40, 0x2c, 0xa6, 0x43, 0x6e, 0xb6, 0xbc, 0x48, 0x8a, 0xc1, 0xae, 0xb8, 0xd4, 0xe2, 0xc0, 0x32, 0xb2, 0xa6, 0x2a, 0x8f, 0xb5, 0x16, 0x9e, 0xc3,
/* (2^ 97)P */ 0xff, 0x4d, 0xd2, 0xd6, 0x74, 0xef, 0x2c, 0x96, 0xc1, 0x11, 0xa8, 0xb8, 0xfe, 0x94, 0x87, 0x3e, 0xa0, 0xfb, 0x57, 0xa3, 0xfc, 0x7a, 0x7e, 0x6a, 0x59, 0x6c, 0x54, 0xbb, 0xbb, 0xa2, 0x25, 0x38, 0x1b, 0xdf, 0x5d, 0x7b, 0x94, 0x14, 0xde, 0x07, 0x6e, 0xd3, 0xab, 0x02, 0x26, 0x74, 0x16, 0x12, 0xdf, 0x2e, 0x2a, 0xa7, 0xb0, 0xe8, 0x29, 0xc0,
/* (2^ 98)P */ 0x6a, 0x38, 0x0b, 0xd3, 0xba, 0x45, 0x23, 0xe0, 0x04, 0x3b, 0x83, 0x39, 0xc5, 0x11, 0xe6, 0xcf, 0x39, 0x0a, 0xb3, 0xb0, 0x3b, 0x27, 0x29, 0x63, 0x1c, 0xf3, 0x00, 0xe6, 0xd2, 0x55, 0x21, 0x1f, 0x84, 0x97, 0x9f, 0x01, 0x49, 0x43, 0x30, 0x5f, 0xe0, 0x1d, 0x24, 0xc4, 0x4e, 0xa0, 0x2b, 0x0b, 0x12, 0x55, 0xc3, 0x27, 0xae, 0x08, 0x83, 0x7c,
/* (2^ 99)P */ 0x5d, 0x1a, 0xb7, 0xa9, 0xf5, 0xfd, 0xec, 0xad, 0xb7, 0x87, 0x02, 0x5f, 0x0d, 0x30, 0x4d, 0xe2, 0x65, 0x87, 0xa4, 0x41, 0x45, 0x1d, 0x67, 0xe0, 0x30, 0x5c, 0x13, 0x87, 0xf6, 0x2e, 0x08, 0xc1, 0xc7, 0x12, 0x45, 0xc8, 0x9b, 0xad, 0xb8, 0xd5, 0x57, 0xbb, 0x5c, 0x48, 0x3a, 0xe1, 0x91, 0x5e, 0xf6, 0x4d, 0x8a, 0x63, 0x75, 0x69, 0x0c, 0x01,
/* (2^100)P */ 0x8f, 0x53, 0x2d, 0xa0, 0x71, 0x3d, 0xfc, 0x45, 0x10, 0x96, 0xcf, 0x56, 0xf9, 0xbb, 0x40, 0x3c, 0x86, 0x52, 0x76, 0xbe, 0x84, 0xf9, 0xa6, 0x9d, 0x3d, 0x27, 0xbe, 0xb4, 0x00, 0x49, 0x94, 0xf5, 0x5d, 0xe1, 0x62, 0x85, 0x66, 0xe5, 0xb8, 0x20, 0x2c, 0x09, 0x7d, 0x9d, 0x3d, 0x6e, 0x74, 0x39, 0xab, 0xad, 0xa0, 0x90, 0x97, 0x5f, 0xbb, 0xa7,
/* (2^101)P */ 0xdb, 0x2d, 0x99, 0x08, 0x16, 0x46, 0x83, 0x7a, 0xa8, 0xea, 0x3d, 0x28, 0x5b, 0x49, 0xfc, 0xb9, 0x6d, 0x00, 0x9e, 0x54, 0x4f, 0x47, 0x64, 0x9b, 0x58, 0x4d, 0x07, 0x0c, 0x6f, 0x29, 0x56, 0x0b, 0x00, 0x14, 0x85, 0x96, 0x41, 0x04, 0xb9, 0x5c, 0xa4, 0xf6, 0x16, 0x73, 0x6a, 0xc7, 0x62, 0x0c, 0x65, 0x2f, 0x93, 0xbf, 0xf7, 0xb9, 0xb7, 0xf1,
/* (2^102)P */ 0xeb, 0x6d, 0xb3, 0x46, 0x32, 0xd2, 0xcb, 0x08, 0x94, 0x14, 0xbf, 0x3f, 0xc5, 0xcb, 0x5f, 0x9f, 0x8a, 0x89, 0x0c, 0x1b, 0x45, 0xad, 0x4c, 0x50, 0xb4, 0xe1, 0xa0, 0x6b, 0x11, 0x92, 0xaf, 0x1f, 0x00, 0xcc, 0xe5, 0x13, 0x7e, 0xe4, 0x2e, 0xa0, 0x57, 0xf3, 0xa7, 0x84, 0x79, 0x7a, 0xc2, 0xb7, 0xb7, 0xfc, 0x5d, 0xa5, 0xa9, 0x64, 0xcc, 0xd8,
/* (2^103)P */ 0xa9, 0xc4, 0x12, 0x8b, 0x34, 0x78, 0x3e, 0x38, 0xfd, 0x3f, 0x87, 0xfa, 0x88, 0x94, 0xd5, 0xd9, 0x7f, 0xeb, 0x58, 0xff, 0xb9, 0x45, 0xdb, 0xa1, 0xed, 0x22, 0x28, 0x1d, 0x00, 0x6d, 0x79, 0x85, 0x7a, 0x75, 0x5d, 0xf0, 0xb1, 0x9e, 0x47, 0x28, 0x8c, 0x62, 0xdf, 0xfb, 0x4c, 0x7b, 0xc5, 0x1a, 0x42, 0x95, 0xef, 0x9a, 0xb7, 0x27, 0x7e, 0xda,
/* (2^104)P */ 0xca, 0xd5, 0xc0, 0x17, 0xa1, 0x66, 0x79, 0x9c, 0x2a, 0xb7, 0x0a, 0xfe, 0x62, 0xe4, 0x26, 0x78, 0x90, 0xa7, 0xcb, 0xb0, 0x4f, 0x6d, 0xf9, 0x8f, 0xf7, 0x7d, 0xac, 0xb8, 0x78, 0x1f, 0x41, 0xea, 0x97, 0x1e, 0x62, 0x97, 0x43, 0x80, 0x58, 0x80, 0xb6, 0x69, 0x7d, 0xee, 0x16, 0xd2, 0xa1, 0x81, 0xd7, 0xb1, 0x27, 0x03, 0x48, 0xda, 0xab, 0xec,
/* (2^105)P */ 0x5b, 0xed, 0x40, 0x8e, 0x8c, 0xc1, 0x66, 0x90, 0x7f, 0x0c, 0xb2, 0xfc, 0xbd, 0x16, 0xac, 0x7d, 0x4c, 0x6a, 0xf9, 0xae, 0xe7, 0x4e, 0x11, 0x12, 0xe9, 0xbe, 0x17, 0x09, 0xc6, 0xc1, 0x5e, 0xb5, 0x7b, 0x50, 0x5c, 0x27, 0xfb, 0x80, 0xab, 0x01, 0xfa, 0x5b, 0x9b, 0x75, 0x16, 0x6e, 0xb2, 0x5c, 0x8c, 0x2f, 0xa5, 0x6a, 0x1a, 0x68, 0xa6, 0x90,
/* (2^106)P */ 0x75, 0xfe, 0xb6, 0x96, 0x96, 0x87, 0x4c, 0x12, 0xa9, 0xd1, 0xd8, 0x03, 0xa3, 0xc1, 0x15, 0x96, 0xe8, 0xa0, 0x75, 0x82, 0xa0, 0x6d, 0xea, 0x54, 0xdc, 0x5f, 0x0d, 0x7e, 0xf6, 0x70, 0xb5, 0xdc, 0x7a, 0xf6, 0xc4, 0xd4, 0x21, 0x49, 0xf5, 0xd4, 0x14, 0x6d, 0x48, 0x1d, 0x7c, 0x99, 0x42, 0xdf, 0x78, 0x6b, 0x9d, 0xb9, 0x30, 0x3c, 0xd0, 0x29,
/* (2^107)P */ 0x85, 0xd6, 0xd8, 0xf3, 0x91, 0x74, 0xdd, 0xbd, 0x72, 0x96, 0x10, 0xe4, 0x76, 0x02, 0x5a, 0x72, 0x67, 0xd3, 0x17, 0x72, 0x14, 0x9a, 0x20, 0x5b, 0x0f, 0x8d, 0xed, 0x6d, 0x4e, 0xe3, 0xd9, 0x82, 0xc2, 0x99, 0xee, 0x39, 0x61, 0x69, 0x8a, 0x24, 0x01, 0x92, 0x15, 0xe7, 0xfc, 0xf9, 0x4d, 0xac, 0xf1, 0x30, 0x49, 0x01, 0x0b, 0x6e, 0x0f, 0x20,
/* (2^108)P */ 0xd8, 0x25, 0x94, 0x5e, 0x43, 0x29, 0xf5, 0xcc, 0xe8, 0xe3, 0x55, 0x41, 0x3c, 0x9f, 0x58, 0x5b, 0x00, 0xeb, 0xc5, 0xdf, 0xcf, 0xfb, 0xfd, 0x6e, 0x92, 0xec, 0x99, 0x30, 0xd6, 0x05, 0xdd, 0x80, 0x7a, 0x5d, 0x6d, 0x16, 0x85, 0xd8, 0x9d, 0x43, 0x65, 0xd8, 0x2c, 0x33, 0x2f, 0x5c, 0x41, 0xea, 0xb7, 0x95, 0x77, 0xf2, 0x9e, 0x59, 0x09, 0xe8,
/* (2^109)P */ 0x00, 0xa0, 0x03, 0x80, 0xcd, 0x60, 0xe5, 0x17, 0xd4, 0x15, 0x99, 0xdd, 0x4f, 0xbf, 0x66, 0xb8, 0xc0, 0xf5, 0xf9, 0xfc, 0x6d, 0x42, 0x18, 0x34, 0x1c, 0x7d, 0x5b, 0xb5, 0x09, 0xd0, 0x99, 0x57, 0x81, 0x0b, 0x62, 0xb3, 0xa2, 0xf9, 0x0b, 0xae, 0x95, 0xb8, 0xc2, 0x3b, 0x0d, 0x5b, 0x00, 0xf1, 0xed, 0xbc, 0x05, 0x9d, 0x61, 0xbc, 0x73, 0x9d,
/* (2^110)P */ 0xd4, 0xdb, 0x29, 0xe5, 0x85, 0xe9, 0xc6, 0x89, 0x2a, 0xa8, 0x54, 0xab, 0xb3, 0x7f, 0x88, 0xc0, 0x4d, 0xe0, 0xd1, 0x74, 0x6e, 0xa3, 0xa7, 0x39, 0xd5, 0xcc, 0xa1, 0x8a, 0xcb, 0x5b, 0x34, 0xad, 0x92, 0xb4, 0xd8, 0xd5, 0x17, 0xf6, 0x77, 0x18, 0x9e, 0xaf, 0x45, 0x3b, 0x03, 0xe2, 0xf8, 0x52, 0x60, 0xdc, 0x15, 0x20, 0x9e, 0xdf, 0xd8, 0x5d,
/* (2^111)P */ 0x02, 0xc1, 0xac, 0x1a, 0x15, 0x8e, 0x6c, 0xf5, 0x1e, 0x1e, 0xba, 0x7e, 0xc2, 0xda, 0x7d, 0x02, 0xda, 0x43, 0xae, 0x04, 0x70, 0x28, 0x54, 0x78, 0x94, 0xf5, 0x4f, 0x07, 0x84, 0x8f, 0xed, 0xaa, 0xc0, 0xb8, 0xcd, 0x7f, 0x7e, 0x33, 0xa3, 0xbe, 0x21, 0x29, 0xc8, 0x56, 0x34, 0xc0, 0x76, 0x87, 0x8f, 0xc7, 0x73, 0x58, 0x90, 0x16, 0xfc, 0xd6,
/* (2^112)P */ 0xb8, 0x3f, 0xe1, 0xdf, 0x3a, 0x91, 0x25, 0x0c, 0xf6, 0x47, 0xa8, 0x89, 0xc4, 0xc6, 0x61, 0xec, 0x86, 0x2c, 0xfd, 0xbe, 0xa4, 0x6f, 0xc2, 0xd4, 0x46, 0x19, 0x70, 0x5d, 0x09, 0x02, 0x86, 0xd3, 0x4b, 0xe9, 0x16, 0x7b, 0xf0, 0x0d, 0x6c, 0xff, 0x91, 0x05, 0xbf, 0x55, 0xb4, 0x00, 0x8d, 0xe5, 0x6d, 0x68, 0x20, 0x90, 0x12, 0xb5, 0x5c, 0x32,
/* (2^113)P */ 0x80, 0x45, 0xc8, 0x51, 0x87, 0xba, 0x1c, 0x5c, 0xcf, 0x5f, 0x4b, 0x3c, 0x9e, 0x3b, 0x36, 0xd2, 0x26, 0xa2, 0x7f, 0xab, 0xb7, 0xbf, 0xda, 0x68, 0x23, 0x8f, 0xc3, 0xa0, 0xfd, 0xad, 0xf1, 0x56, 0x3b, 0xd0, 0x75, 0x2b, 0x44, 0x61, 0xd8, 0xf4, 0xf1, 0x05, 0x49, 0x53, 0x07, 0xee, 0x47, 0xef, 0xc0, 0x7c, 0x9d, 0xe4, 0x15, 0x88, 0xc5, 0x47,
/* (2^114)P */ 0x2d, 0xb5, 0x09, 0x80, 0xb9, 0xd3, 0xd8, 0xfe, 0x4c, 0xd2, 0xa6, 0x6e, 0xd3, 0x75, 0xcf, 0xb0, 0x99, 0xcb, 0x50, 0x8d, 0xe9, 0x67, 0x9b, 0x20, 0xe8, 0x57, 0xd8, 0x14, 0x85, 0x73, 0x6a, 0x74, 0xe0, 0x99, 0xf0, 0x6b, 0x6e, 0x59, 0x30, 0x31, 0x33, 0x96, 0x5f, 0xa1, 0x0c, 0x1b, 0xf4, 0xca, 0x09, 0xe1, 0x9b, 0xb5, 0xcf, 0x6d, 0x0b, 0xeb,
/* (2^115)P */ 0x1a, 0xde, 0x50, 0xa9, 0xac, 0x3e, 0x10, 0x43, 0x4f, 0x82, 0x4f, 0xc0, 0xfe, 0x3f, 0x33, 0xd2, 0x64, 0x86, 0x50, 0xa9, 0x51, 0x76, 0x5e, 0x50, 0x97, 0x6c, 0x73, 0x8d, 0x77, 0xa3, 0x75, 0x03, 0xbc, 0xc9, 0xfb, 0x50, 0xd9, 0x6d, 0x16, 0xad, 0x5d, 0x32, 0x3d, 0xac, 0x44, 0xdf, 0x51, 0xf7, 0x19, 0xd4, 0x0b, 0x57, 0x78, 0x0b, 0x81, 0x4e,
/* (2^116)P */ 0x32, 0x24, 0xf1, 0x6c, 0x55, 0x62, 0x1d, 0xb3, 0x1f, 0xda, 0xfa, 0x6a, 0x8f, 0x98, 0x01, 0x16, 0xde, 0x44, 0x50, 0x0d, 0x2e, 0x6c, 0x0b, 0xa2, 0xd3, 0x74, 0x0e, 0xa9, 0xbf, 0x8d, 0xa9, 0xc8, 0xc8, 0x2f, 0x62, 0xc1, 0x35, 0x5e, 0xfd, 0x3a, 0xb3, 0x83, 0x2d, 0xee, 0x4e, 0xfd, 0x5c, 0x5e, 0xad, 0x85, 0xa5, 0x10, 0xb5, 0x4f, 0x34, 0xa7,
/* (2^117)P */ 0xd1, 0x58, 0x6f, 0xe6, 0x54, 0x2c, 0xc2, 0xcd, 0xcf, 0x83, 0xdc, 0x88, 0x0c, 0xb9, 0xb4, 0x62, 0x18, 0x89, 0x65, 0x28, 0xe9, 0x72, 0x4b, 0x65, 0xcf, 0xd6, 0x90, 0x88, 0xd7, 0x76, 0x17, 0x4f, 0x74, 0x64, 0x1e, 0xcb, 0xd3, 0xf5, 0x4b, 0xaa, 0x2e, 0x4d, 0x2d, 0x7c, 0x13, 0x1f, 0xfd, 0xd9, 0x60, 0x83, 0x7e, 0xda, 0x64, 0x1c, 0xdc, 0x9f,
/* (2^118)P */ 0xad, 0xef, 0xac, 0x1b, 0xc1, 0x30, 0x5a, 0x15, 0xc9, 0x1f, 0xac, 0xf1, 0xca, 0x44, 0x95, 0x95, 0xea, 0xf2, 0x22, 0xe7, 0x8d, 0x25, 0xf0, 0xff, 0xd8, 0x71, 0xf7, 0xf8, 0x8f, 0x8f, 0xcd, 0xf4, 0x1e, 0xfe, 0x6c, 0x68, 0x04, 0xb8, 0x78, 0xa1, 0x5f, 0xa6, 0x5d, 0x5e, 0xf9, 0x8d, 0xea, 0x80, 0xcb, 0xf3, 0x17, 0xa6, 0x03, 0xc9, 0x38, 0xd5,
/* (2^119)P */ 0x79, 0x14, 0x31, 0xc3, 0x38, 0xe5, 0xaa, 0xbf, 0x17, 0xa3, 0x04, 0x4e, 0x80, 0x59, 0x9c, 0x9f, 0x19, 0x39, 0xe4, 0x2d, 0x23, 0x54, 0x4a, 0x7f, 0x3e, 0xf3, 0xd9, 0xc7, 0xba, 0x6c, 0x8f, 0x6b, 0xfa, 0x34, 0xb5, 0x23, 0x17, 0x1d, 0xff, 0x1d, 0xea, 0x1f, 0xd7, 0xba, 0x61, 0xb2, 0xe0, 0x38, 0x6a, 0xe9, 0xcf, 0x48, 0x5d, 0x6a, 0x10, 0x9c,
/* (2^120)P */ 0xc8, 0xbb, 0x13, 0x1c, 0x3f, 0x3c, 0x34, 0xfd, 0xac, 0x37, 0x52, 0x44, 0x25, 0xa8, 0xde, 0x1d, 0x63, 0xf4, 0x81, 0x9a, 0xbe, 0x0b, 0x74, 0x2e, 0xc8, 0x51, 0x16, 0xd3, 0xac, 0x4a, 0xaf, 0xe2, 0x5f, 0x3a, 0x89, 0x32, 0xd1, 0x9b, 0x7c, 0x90, 0x0d, 0xac, 0xdc, 0x8b, 0x73, 0x45, 0x45, 0x97, 0xb1, 0x90, 0x2c, 0x1b, 0x31, 0xca, 0xb1, 0x94,
/* (2^121)P */ 0x07, 0x28, 0xdd, 0x10, 0x14, 0xa5, 0x95, 0x7e, 0xf3, 0xe4, 0xd4, 0x14, 0xb4, 0x7e, 0x76, 0xdb, 0x42, 0xd6, 0x94, 0x3e, 0xeb, 0x44, 0x64, 0x88, 0x0d, 0xec, 0xc1, 0x21, 0xf0, 0x79, 0xe0, 0x83, 0x67, 0x55, 0x53, 0xc2, 0xf6, 0xc5, 0xc5, 0x89, 0x39, 0xe8, 0x42, 0xd0, 0x17, 0xbd, 0xff, 0x35, 0x59, 0x0e, 0xc3, 0x06, 0x86, 0xd4, 0x64, 0xcf,
/* (2^122)P */ 0x91, 0xa8, 0xdb, 0x57, 0x9b, 0xe2, 0x96, 0x31, 0x10, 0x6e, 0xd7, 0x9a, 0x97, 0xb3, 0xab, 0xb5, 0x15, 0x66, 0xbe, 0xcc, 0x6d, 0x9a, 0xac, 0x06, 0xb3, 0x0d, 0xaa, 0x4b, 0x9c, 0x96, 0x79, 0x6c, 0x34, 0xee, 0x9e, 0x53, 0x4d, 0x6e, 0xbd, 0x88, 0x02, 0xbf, 0x50, 0x54, 0x12, 0x5d, 0x01, 0x02, 0x46, 0xc6, 0x74, 0x02, 0x8c, 0x24, 0xae, 0xb1,
/* (2^123)P */ 0xf5, 0x22, 0xea, 0xac, 0x7d, 0x9c, 0x33, 0x8a, 0xa5, 0x36, 0x79, 0x6a, 0x4f, 0xa4, 0xdc, 0xa5, 0x73, 0x64, 0xc4, 0x6f, 0x43, 0x02, 0x3b, 0x94, 0x66, 0xd2, 0x4b, 0x4f, 0xf6, 0x45, 0x33, 0x5d, 0x10, 0x33, 0x18, 0x1e, 0xa3, 0xfc, 0xf7, 0xd2, 0xb8, 0xc8, 0xa7, 0xe0, 0x76, 0x8a, 0xcd, 0xff, 0x4f, 0x99, 0x34, 0x47, 0x84, 0x91, 0x96, 0x9f,
/* (2^124)P */ 0x8a, 0x48, 0x3b, 0x48, 0x4a, 0xbc, 0xac, 0xe2, 0x80, 0xd6, 0xd2, 0x35, 0xde, 0xd0, 0x56, 0x42, 0x33, 0xb3, 0x56, 0x5a, 0xcd, 0xb8, 0x3d, 0xb5, 0x25, 0xc1, 0xed, 0xff, 0x87, 0x0b, 0x79, 0xff, 0xf2, 0x62, 0xe1, 0x76, 0xc6, 0xa2, 0x0f, 0xa8, 0x9b, 0x0d, 0xcc, 0x3f, 0x3d, 0x35, 0x27, 0x8d, 0x0b, 0x74, 0xb0, 0xc3, 0x78, 0x8c, 0xcc, 0xc8,
/* (2^125)P */ 0xfc, 0x9a, 0x0c, 0xa8, 0x49, 0x42, 0xb8, 0xdf, 0xcf, 0xb3, 0x19, 0xa6, 0x64, 0x57, 0xfe, 0xe8, 0xf8, 0xa6, 0x4b, 0x86, 0xa1, 0xd5, 0x83, 0x7f, 0x14, 0x99, 0x18, 0x0c, 0x7d, 0x5b, 0xf7, 0x3d, 0xf9, 0x4b, 0x79, 0xb1, 0x86, 0x30, 0xb4, 0x5e, 0x6a, 0xe8, 0x9d, 0xfa, 0x8a, 0x41, 0xc4, 0x30, 0xfc, 0x56, 0x74, 0x14, 0x42, 0xc8, 0x96, 0x0e,
/* (2^126)P */ 0xdf, 0x66, 0xec, 0xbc, 0x44, 0xdb, 0x19, 0xce, 0xd4, 0xb5, 0x49, 0x40, 0x07, 0x49, 0xe0, 0x3a, 0x61, 0x10, 0xfb, 0x7d, 0xba, 0xb1, 0xe0, 0x28, 0x5b, 0x99, 0x59, 0x96, 0xa2, 0xee, 0xe0, 0x23, 0x37, 0x39, 0x1f, 0xe6, 0x57, 0x9f, 0xf8, 0xf8, 0xdc, 0x74, 0xf6, 0x8f, 0x4f, 0x5e, 0x51, 0xa4, 0x12, 0xac, 0xbe, 0xe4, 0xf3, 0xd1, 0xf0, 0x24,
/* (2^127)P */ 0x1e, 0x3e, 0x9a, 0x5f, 0xdf, 0x9f, 0xd6, 0x4e, 0x8a, 0x28, 0xc3, 0xcd, 0x96, 0x9d, 0x57, 0xc7, 0x61, 0x81, 0x90, 0xff, 0xae, 0xb1, 0x4f, 0xc2, 0x96, 0x8b, 0x1a, 0x18, 0xf4, 0x50, 0xcb, 0x31, 0xe1, 0x57, 0xf4, 0x90, 0xa8, 0xea, 0xac, 0xe7, 0x61, 0x98, 0xb6, 0x15, 0xc1, 0x7b, 0x29, 0xa4, 0xc3, 0x18, 0xef, 0xb9, 0xd8, 0xdf, 0xf6, 0xac,
/* (2^128)P */ 0xca, 0xa8, 0x6c, 0xf1, 0xb4, 0xca, 0xfe, 0x31, 0xee, 0x48, 0x38, 0x8b, 0x0e, 0xbb, 0x7a, 0x30, 0xaa, 0xf9, 0xee, 0x27, 0x53, 0x24, 0xdc, 0x2e, 0x15, 0xa6, 0x48, 0x8f, 0xa0, 0x7e, 0xf1, 0xdc, 0x93, 0x87, 0x39, 0xeb, 0x7f, 0x38, 0x92, 0x92, 0x4c, 0x29, 0xe9, 0x57, 0xd8, 0x59, 0xfc, 0xe9, 0x9c, 0x44, 0xc0, 0x65, 0xcf, 0xac, 0x4b, 0xdc,
/* (2^129)P */ 0xa3, 0xd0, 0x37, 0x8f, 0x86, 0x2f, 0xc6, 0x47, 0x55, 0x46, 0x65, 0x26, 0x4b, 0x91, 0xe2, 0x18, 0x5c, 0x4f, 0x23, 0xc1, 0x37, 0x29, 0xb9, 0xc1, 0x27, 0xc5, 0x3c, 0xbf, 0x7e, 0x23, 0xdb, 0x73, 0x99, 0xbd, 0x1b, 0xb2, 0x31, 0x68, 0x3a, 0xad, 0xb7, 0xb0, 0x10, 0xc5, 0xe5, 0x11, 0x51, 0xba, 0xa7, 0x60, 0x66, 0x54, 0xf0, 0x08, 0xd7, 0x69,
/* (2^130)P */ 0x89, 0x41, 0x79, 0xcc, 0xeb, 0x0a, 0xf5, 0x4b, 0xa3, 0x4c, 0xce, 0x52, 0xb0, 0xa7, 0xe4, 0x41, 0x75, 0x7d, 0x04, 0xbb, 0x09, 0x4c, 0x50, 0x9f, 0xdf, 0xea, 0x74, 0x61, 0x02, 0xad, 0xb4, 0x9d, 0xb7, 0x05, 0xb9, 0xea, 0xeb, 0x91, 0x35, 0xe7, 0x49, 0xea, 0xd3, 0x4f, 0x3c, 0x60, 0x21, 0x7a, 0xde, 0xc7, 0xe2, 0x5a, 0xee, 0x8e, 0x93, 0xc7,
/* (2^131)P */ 0x00, 0xe8, 0xed, 0xd0, 0xb3, 0x0d, 0xaf, 0xb2, 0xde, 0x2c, 0xf6, 0x00, 0xe2, 0xea, 0x6d, 0xf8, 0x0e, 0xd9, 0x67, 0x59, 0xa9, 0x50, 0xbb, 0x17, 0x8f, 0xff, 0xb1, 0x9f, 0x17, 0xb6, 0xf2, 0xb5, 0xba, 0x80, 0xf7, 0x0f, 0xba, 0xd5, 0x09, 0x43, 0xaa, 0x4e, 0x3a, 0x67, 0x6a, 0x89, 0x9b, 0x18, 0x65, 0x35, 0xf8, 0x3a, 0x49, 0x91, 0x30, 0x51,
/* (2^132)P */ 0x8d, 0x25, 0xe9, 0x0e, 0x7d, 0x50, 0x76, 0xe4, 0x58, 0x7e, 0xb9, 0x33, 0xe6, 0x65, 0x90, 0xc2, 0x50, 0x9d, 0x50, 0x2e, 0x11, 0xad, 0xd5, 0x43, 0x52, 0x32, 0x41, 0x4f, 0x7b, 0xb6, 0xa0, 0xec, 0x81, 0x75, 0x36, 0x7c, 0x77, 0x85, 0x59, 0x70, 0xe4, 0xf9, 0xef, 0x66, 0x8d, 0x35, 0xc8, 0x2a, 0x6e, 0x5b, 0xc6, 0x0d, 0x0b, 0x29, 0x60, 0x68,
/* (2^133)P */ 0xf8, 0xce, 0xb0, 0x3a, 0x56, 0x7d, 0x51, 0x9a, 0x25, 0x73, 0xea, 0xdd, 0xe4, 0xe0, 0x0e, 0xf0, 0x07, 0xc0, 0x31, 0x00, 0x73, 0x35, 0xd0, 0x39, 0xc4, 0x9b, 0xb7, 0x95, 0xe0, 0x62, 0x70, 0x36, 0x0b, 0xcb, 0xa0, 0x42, 0xde, 0x51, 0xcf, 0x41, 0xe0, 0xb8, 0xb4, 0xc0, 0xe5, 0x46, 0x99, 0x9f, 0x02, 0x7f, 0x14, 0x8c, 0xc1, 0x4e, 0xef, 0xe8,
/* (2^134)P */ 0x10, 0x01, 0x57, 0x0a, 0xbe, 0x8b, 0x18, 0xc8, 0xca, 0x00, 0x28, 0x77, 0x4a, 0x9a, 0xc7, 0x55, 0x2a, 0xcc, 0x0c, 0x7b, 0xb9, 0xe9, 0xc8, 0x97, 0x7c, 0x02, 0xe3, 0x09, 0x2f, 0x62, 0x30, 0xb8, 0x40, 0x09, 0x65, 0xe9, 0x55, 0x63, 0xb5, 0x07, 0xca, 0x9f, 0x00, 0xdf, 0x9d, 0x5c, 0xc7, 0xee, 0x57, 0xa5, 0x90, 0x15, 0x1e, 0x22, 0xa0, 0x12,
/* (2^135)P */ 0x71, 0x2d, 0xc9, 0xef, 0x27, 0xb9, 0xd8, 0x12, 0x43, 0x6b, 0xa8, 0xce, 0x3b, 0x6d, 0x6e, 0x91, 0x43, 0x23, 0xbc, 0x32, 0xb3, 0xbf, 0xe1, 0xc7, 0x39, 0xcf, 0x7c, 0x42, 0x4c, 0xb1, 0x30, 0xe2, 0xdd, 0x69, 0x06, 0xe5, 0xea, 0xf0, 0x2a, 0x16, 0x50, 0x71, 0xca, 0x92, 0xdf, 0xc1, 0xcc, 0xec, 0xe6, 0x54, 0x07, 0xf3, 0x18, 0x8d, 0xd8, 0x29,
/* (2^136)P */ 0x98, 0x51, 0x48, 0x8f, 0xfa, 0x2e, 0x5e, 0x67, 0xb0, 0xc6, 0x17, 0x12, 0xb6, 0x7d, 0xc9, 0xad, 0x81, 0x11, 0xad, 0x0c, 0x1c, 0x2d, 0x45, 0xdf, 0xac, 0x66, 0xbd, 0x08, 0x6f, 0x7c, 0xc7, 0x06, 0x6e, 0x19, 0x08, 0x39, 0x64, 0xd7, 0xe4, 0xd1, 0x11, 0x5f, 0x1c, 0xf4, 0x67, 0xc3, 0x88, 0x6a, 0xe6, 0x07, 0xa3, 0x83, 0xd7, 0xfd, 0x2a, 0xf9,
/* (2^137)P */ 0x87, 0xed, 0xeb, 0xd9, 0xdf, 0xff, 0x43, 0x8b, 0xaa, 0x20, 0x58, 0xb0, 0xb4, 0x6b, 0x14, 0xb8, 0x02, 0xc5, 0x40, 0x20, 0x22, 0xbb, 0xf7, 0xb4, 0xf3, 0x05, 0x1e, 0x4d, 0x94, 0xff, 0xe3, 0xc5, 0x22, 0x82, 0xfe, 0xaf, 0x90, 0x42, 0x98, 0x6b, 0x76, 0x8b, 0x3e, 0x89, 0x3f, 0x42, 0x2a, 0xa7, 0x26, 0x00, 0xda, 0x5c, 0xa2, 0x2b, 0xec, 0xdd,
/* (2^138)P */ 0x5c, 0x21, 0x16, 0x0d, 0x46, 0xb8, 0xd0, 0xa7, 0x88, 0xe7, 0x25, 0xcb, 0x3e, 0x50, 0x73, 0x61, 0xe7, 0xaf, 0x5a, 0x3f, 0x47, 0x8b, 0x3d, 0x97, 0x79, 0x2c, 0xe6, 0x6d, 0x95, 0x74, 0x65, 0x70, 0x36, 0xfd, 0xd1, 0x9e, 0x13, 0x18, 0x63, 0xb1, 0x2d, 0x0b, 0xb5, 0x36, 0x3e, 0xe7, 0x35, 0x42, 0x3b, 0xe6, 0x1f, 0x4d, 0x9d, 0x59, 0xa2, 0x43,
/* (2^139)P */ 0x8c, 0x0c, 0x7c, 0x24, 0x9e, 0xe0, 0xf8, 0x05, 0x1c, 0x9e, 0x1f, 0x31, 0xc0, 0x70, 0xb3, 0xfb, 0x4e, 0xf8, 0x0a, 0x57, 0xb7, 0x49, 0xb5, 0x73, 0xa1, 0x5f, 0x9b, 0x6a, 0x07, 0x6c, 0x87, 0x71, 0x87, 0xd4, 0xbe, 0x98, 0x1e, 0x98, 0xee, 0x52, 0xc1, 0x7b, 0x95, 0x0f, 0x28, 0x32, 0x36, 0x28, 0xd0, 0x3a, 0x0f, 0x7d, 0x2a, 0xa9, 0x62, 0xb9,
/* (2^140)P */ 0x97, 0xe6, 0x18, 0x77, 0xf9, 0x34, 0xac, 0xbc, 0xe0, 0x62, 0x9f, 0x42, 0xde, 0xbd, 0x2f, 0xf7, 0x1f, 0xb7, 0x14, 0x52, 0x8a, 0x79, 0xb2, 0x3f, 0xd2, 0x95, 0x71, 0x01, 0xe8, 0xaf, 0x8c, 0xa4, 0xa4, 0xa7, 0x27, 0xf3, 0x5c, 0xdf, 0x3e, 0x57, 0x7a, 0xf1, 0x76, 0x49, 0xe6, 0x42, 0x3f, 0x8f, 0x1e, 0x63, 0x4a, 0x65, 0xb5, 0x41, 0xf5, 0x02,
/* (2^141)P */ 0x72, 0x85, 0xc5, 0x0b, 0xe1, 0x47, 0x64, 0x02, 0xc5, 0x4d, 0x81, 0x69, 0xb2, 0xcf, 0x0f, 0x6c, 0xd4, 0x6d, 0xd0, 0xc7, 0xb4, 0x1c, 0xd0, 0x32, 0x59, 0x89, 0xe2, 0xe0, 0x96, 0x8b, 0x12, 0x98, 0xbf, 0x63, 0x7a, 0x4c, 0x76, 0x7e, 0x58, 0x17, 0x8f, 0x5b, 0x0a, 0x59, 0x65, 0x75, 0xbc, 0x61, 0x1f, 0xbe, 0xc5, 0x6e, 0x0a, 0x57, 0x52, 0x70,
/* (2^142)P */ 0x92, 0x1c, 0x77, 0xbb, 0x62, 0x02, 0x6c, 0x25, 0x9c, 0x66, 0x07, 0x83, 0xab, 0xcc, 0x80, 0x5d, 0xd2, 0x76, 0x0c, 0xa4, 0xc5, 0xb4, 0x8a, 0x68, 0x23, 0x31, 0x32, 0x29, 0x8a, 0x47, 0x92, 0x12, 0x80, 0xb3, 0xfa, 0x18, 0xe4, 0x8d, 0xc0, 0x4d, 0xfe, 0x97, 0x5f, 0x72, 0x41, 0xb5, 0x5c, 0x7a, 0xbd, 0xf0, 0xcf, 0x5e, 0x97, 0xaa, 0x64, 0x32,
/* (2^143)P */ 0x35, 0x3f, 0x75, 0xc1, 0x7a, 0x75, 0x7e, 0xa9, 0xc6, 0x0b, 0x4e, 0x32, 0x62, 0xec, 0xe3, 0x5c, 0xfb, 0x01, 0x43, 0xb6, 0xd4, 0x5b, 0x75, 0xd2, 0xee, 0x7f, 0x5d, 0x23, 0x2b, 0xb3, 0x54, 0x34, 0x4c, 0xd3, 0xb4, 0x32, 0x84, 0x81, 0xb5, 0x09, 0x76, 0x19, 0xda, 0x58, 0xda, 0x7c, 0xdb, 0x2e, 0xdd, 0x4c, 0x8e, 0xdd, 0x5d, 0x89, 0x10, 0x10,
/* (2^144)P */ 0x57, 0x25, 0x6a, 0x08, 0x37, 0x92, 0xa8, 0xdf, 0x24, 0xef, 0x8f, 0x33, 0x34, 0x52, 0xa4, 0x4c, 0xf0, 0x77, 0x9f, 0x69, 0x77, 0xd5, 0x8f, 0xd2, 0x9a, 0xb3, 0xb6, 0x1d, 0x2d, 0xa6, 0xf7, 0x1f, 0xda, 0xd7, 0xcb, 0x75, 0x11, 0xc3, 0x6b, 0xc0, 0x38, 0xb1, 0xd5, 0x2d, 0x96, 0x84, 0x16, 0xfa, 0x26, 0xb9, 0xcc, 0x3f, 0x16, 0x47, 0x23, 0x74,
/* (2^145)P */ 0x9b, 0x61, 0x2a, 0x1c, 0xdd, 0x39, 0xa5, 0xfa, 0x1c, 0x7d, 0x63, 0x50, 0xca, 0xe6, 0x9d, 0xfa, 0xb7, 0xc4, 0x4c, 0x6a, 0x97, 0x5f, 0x36, 0x4e, 0x47, 0xdd, 0x17, 0xf7, 0xf9, 0x19, 0xce, 0x75, 0x17, 0xad, 0xce, 0x2a, 0xf3, 0xfe, 0x27, 0x8f, 0x3e, 0x48, 0xc0, 0x60, 0x87, 0x24, 0x19, 0xae, 0x59, 0xe4, 0x5a, 0x00, 0x2a, 0xba, 0xa2, 0x1f,
/* (2^146)P */ 0x26, 0x88, 0x42, 0x60, 0x9f, 0x6e, 0x2c, 0x7c, 0x39, 0x0f, 0x47, 0x6a, 0x0e, 0x02, 0xbb, 0x4b, 0x34, 0x29, 0x55, 0x18, 0x36, 0xcf, 0x3b, 0x47, 0xf1, 0x2e, 0xfc, 0x6e, 0x94, 0xff, 0xe8, 0x6b, 0x06, 0xd2, 0xba, 0x77, 0x5e, 0x60, 0xd7, 0x19, 0xef, 0x02, 0x9d, 0x3a, 0xc2, 0xb7, 0xa9, 0xd8, 0x57, 0xee, 0x7e, 0x2b, 0xf2, 0x6d, 0x28, 0xda,
/* (2^147)P */ 0xdf, 0xd9, 0x92, 0x11, 0x98, 0x23, 0xe2, 0x45, 0x2f, 0x74, 0x70, 0xee, 0x0e, 0x55, 0x65, 0x79, 0x86, 0x38, 0x17, 0x92, 0x85, 0x87, 0x99, 0x50, 0xd9, 0x7c, 0xdb, 0xa1, 0x10, 0xec, 0x30, 0xb7, 0x40, 0xa3, 0x23, 0x9b, 0x0e, 0x27, 0x49, 0x29, 0x03, 0x94, 0xff, 0x53, 0xdc, 0xd7, 0xed, 0x49, 0xa9, 0x5a, 0x3b, 0xee, 0xd7, 0xc7, 0x65, 0xaf,
/* (2^148)P */ 0xa0, 0xbd, 0xbe, 0x03, 0xee, 0x0c, 0xbe, 0x32, 0x00, 0x7b, 0x52, 0xcb, 0x92, 0x29, 0xbf, 0xa0, 0xc6, 0xd9, 0xd2, 0xd6, 0x15, 0xe8, 0x3a, 0x75, 0x61, 0x65, 0x56, 0xae, 0xad, 0x3c, 0x2a, 0x64, 0x14, 0x3f, 0x8e, 0xc1, 0x2d, 0x0c, 0x8d, 0x20, 0xdb, 0x58, 0x4b, 0xe5, 0x40, 0x15, 0x4b, 0xdc, 0xa8, 0xbd, 0xef, 0x08, 0xa7, 0xd1, 0xf4, 0xb0,
/* (2^149)P */ 0xa9, 0x0f, 0x05, 0x94, 0x66, 0xac, 0x1f, 0x65, 0x3f, 0xe1, 0xb8, 0xe1, 0x34, 0x5e, 0x1d, 0x8f, 0xe3, 0x93, 0x03, 0x15, 0xff, 0xb6, 0x65, 0xb6, 0x6e, 0xc0, 0x2f, 0xd4, 0x2e, 0xb9, 0x2c, 0x13, 0x3c, 0x99, 0x1c, 0xb5, 0x87, 0xba, 0x79, 0xcb, 0xf0, 0x18, 0x06, 0x86, 0x04, 0x14, 0x25, 0x09, 0xcd, 0x1c, 0x14, 0xda, 0x35, 0xd0, 0x38, 0x3b,
/* (2^150)P */ 0x1b, 0x04, 0xa3, 0x27, 0xb4, 0xd3, 0x37, 0x48, 0x1e, 0x8f, 0x69, 0xd3, 0x5a, 0x2f, 0x20, 0x02, 0x36, 0xbe, 0x06, 0x7b, 0x6b, 0x6c, 0x12, 0x5b, 0x80, 0x74, 0x44, 0xe6, 0xf8, 0xf5, 0x95, 0x59, 0x29, 0xab, 0x51, 0x47, 0x83, 0x28, 0xe0, 0xad, 0xde, 0xaa, 0xd3, 0xb1, 0x1a, 0xcb, 0xa3, 0xcd, 0x8b, 0x6a, 0xb1, 0xa7, 0x0a, 0xd1, 0xf9, 0xbe,
/* (2^151)P */ 0xce, 0x2f, 0x85, 0xca, 0x74, 0x6d, 0x49, 0xb8, 0xce, 0x80, 0x44, 0xe0, 0xda, 0x5b, 0xcf, 0x2f, 0x79, 0x74, 0xfe, 0xb4, 0x2c, 0x99, 0x20, 0x6e, 0x09, 0x04, 0xfb, 0x6d, 0x57, 0x5b, 0x95, 0x0c, 0x45, 0xda, 0x4f, 0x7f, 0x63, 0xcc, 0x85, 0x5a, 0x67, 0x50, 0x68, 0x71, 0xb4, 0x67, 0xb1, 0x2e, 0xc1, 0x1c, 0xdc, 0xff, 0x2a, 0x7c, 0x10, 0x5e,
/* (2^152)P */ 0xa6, 0xde, 0xf3, 0xd4, 0x22, 0x30, 0x24, 0x9e, 0x0b, 0x30, 0x54, 0x59, 0x7e, 0xa2, 0xeb, 0x89, 0x54, 0x65, 0x3e, 0x40, 0xd1, 0xde, 0xe6, 0xee, 0x4d, 0xbf, 0x5e, 0x40, 0x1d, 0xee, 0x4f, 0x68, 0xd9, 0xa7, 0x2f, 0xb3, 0x64, 0xb3, 0xf5, 0xc8, 0xd3, 0xaa, 0x70, 0x70, 0x3d, 0xef, 0xd3, 0x95, 0x54, 0xdb, 0x3e, 0x94, 0x95, 0x92, 0x1f, 0x45,
/* (2^153)P */ 0x22, 0x80, 0x1d, 0x9d, 0x96, 0xa5, 0x78, 0x6f, 0xe0, 0x1e, 0x1b, 0x66, 0x42, 0xc8, 0xae, 0x9e, 0x46, 0x45, 0x08, 0x41, 0xdf, 0x80, 0xae, 0x6f, 0xdb, 0x15, 0x5a, 0x21, 0x31, 0x7a, 0xd0, 0xf2, 0x54, 0x15, 0x88, 0xd3, 0x0f, 0x7f, 0x14, 0x5a, 0x14, 0x97, 0xab, 0xf4, 0x58, 0x6a, 0x9f, 0xea, 0x74, 0xe5, 0x6b, 0x90, 0x59, 0x2b, 0x48, 0xd9,
/* (2^154)P */ 0x12, 0x24, 0x04, 0xf5, 0x50, 0xc2, 0x8c, 0xb0, 0x7c, 0x46, 0x98, 0xd5, 0x24, 0xad, 0xf6, 0x72, 0xdc, 0x82, 0x1a, 0x60, 0xc1, 0xeb, 0x48, 0xef, 0x7f, 0x6e, 0xe6, 0xcc, 0xdb, 0x7b, 0xae, 0xbe, 0x5e, 0x1e, 0x5c, 0xe6, 0x0a, 0x70, 0xdf, 0xa4, 0xa3, 0x85, 0x1b, 0x1b, 0x7f, 0x72, 0xb9, 0x96, 0x6f, 0xdc, 0x03, 0x76, 0x66, 0xfb, 0xa0, 0x33,
/* (2^155)P */ 0x37, 0x40, 0xbb, 0xbc, 0x68, 0x58, 0x86, 0xca, 0xbb, 0xa5, 0x24, 0x76, 0x3d, 0x48, 0xd1, 0xad, 0xb4, 0xa8, 0xcf, 0xc3, 0xb6, 0xa8, 0xba, 0x1a, 0x3a, 0xbe, 0x33, 0x75, 0x04, 0x5c, 0x13, 0x8c, 0x0d, 0x70, 0x8d, 0xa6, 0x4e, 0x2a, 0xeb, 0x17, 0x3c, 0x22, 0xdd, 0x3e, 0x96, 0x40, 0x11, 0x9e, 0x4e, 0xae, 0x3d, 0xf8, 0x91, 0xd7, 0x50, 0xc8,
/* (2^156)P */ 0xd8, 0xca, 0xde, 0x19, 0xcf, 0x00, 0xe4, 0x73, 0x18, 0x7f, 0x9b, 0x9f, 0xf4, 0x5b, 0x49, 0x49, 0x99, 0xdc, 0xa4, 0x46, 0x21, 0xb5, 0xd7, 0x3e, 0xb7, 0x47, 0x1b, 0xa9, 0x9f, 0x4c, 0x69, 0x7d, 0xec, 0x33, 0xd6, 0x1c, 0x51, 0x7f, 0x47, 0x74, 0x7a, 0x6c, 0xf3, 0xd2, 0x2e, 0xbf, 0xdf, 0x6c, 0x9e, 0x77, 0x3b, 0x34, 0xf6, 0x73, 0x80, 0xed,
/* (2^157)P */ 0x16, 0xfb, 0x16, 0xc3, 0xc2, 0x83, 0xe4, 0xf4, 0x03, 0x7f, 0x52, 0xb0, 0x67, 0x51, 0x7b, 0x24, 0x5a, 0x51, 0xd3, 0xb6, 0x4e, 0x59, 0x76, 0xcd, 0x08, 0x7b, 0x1d, 0x7a, 0x9c, 0x65, 0xae, 0xce, 0xaa, 0xd2, 0x1c, 0x85, 0x66, 0x68, 0x06, 0x15, 0xa8, 0x06, 0xe6, 0x16, 0x37, 0xf4, 0x49, 0x9e, 0x0f, 0x50, 0x37, 0xb1, 0xb2, 0x93, 0x70, 0x43,
/* (2^158)P */ 0x18, 0x3a, 0x16, 0xe5, 0x8d, 0xc8, 0x35, 0xd6, 0x7b, 0x09, 0xec, 0x61, 0x5f, 0x5c, 0x2a, 0x19, 0x96, 0x2e, 0xc3, 0xfd, 0xab, 0xe6, 0x23, 0xae, 0xab, 0xc5, 0xcb, 0xb9, 0x7b, 0x2d, 0x34, 0x51, 0xb9, 0x41, 0x9e, 0x7d, 0xca, 0xda, 0x25, 0x45, 0x14, 0xb0, 0xc7, 0x4d, 0x26, 0x2b, 0xfe, 0x43, 0xb0, 0x21, 0x5e, 0xfa, 0xdc, 0x7c, 0xf9, 0x5a,
/* (2^159)P */ 0x94, 0xad, 0x42, 0x17, 0xf5, 0xcd, 0x1c, 0x0d, 0xf6, 0x41, 0xd2, 0x55, 0xbb, 0x50, 0xf1, 0xc6, 0xbc, 0xa6, 0xc5, 0x3a, 0xfd, 0x9b, 0x75, 0x3e, 0xf6, 0x1a, 0xa7, 0xb2, 0x6e, 0x64, 0x12, 0xdc, 0x3c, 0xe5, 0xf6, 0xfc, 0x3b, 0xfa, 0x43, 0x81, 0xd4, 0xa5, 0xee, 0xf5, 0x9c, 0x47, 0x2f, 0xd0, 0x9c, 0xde, 0xa1, 0x48, 0x91, 0x9a, 0x34, 0xc1,
/* (2^160)P */ 0x37, 0x1b, 0xb3, 0x88, 0xc9, 0x98, 0x4e, 0xfb, 0x84, 0x4f, 0x2b, 0x0a, 0xb6, 0x8f, 0x35, 0x15, 0xcd, 0x61, 0x7a, 0x5f, 0x5c, 0xa0, 0xca, 0x23, 0xa0, 0x93, 0x1f, 0xcc, 0x3c, 0x39, 0x3a, 0x24, 0xa7, 0x49, 0xad, 0x8d, 0x59, 0xcc, 0x94, 0x5a, 0x16, 0xf5, 0x70, 0xe8, 0x52, 0x1e, 0xee, 0x20, 0x30, 0x17, 0x7e, 0xf0, 0x4c, 0x93, 0x06, 0x5a,
/* (2^161)P */ 0x81, 0xba, 0x3b, 0xd7, 0x3e, 0xb4, 0x32, 0x3a, 0x22, 0x39, 0x2a, 0xfc, 0x19, 0xd9, 0xd2, 0xf6, 0xc5, 0x79, 0x6c, 0x0e, 0xde, 0xda, 0x01, 0xff, 0x52, 0xfb, 0xb6, 0x95, 0x4e, 0x7a, 0x10, 0xb8, 0x06, 0x86, 0x3c, 0xcd, 0x56, 0xd6, 0x15, 0xbf, 0x6e, 0x3e, 0x4f, 0x35, 0x5e, 0xca, 0xbc, 0xa5, 0x95, 0xa2, 0xdf, 0x2d, 0x1d, 0xaf, 0x59, 0xf9,
/* (2^162)P */ 0x69, 0xe5, 0xe2, 0xfa, 0xc9, 0x7f, 0xdd, 0x09, 0xf5, 0x6b, 0x4e, 0x2e, 0xbe, 0xb4, 0xbf, 0x3e, 0xb2, 0xf2, 0x81, 0x30, 0xe1, 0x07, 0xa8, 0x0d, 0x2b, 0xd2, 0x5a, 0x55, 0xbe, 0x4b, 0x86, 0x5d, 0xb0, 0x5e, 0x7c, 0x8f, 0xc1, 0x3c, 0x81, 0x4c, 0xf7, 0x6d, 0x7d, 0xe6, 0x4f, 0x8a, 0x85, 0xc2, 0x2f, 0x28, 0xef, 0x8c, 0x69, 0xc2, 0xc2, 0x1a,
/* (2^163)P */ 0xd9, 0xe4, 0x0e, 0x1e, 0xc2, 0xf7, 0x2f, 0x9f, 0xa1, 0x40, 0xfe, 0x46, 0x16, 0xaf, 0x2e, 0xd1, 0xec, 0x15, 0x9b, 0x61, 0x92, 0xce, 0xfc, 0x10, 0x43, 0x1d, 0x00, 0xf6, 0xbe, 0x20, 0x80, 0x80, 0x6f, 0x3c, 0x16, 0x94, 0x59, 0xba, 0x03, 0x53, 0x6e, 0xb6, 0xdd, 0x25, 0x7b, 0x86, 0xbf, 0x96, 0xf4, 0x2f, 0xa1, 0x96, 0x8d, 0xf9, 0xb3, 0x29,
/* (2^164)P */ 0x3b, 0x04, 0x60, 0x6e, 0xce, 0xab, 0xd2, 0x63, 0x18, 0x53, 0x88, 0x16, 0x4a, 0x6a, 0xab, 0x72, 0x03, 0x68, 0xa5, 0xd4, 0x0d, 0xb2, 0x82, 0x81, 0x1f, 0x2b, 0x5c, 0x75, 0xe8, 0xd2, 0x1d, 0x7f, 0xe7, 0x1b, 0x35, 0x02, 0xde, 0xec, 0xbd, 0xcb, 0xc7, 0x01, 0xd3, 0x95, 0x61, 0xfe, 0xb2, 0x7a, 0x66, 0x09, 0x4c, 0x6d, 0xfd, 0x39, 0xf7, 0x52,
/* (2^165)P */ 0x42, 0xc1, 0x5f, 0xf8, 0x35, 0x52, 0xc1, 0xfe, 0xc5, 0x11, 0x80, 0x1c, 0x11, 0x46, 0x31, 0x11, 0xbe, 0xd0, 0xc4, 0xb6, 0x07, 0x13, 0x38, 0xa0, 0x8d, 0x65, 0xf0, 0x56, 0x9e, 0x16, 0xbf, 0x9d, 0xcd, 0x51, 0x34, 0xf9, 0x08, 0x48, 0x7b, 0x76, 0x0c, 0x7b, 0x30, 0x07, 0xa8, 0x76, 0xaf, 0xa3, 0x29, 0x38, 0xb0, 0x58, 0xde, 0x72, 0x4b, 0x45,
/* (2^166)P */ 0xd4, 0x16, 0xa7, 0xc0, 0xb4, 0x9f, 0xdf, 0x1a, 0x37, 0xc8, 0x35, 0xed, 0xc5, 0x85, 0x74, 0x64, 0x09, 0x22, 0xef, 0xe9, 0x0c, 0xaf, 0x12, 0x4c, 0x9e, 0xf8, 0x47, 0x56, 0xe0, 0x7f, 0x4e, 0x24, 0x6b, 0x0c, 0xe7, 0xad, 0xc6, 0x47, 0x1d, 0xa4, 0x0d, 0x86, 0x89, 0x65, 0xe8, 0x5f, 0x71, 0xc7, 0xe9, 0xcd, 0xec, 0x6c, 0x62, 0xc7, 0xe3, 0xb3,
/* (2^167)P */ 0xb5, 0xea, 0x86, 0xe3, 0x15, 0x18, 0x3f, 0x6d, 0x7b, 0x05, 0x95, 0x15, 0x53, 0x26, 0x1c, 0xeb, 0xbe, 0x7e, 0x16, 0x42, 0x4b, 0xa2, 0x3d, 0xdd, 0x0e, 0xff, 0xba, 0x67, 0xb5, 0xae, 0x7a, 0x17, 0xde, 0x23, 0xad, 0x14, 0xcc, 0xd7, 0xaf, 0x57, 0x01, 0xe0, 0xdd, 0x48, 0xdd, 0xd7, 0xe3, 0xdf, 0xe9, 0x2d, 0xda, 0x67, 0xa4, 0x9f, 0x29, 0x04,
/* (2^168)P */ 0x16, 0x53, 0xe6, 0x9c, 0x4e, 0xe5, 0x1e, 0x70, 0x81, 0x25, 0x02, 0x9b, 0x47, 0x6d, 0xd2, 0x08, 0x73, 0xbe, 0x0a, 0xf1, 0x7b, 0xeb, 0x24, 0xeb, 0x38, 0x23, 0x5c, 0xb6, 0x3e, 0xce, 0x1e, 0xe3, 0xbc, 0x82, 0x35, 0x1f, 0xaf, 0x3a, 0x3a, 0xe5, 0x4e, 0xc1, 0xca, 0xbf, 0x47, 0xb4, 0xbb, 0xbc, 0x5f, 0xea, 0xc6, 0xca, 0xf3, 0xa0, 0xa2, 0x73,
/* (2^169)P */ 0xef, 0xa4, 0x7a, 0x4e, 0xe4, 0xc7, 0xb6, 0x43, 0x2e, 0xa5, 0xe4, 0xa5, 0xba, 0x1e, 0xa5, 0xfe, 0x9e, 0xce, 0xa9, 0x80, 0x04, 0xcb, 0x4f, 0xd8, 0x74, 0x05, 0x48, 0xfa, 0x99, 0x11, 0x5d, 0x97, 0x3b, 0x07, 0x0d, 0xdd, 0xe6, 0xb1, 0x74, 0x87, 0x1a, 0xd3, 0x26, 0xb7, 0x8f, 0xe1, 0x63, 0x3d, 0xec, 0x53, 0x93, 0xb0, 0x81, 0x78, 0x34, 0xa4,
/* (2^170)P */ 0xe1, 0xe7, 0xd4, 0x58, 0x9d, 0x0e, 0x8b, 0x65, 0x66, 0x37, 0x16, 0x48, 0x6f, 0xaa, 0x42, 0x37, 0x77, 0xad, 0xb1, 0x56, 0x48, 0xdf, 0x65, 0x36, 0x30, 0xb8, 0x00, 0x12, 0xd8, 0x32, 0x28, 0x7f, 0xc1, 0x71, 0xeb, 0x93, 0x0f, 0x48, 0x04, 0xe1, 0x5a, 0x6a, 0x96, 0xc1, 0xca, 0x89, 0x6d, 0x1b, 0x82, 0x4c, 0x18, 0x6d, 0x55, 0x4b, 0xea, 0xfd,
/* (2^171)P */ 0x62, 0x1a, 0x53, 0xb4, 0xb1, 0xbe, 0x6f, 0x15, 0x18, 0x88, 0xd4, 0x66, 0x61, 0xc7, 0x12, 0x69, 0x02, 0xbd, 0x03, 0x23, 0x2b, 0xef, 0xf9, 0x54, 0xa4, 0x85, 0xa8, 0xe3, 0xb7, 0xbd, 0xa9, 0xa3, 0xf3, 0x2a, 0xdd, 0xf1, 0xd4, 0x03, 0x0f, 0xa9, 0xa1, 0xd8, 0xa3, 0xcd, 0xb2, 0x71, 0x90, 0x4b, 0x35, 0x62, 0xf2, 0x2f, 0xce, 0x67, 0x1f, 0xaa,
/* (2^172)P */ 0x9e, 0x1e, 0xcd, 0x43, 0x7e, 0x87, 0x37, 0x94, 0x3a, 0x97, 0x4c, 0x7e, 0xee, 0xc9, 0x37, 0x85, 0xf1, 0xd9, 0x4f, 0xbf, 0xf9, 0x6f, 0x39, 0x9a, 0x39, 0x87, 0x2e, 0x25, 0x84, 0x42, 0xc3, 0x80, 0xcb, 0x07, 0x22, 0xae, 0x30, 0xd5, 0x50, 0xa1, 0x23, 0xcc, 0x31, 0x81, 0x9d, 0xf1, 0x30, 0xd9, 0x2b, 0x73, 0x41, 0x16, 0x50, 0xab, 0x2d, 0xa2,
/* (2^173)P */ 0xa4, 0x69, 0x4f, 0xa1, 0x4e, 0xb9, 0xbf, 0x14, 0xe8, 0x2b, 0x04, 0x93, 0xb7, 0x6e, 0x9f, 0x7d, 0x73, 0x0a, 0xc5, 0x14, 0xb8, 0xde, 0x8c, 0xc1, 0xfe, 0xc0, 0xa7, 0xa4, 0xcc, 0x42, 0x42, 0x81, 0x15, 0x65, 0x8a, 0x80, 0xb9, 0xde, 0x1f, 0x60, 0x33, 0x0e, 0xcb, 0xfc, 0xe0, 0xdb, 0x83, 0xa1, 0xe5, 0xd0, 0x16, 0x86, 0x2c, 0xe2, 0x87, 0xed,
/* (2^174)P */ 0x7a, 0xc0, 0xeb, 0x6b, 0xf6, 0x0d, 0x4c, 0x6d, 0x1e, 0xdb, 0xab, 0xe7, 0x19, 0x45, 0xc6, 0xe3, 0xb2, 0x06, 0xbb, 0xbc, 0x70, 0x99, 0x83, 0x33, 0xeb, 0x28, 0xc8, 0x77, 0xf6, 0x4d, 0x01, 0xb7, 0x59, 0xa0, 0xd2, 0xb3, 0x2a, 0x72, 0x30, 0xe7, 0x11, 0x39, 0xb6, 0x41, 0x29, 0x65, 0x5a, 0x14, 0xb9, 0x86, 0x08, 0xe0, 0x7d, 0x32, 0x8c, 0xf0,
/* (2^175)P */ 0x5c, 0x11, 0x30, 0x9e, 0x05, 0x27, 0xf5, 0x45, 0x0f, 0xb3, 0xc9, 0x75, 0xc3, 0xd7, 0xe1, 0x82, 0x3b, 0x8e, 0x87, 0x23, 0x00, 0x15, 0x19, 0x07, 0xd9, 0x21, 0x53, 0xc7, 0xf1, 0xa3, 0xbf, 0x70, 0x64, 0x15, 0x18, 0xca, 0x23, 0x9e, 0xd3, 0x08, 0xc3, 0x2a, 0x8b, 0xe5, 0x83, 0x04, 0x89, 0x14, 0xfd, 0x28, 0x25, 0x1c, 0xe3, 0x26, 0xa7, 0x22,
/* (2^176)P */ 0xdc, 0xd4, 0x75, 0x60, 0x99, 0x94, 0xea, 0x09, 0x8e, 0x8a, 0x3c, 0x1b, 0xf9, 0xbd, 0x33, 0x0d, 0x51, 0x3d, 0x12, 0x6f, 0x4e, 0x72, 0xe0, 0x17, 0x20, 0xe9, 0x75, 0xe6, 0x3a, 0xb2, 0x13, 0x83, 0x4e, 0x7a, 0x08, 0x9e, 0xd1, 0x04, 0x5f, 0x6b, 0x42, 0x0b, 0x76, 0x2a, 0x2d, 0x77, 0x53, 0x6c, 0x65, 0x6d, 0x8e, 0x25, 0x3c, 0xb6, 0x8b, 0x69,
/* (2^177)P */ 0xb9, 0x49, 0x28, 0xd0, 0xdc, 0x6c, 0x8f, 0x4c, 0xc9, 0x14, 0x8a, 0x38, 0xa3, 0xcb, 0xc4, 0x9d, 0x53, 0xcf, 0xe9, 0xe3, 0xcf, 0xe0, 0xb1, 0xf2, 0x1b, 0x4c, 0x7f, 0x83, 0x2a, 0x7a, 0xe9, 0x8b, 0x3b, 0x86, 0x61, 0x30, 0xe9, 0x99, 0xbd, 0xba, 0x19, 0x6e, 0x65, 0x2a, 0x12, 0x3e, 0x9c, 0xa8, 0xaf, 0xc3, 0xcf, 0xf8, 0x1f, 0x77, 0x86, 0xea,
/* (2^178)P */ 0x30, 0xde, 0xe7, 0xff, 0x54, 0xf7, 0xa2, 0x59, 0xf6, 0x0b, 0xfb, 0x7a, 0xf2, 0x39, 0xf0, 0xdb, 0x39, 0xbc, 0xf0, 0xfa, 0x60, 0xeb, 0x6b, 0x4f, 0x47, 0x17, 0xc8, 0x00, 0x65, 0x6d, 0x25, 0x1c, 0xd0, 0x48, 0x56, 0x53, 0x45, 0x11, 0x30, 0x02, 0x49, 0x20, 0x27, 0xac, 0xf2, 0x4c, 0xac, 0x64, 0x3d, 0x52, 0xb8, 0x89, 0xe0, 0x93, 0x16, 0x0f,
/* (2^179)P */ 0x84, 0x09, 0xba, 0x40, 0xb2, 0x2f, 0xa3, 0xa8, 0xc2, 0xba, 0x46, 0x33, 0x05, 0x9d, 0x62, 0xad, 0xa1, 0x3c, 0x33, 0xef, 0x0d, 0xeb, 0xf0, 0x77, 0x11, 0x5a, 0xb0, 0x21, 0x9c, 0xdf, 0x55, 0x24, 0x25, 0x35, 0x51, 0x61, 0x92, 0xf0, 0xb1, 0xce, 0xf5, 0xd4, 0x7b, 0x6c, 0x21, 0x9d, 0x56, 0x52, 0xf8, 0xa1, 0x4c, 0xe9, 0x27, 0x55, 0xac, 0x91,
/* (2^180)P */ 0x03, 0x3e, 0x30, 0xd2, 0x0a, 0xfa, 0x7d, 0x82, 0x3d, 0x1f, 0x8b, 0xcb, 0xb6, 0x04, 0x5c, 0xcc, 0x8b, 0xda, 0xe2, 0x68, 0x74, 0x08, 0x8c, 0x44, 0x83, 0x57, 0x6d, 0x6f, 0x80, 0xb0, 0x7e, 0xa9, 0x82, 0x91, 0x7b, 0x4c, 0x37, 0x97, 0xd1, 0x63, 0xd1, 0xbd, 0x45, 0xe6, 0x8a, 0x86, 0xd6, 0x89, 0x54, 0xfd, 0xd2, 0xb1, 0xd7, 0x54, 0xad, 0xaf,
/* (2^181)P */ 0x8b, 0x33, 0x62, 0x49, 0x9f, 0x63, 0xf9, 0x87, 0x42, 0x58, 0xbf, 0xb3, 0xe6, 0x68, 0x02, 0x60, 0x5c, 0x76, 0x62, 0xf7, 0x61, 0xd7, 0x36, 0x31, 0xf7, 0x9c, 0xb5, 0xe5, 0x13, 0x6c, 0xea, 0x78, 0xae, 0xcf, 0xde, 0xbf, 0xb6, 0xeb, 0x4f, 0xc8, 0x2a, 0xb4, 0x9a, 0x9f, 0xf3, 0xd1, 0x6a, 0xec, 0x0c, 0xbd, 0x85, 0x98, 0x40, 0x06, 0x1c, 0x2a,
/* (2^182)P */ 0x74, 0x3b, 0xe7, 0x81, 0xd5, 0xae, 0x54, 0x56, 0x03, 0xe8, 0x97, 0x16, 0x76, 0xcf, 0x24, 0x96, 0x96, 0x5b, 0xcc, 0x09, 0xab, 0x23, 0x6f, 0x54, 0xae, 0x8f, 0xe4, 0x12, 0xcb, 0xfd, 0xbc, 0xac, 0x93, 0x45, 0x3d, 0x68, 0x08, 0x22, 0x59, 0xc6, 0xf0, 0x47, 0x19, 0x8c, 0x79, 0x93, 0x1e, 0x0e, 0x30, 0xb0, 0x94, 0xfb, 0x17, 0x1d, 0x5a, 0x12,
/* (2^183)P */ 0x85, 0xff, 0x40, 0x18, 0x85, 0xff, 0x44, 0x37, 0x69, 0x23, 0x4d, 0x34, 0xe1, 0xeb, 0xa3, 0x1b, 0x55, 0x40, 0xc1, 0x64, 0xf4, 0xd4, 0x13, 0x0a, 0x9f, 0xb9, 0x19, 0xfc, 0x88, 0x7d, 0xc0, 0x72, 0xcf, 0x69, 0x2f, 0xd2, 0x0c, 0x82, 0x0f, 0xda, 0x08, 0xba, 0x0f, 0xaa, 0x3b, 0xe9, 0xe5, 0x83, 0x7a, 0x06, 0xe8, 0x1b, 0x38, 0x43, 0xc3, 0x54,
/* (2^184)P */ 0x14, 0xaa, 0xb3, 0x6e, 0xe6, 0x28, 0xee, 0xc5, 0x22, 0x6c, 0x7c, 0xf9, 0xa8, 0x71, 0xcc, 0xfe, 0x68, 0x7e, 0xd3, 0xb8, 0x37, 0x96, 0xca, 0x0b, 0xd9, 0xb6, 0x06, 0xa9, 0xf6, 0x71, 0xe8, 0x31, 0xf7, 0xd8, 0xf1, 0x5d, 0xab, 0xb9, 0xf0, 0x5c, 0x98, 0xcf, 0x22, 0xa2, 0x2a, 0xf6, 0xd0, 0x59, 0xf0, 0x9d, 0xd9, 0x6a, 0x4f, 0x59, 0x57, 0xad,
/* (2^185)P */ 0xd7, 0x2b, 0x3d, 0x38, 0x4c, 0x2e, 0x23, 0x4d, 0x49, 0xa2, 0x62, 0x62, 0xf9, 0x0f, 0xde, 0x08, 0xf3, 0x86, 0x71, 0xb6, 0xc7, 0xf9, 0x85, 0x9c, 0x33, 0xa1, 0xcf, 0x16, 0xaa, 0x60, 0xb9, 0xb7, 0xea, 0xed, 0x01, 0x1c, 0x59, 0xdb, 0x3f, 0x3f, 0x97, 0x2e, 0xf0, 0x09, 0x9f, 0x10, 0x85, 0x5f, 0x53, 0x39, 0xf3, 0x13, 0x40, 0x56, 0x95, 0xf9,
/* (2^186)P */ 0xb4, 0xe3, 0xda, 0xc6, 0x1f, 0x78, 0x8e, 0xac, 0xd4, 0x20, 0x1d, 0xa0, 0xbf, 0x4c, 0x09, 0x16, 0xa7, 0x30, 0xb5, 0x8d, 0x9e, 0xa1, 0x5f, 0x6d, 0x52, 0xf4, 0x71, 0xb6, 0x32, 0x2d, 0x21, 0x51, 0xc6, 0xfc, 0x2f, 0x08, 0xf4, 0x13, 0x6c, 0x55, 0xba, 0x72, 0x81, 0x24, 0x49, 0x0e, 0x4f, 0x06, 0x36, 0x39, 0x6a, 0xc5, 0x81, 0xfc, 0xeb, 0xb2,
/* (2^187)P */ 0x7d, 0x8d, 0xc8, 0x6c, 0xea, 0xb4, 0xb9, 0xe8, 0x40, 0xc9, 0x69, 0xc9, 0x30, 0x05, 0xfd, 0x34, 0x46, 0xfd, 0x94, 0x05, 0x16, 0xf5, 0x4b, 0x13, 0x3d, 0x24, 0x1a, 0xd6, 0x64, 0x2b, 0x9c, 0xe2, 0xa5, 0xd9, 0x98, 0xe0, 0xe8, 0xf4, 0xbc, 0x2c, 0xbd, 0xa2, 0x56, 0xe3, 0x9e, 0x14, 0xdb, 0xbf, 0x05, 0xbf, 0x9a, 0x13, 0x5d, 0xf7, 0x91, 0xa3,
/* (2^188)P */ 0x8b, 0xcb, 0x27, 0xf3, 0x15, 0x26, 0x05, 0x40, 0x0f, 0xa6, 0x15, 0x13, 0x71, 0x95, 0xa2, 0xc6, 0x38, 0x04, 0x67, 0xf8, 0x9a, 0x83, 0x06, 0xaa, 0x25, 0x36, 0x72, 0x01, 0x6f, 0x74, 0x5f, 0xe5, 0x6e, 0x44, 0x99, 0xce, 0x13, 0xbc, 0x82, 0xc2, 0x0d, 0xa4, 0x98, 0x50, 0x38, 0xf3, 0xa2, 0xc5, 0xe5, 0x24, 0x1f, 0x6f, 0x56, 0x3e, 0x07, 0xb2,
/* (2^189)P */ 0xbd, 0x0f, 0x32, 0x60, 0x07, 0xb1, 0xd7, 0x0b, 0x11, 0x07, 0x57, 0x02, 0x89, 0xe8, 0x8b, 0xe8, 0x5a, 0x1f, 0xee, 0x54, 0x6b, 0xff, 0xb3, 0x04, 0x07, 0x57, 0x13, 0x0b, 0x94, 0xa8, 0x4d, 0x81, 0xe2, 0x17, 0x16, 0x45, 0xd4, 0x4b, 0xf7, 0x7e, 0x64, 0x66, 0x20, 0xe8, 0x0b, 0x26, 0xfd, 0xa9, 0x8a, 0x47, 0x52, 0x89, 0x14, 0xd0, 0xd1, 0xa1,
/* (2^190)P */ 0xdc, 0x03, 0xe6, 0x20, 0x44, 0x47, 0x8f, 0x04, 0x16, 0x24, 0x22, 0xc1, 0x55, 0x5c, 0xbe, 0x43, 0xc3, 0x92, 0xc5, 0x54, 0x3d, 0x5d, 0xd1, 0x05, 0x9c, 0xc6, 0x7c, 0xbf, 0x23, 0x84, 0x1a, 0xba, 0x4f, 0x1f, 0xfc, 0xa1, 0xae, 0x1a, 0x64, 0x02, 0x51, 0xf1, 0xcb, 0x7a, 0x20, 0xce, 0xb2, 0x34, 0x3c, 0xca, 0xe0, 0xe4, 0xba, 0x22, 0xd4, 0x7b,
/* (2^191)P */ 0xca, 0xfd, 0xca, 0xd7, 0xde, 0x61, 0xae, 0xf0, 0x79, 0x0c, 0x20, 0xab, 0xbc, 0x6f, 0x4d, 0x61, 0xf0, 0xc7, 0x9c, 0x8d, 0x4b, 0x52, 0xf3, 0xb9, 0x48, 0x63, 0x0b, 0xb6, 0xd2, 0x25, 0x9a, 0x96, 0x72, 0xc1, 0x6b, 0x0c, 0xb5, 0xfb, 0x71, 0xaa, 0xad, 0x47, 0x5b, 0xe7, 0xc0, 0x0a, 0x55, 0xb2, 0xd4, 0x16, 0x2f, 0xb1, 0x01, 0xfd, 0xce, 0x27,
/* (2^192)P */ 0x64, 0x11, 0x4b, 0xab, 0x57, 0x09, 0xc6, 0x49, 0x4a, 0x37, 0xc3, 0x36, 0xc4, 0x7b, 0x81, 0x1f, 0x42, 0xed, 0xbb, 0xe0, 0xa0, 0x8d, 0x51, 0xe6, 0xca, 0x8b, 0xb9, 0xcd, 0x99, 0x2d, 0x91, 0x53, 0xa9, 0x47, 0xcb, 0x32, 0xc7, 0xa4, 0x92, 0xec, 0x46, 0x74, 0x44, 0x6d, 0x71, 0x9f, 0x6d, 0x0c, 0x69, 0xa4, 0xf8, 0xbe, 0x9f, 0x7f, 0xa0, 0xd7,
/* (2^193)P */ 0x5f, 0x33, 0xb6, 0x91, 0xc8, 0xa5, 0x3f, 0x5d, 0x7f, 0x38, 0x6e, 0x74, 0x20, 0x4a, 0xd6, 0x2b, 0x98, 0x2a, 0x41, 0x4b, 0x83, 0x64, 0x0b, 0x92, 0x7a, 0x06, 0x1e, 0xc6, 0x2c, 0xf6, 0xe4, 0x91, 0xe5, 0xb1, 0x2e, 0x6e, 0x4e, 0xa8, 0xc8, 0x14, 0x32, 0x57, 0x44, 0x1c, 0xe4, 0xb9, 0x7f, 0x54, 0x51, 0x08, 0x81, 0xaa, 0x4e, 0xce, 0xa1, 0x5d,
/* (2^194)P */ 0x5c, 0xd5, 0x9b, 0x5e, 0x7c, 0xb5, 0xb1, 0x52, 0x73, 0x00, 0x41, 0x56, 0x79, 0x08, 0x7e, 0x07, 0x28, 0x06, 0xa6, 0xfb, 0x7f, 0x69, 0xbd, 0x7a, 0x3c, 0xae, 0x9f, 0x39, 0xbb, 0x54, 0xa2, 0x79, 0xb9, 0x0e, 0x7f, 0xbb, 0xe0, 0xe6, 0xb7, 0x27, 0x64, 0x38, 0x45, 0xdb, 0x84, 0xe4, 0x61, 0x72, 0x3f, 0xe2, 0x24, 0xfe, 0x7a, 0x31, 0x9a, 0xc9,
/* (2^195)P */ 0xa1, 0xd2, 0xa4, 0xee, 0x24, 0x96, 0xe5, 0x5b, 0x79, 0x78, 0x3c, 0x7b, 0x82, 0x3b, 0x8b, 0x58, 0x0b, 0xa3, 0x63, 0x2d, 0xbc, 0x75, 0x46, 0xe8, 0x83, 0x1a, 0xc0, 0x2a, 0x92, 0x61, 0xa8, 0x75, 0x37, 0x3c, 0xbf, 0x0f, 0xef, 0x8f, 0x6c, 0x97, 0x75, 0x10, 0x05, 0x7a, 0xde, 0x23, 0xe8, 0x2a, 0x35, 0xeb, 0x41, 0x64, 0x7d, 0xcf, 0xe0, 0x52,
/* (2^196)P */ 0x4a, 0xd0, 0x49, 0x93, 0xae, 0xf3, 0x24, 0x8c, 0xe1, 0x09, 0x98, 0x45, 0xd8, 0xb9, 0xfe, 0x8e, 0x8c, 0xa8, 0x2c, 0xc9, 0x9f, 0xce, 0x01, 0xdc, 0x38, 0x11, 0xab, 0x85, 0xb9, 0xe8, 0x00, 0x51, 0xfd, 0x82, 0xe1, 0x9b, 0x4e, 0xfc, 0xb5, 0x2a, 0x0f, 0x8b, 0xda, 0x4e, 0x02, 0xca, 0xcc, 0xe3, 0x91, 0xc4, 0xe0, 0xcf, 0x7b, 0xd6, 0xe6, 0x6a,
/* (2^197)P */ 0xfe, 0x11, 0xd7, 0xaa, 0xe3, 0x0c, 0x52, 0x2e, 0x04, 0xe0, 0xe0, 0x61, 0xc8, 0x05, 0xd7, 0x31, 0x4c, 0xc3, 0x9b, 0x2d, 0xce, 0x59, 0xbe, 0x12, 0xb7, 0x30, 0x21, 0xfc, 0x81, 0xb8, 0x5e, 0x57, 0x73, 0xd0, 0xad, 0x8e, 0x9e, 0xe4, 0xeb, 0xcd, 0xcf, 0xd2, 0x0f, 0x01, 0x35, 0x16, 0xed, 0x7a, 0x43, 0x8e, 0x42, 0xdc, 0xea, 0x4c, 0xa8, 0x7c,
/* (2^198)P */ 0x37, 0x26, 0xcc, 0x76, 0x0b, 0xe5, 0x76, 0xdd, 0x3e, 0x19, 0x3c, 0xc4, 0x6c, 0x7f, 0xd0, 0x03, 0xc1, 0xb8, 0x59, 0x82, 0xca, 0x36, 0xc1, 0xe4, 0xc8, 0xb2, 0x83, 0x69, 0x9c, 0xc5, 0x9d, 0x12, 0x82, 0x1c, 0xea, 0xb2, 0x84, 0x9f, 0xf3, 0x52, 0x6b, 0xbb, 0xd8, 0x81, 0x56, 0x83, 0x04, 0x66, 0x05, 0x22, 0x49, 0x37, 0x93, 0xb1, 0xfd, 0xd5,
/* (2^199)P */ 0xaf, 0x96, 0xbf, 0x03, 0xbe, 0xe6, 0x5d, 0x78, 0x19, 0xba, 0x37, 0x46, 0x0a, 0x2b, 0x52, 0x7c, 0xd8, 0x51, 0x9e, 0x3d, 0x29, 0x42, 0xdb, 0x0e, 0x31, 0x20, 0x94, 0xf8, 0x43, 0x9a, 0x2d, 0x22, 0xd3, 0xe3, 0xa1, 0x79, 0x68, 0xfb, 0x2d, 0x7e, 0xd6, 0x79, 0xda, 0x0b, 0xc6, 0x5b, 0x76, 0x68, 0xf0, 0xfe, 0x72, 0x59, 0xbb, 0xa1, 0x9c, 0x74,
/* (2^200)P */ 0x0a, 0xd9, 0xec, 0xc5, 0xbd, 0xf0, 0xda, 0xcf, 0x82, 0xab, 0x46, 0xc5, 0x32, 0x13, 0xdc, 0x5b, 0xac, 0xc3, 0x53, 0x9a, 0x7f, 0xef, 0xa5, 0x40, 0x5a, 0x1f, 0xc1, 0x12, 0x91, 0x54, 0x83, 0x6a, 0xb0, 0x9a, 0x85, 0x4d, 0xbf, 0x36, 0x8e, 0xd3, 0xa2, 0x2b, 0xe5, 0xd6, 0xc6, 0xe1, 0x58, 0x5b, 0x82, 0x9b, 0xc8, 0xf2, 0x03, 0xba, 0xf5, 0x92,
/* (2^201)P */ 0xfb, 0x21, 0x7e, 0xde, 0xe7, 0xb4, 0xc0, 0x56, 0x86, 0x3a, 0x5b, 0x78, 0xf8, 0xf0, 0xf4, 0xe7, 0x5c, 0x00, 0xd2, 0xd7, 0xd6, 0xf8, 0x75, 0x5e, 0x0f, 0x3e, 0xd1, 0x4b, 0x77, 0xd8, 0xad, 0xb0, 0xc9, 0x8b, 0x59, 0x7d, 0x30, 0x76, 0x64, 0x7a, 0x76, 0xd9, 0x51, 0x69, 0xfc, 0xbd, 0x8e, 0xb5, 0x55, 0xe0, 0xd2, 0x07, 0x15, 0xa9, 0xf7, 0xa4,
/* (2^202)P */ 0xaa, 0x2d, 0x2f, 0x2b, 0x3c, 0x15, 0xdd, 0xcd, 0xe9, 0x28, 0x82, 0x4f, 0xa2, 0xaa, 0x31, 0x48, 0xcc, 0xfa, 0x07, 0x73, 0x8a, 0x34, 0x74, 0x0d, 0xab, 0x1a, 0xca, 0xd2, 0xbf, 0x3a, 0xdb, 0x1a, 0x5f, 0x50, 0x62, 0xf4, 0x6b, 0x83, 0x38, 0x43, 0x96, 0xee, 0x6b, 0x39, 0x1e, 0xf0, 0x17, 0x80, 0x1e, 0x9b, 0xed, 0x2b, 0x2f, 0xcc, 0x65, 0xf7,
/* (2^203)P */ 0x03, 0xb3, 0x23, 0x9c, 0x0d, 0xd1, 0xeb, 0x7e, 0x34, 0x17, 0x8a, 0x4c, 0xde, 0x54, 0x39, 0xc4, 0x11, 0x82, 0xd3, 0xa4, 0x00, 0x32, 0x95, 0x9c, 0xa6, 0x64, 0x76, 0x6e, 0xd6, 0x53, 0x27, 0xb4, 0x6a, 0x14, 0x8c, 0x54, 0xf6, 0x58, 0x9e, 0x22, 0x4a, 0x55, 0x18, 0x77, 0xd0, 0x08, 0x6b, 0x19, 0x8a, 0xb5, 0xe7, 0x19, 0xb8, 0x60, 0x92, 0xb1,
/* (2^204)P */ 0x66, 0xec, 0xf3, 0x12, 0xde, 0x67, 0x7f, 0xd4, 0x5b, 0xf6, 0x70, 0x64, 0x0a, 0xb5, 0xc2, 0xf9, 0xb3, 0x64, 0xab, 0x56, 0x46, 0xc7, 0x93, 0xc2, 0x8b, 0x2d, 0xd0, 0xd6, 0x39, 0x3b, 0x1f, 0xcd, 0xb3, 0xac, 0xcc, 0x2c, 0x27, 0x6a, 0xbc, 0xb3, 0x4b, 0xa8, 0x3c, 0x69, 0x20, 0xe2, 0x18, 0x35, 0x17, 0xe1, 0x8a, 0xd3, 0x11, 0x74, 0xaa, 0x4d,
/* (2^205)P */ 0x96, 0xc4, 0x16, 0x7e, 0xfd, 0xf5, 0xd0, 0x7d, 0x1f, 0x32, 0x1b, 0xdb, 0xa6, 0xfd, 0x51, 0x75, 0x4d, 0xd7, 0x00, 0xe5, 0x7f, 0x58, 0x5b, 0xeb, 0x4b, 0x6a, 0x78, 0xfe, 0xe5, 0xd6, 0x8f, 0x99, 0x17, 0xca, 0x96, 0x45, 0xf7, 0x52, 0xdf, 0x84, 0x06, 0x77, 0xb9, 0x05, 0x63, 0x5d, 0xe9, 0x91, 0xb1, 0x4b, 0x82, 0x5a, 0xdb, 0xd7, 0xca, 0x69,
/* (2^206)P */ 0x02, 0xd3, 0x38, 0x38, 0x87, 0xea, 0xbd, 0x9f, 0x11, 0xca, 0xf3, 0x21, 0xf1, 0x9b, 0x35, 0x97, 0x98, 0xff, 0x8e, 0x6d, 0x3d, 0xd6, 0xb2, 0xfa, 0x68, 0xcb, 0x7e, 0x62, 0x85, 0xbb, 0xc7, 0x5d, 0xee, 0x32, 0x30, 0x2e, 0x71, 0x96, 0x63, 0x43, 0x98, 0xc4, 0xa7, 0xde, 0x60, 0xb2, 0xd9, 0x43, 0x4a, 0xfa, 0x97, 0x2d, 0x5f, 0x21, 0xd4, 0xfe,
/* (2^207)P */ 0x3b, 0x20, 0x29, 0x07, 0x07, 0xb5, 0x78, 0xc3, 0xc7, 0xab, 0x56, 0xba, 0x40, 0xde, 0x1d, 0xcf, 0xc3, 0x00, 0x56, 0x21, 0x0c, 0xc8, 0x42, 0xd9, 0x0e, 0xcd, 0x02, 0x7c, 0x07, 0xb9, 0x11, 0xd7, 0x96, 0xaf, 0xff, 0xad, 0xc5, 0xba, 0x30, 0x6d, 0x82, 0x3a, 0xbf, 0xef, 0x7b, 0xf7, 0x0a, 0x74, 0xbd, 0x31, 0x0c, 0xe4, 0xec, 0x1a, 0xe5, 0xc5,
/* (2^208)P */ 0xcc, 0xf2, 0x28, 0x16, 0x12, 0xbf, 0xef, 0x85, 0xbc, 0xf7, 0xcb, 0x9f, 0xdb, 0xa8, 0xb2, 0x49, 0x53, 0x48, 0xa8, 0x24, 0xa8, 0x68, 0x8d, 0xbb, 0x21, 0x0a, 0x5a, 0xbd, 0xb2, 0x91, 0x61, 0x47, 0xc4, 0x43, 0x08, 0xa6, 0x19, 0xef, 0x8e, 0x88, 0x39, 0xc6, 0x33, 0x30, 0xf3, 0x0e, 0xc5, 0x92, 0x66, 0xd6, 0xfe, 0xc5, 0x12, 0xd9, 0x4c, 0x2d,
/* (2^209)P */ 0x30, 0x34, 0x07, 0xbf, 0x9c, 0x5a, 0x4e, 0x65, 0xf1, 0x39, 0x35, 0x38, 0xae, 0x7b, 0x55, 0xac, 0x6a, 0x92, 0x24, 0x7e, 0x50, 0xd3, 0xba, 0x78, 0x51, 0xfe, 0x4d, 0x32, 0x05, 0x11, 0xf5, 0x52, 0xf1, 0x31, 0x45, 0x39, 0x98, 0x7b, 0x28, 0x56, 0xc3, 0x5d, 0x4f, 0x07, 0x6f, 0x84, 0xb8, 0x1a, 0x58, 0x0b, 0xc4, 0x7c, 0xc4, 0x8d, 0x32, 0x8e,
/* (2^210)P */ 0x7e, 0xaf, 0x98, 0xce, 0xc5, 0x2b, 0x9d, 0xf6, 0xfa, 0x2c, 0xb6, 0x2a, 0x5a, 0x1d, 0xc0, 0x24, 0x8d, 0xa4, 0xce, 0xb1, 0x12, 0x01, 0xf9, 0x79, 0xc6, 0x79, 0x38, 0x0c, 0xd4, 0x07, 0xc9, 0xf7, 0x37, 0xa1, 0x0b, 0xfe, 0x72, 0xec, 0x5d, 0xd6, 0xb0, 0x1c, 0x70, 0xbe, 0x70, 0x01, 0x13, 0xe0, 0x86, 0x95, 0xc7, 0x2e, 0x12, 0x3b, 0xe6, 0xa6,
/* (2^211)P */ 0x24, 0x82, 0x67, 0xe0, 0x14, 0x7b, 0x56, 0x08, 0x38, 0x44, 0xdb, 0xa0, 0x3a, 0x05, 0x47, 0xb2, 0xc0, 0xac, 0xd1, 0xcc, 0x3f, 0x82, 0xb8, 0x8a, 0x88, 0xbc, 0xf5, 0x33, 0xa1, 0x35, 0x0f, 0xf6, 0xe2, 0xef, 0x6c, 0xf7, 0x37, 0x9e, 0xe8, 0x10, 0xca, 0xb0, 0x8e, 0x80, 0x86, 0x00, 0x23, 0xd0, 0x4a, 0x76, 0x9f, 0xf7, 0x2c, 0x52, 0x15, 0x0e,
/* (2^212)P */ 0x5e, 0x49, 0xe1, 0x2c, 0x9a, 0x01, 0x76, 0xa6, 0xb3, 0x07, 0x5b, 0xa4, 0x07, 0xef, 0x1d, 0xc3, 0x6a, 0xbb, 0x64, 0xbe, 0x71, 0x15, 0x6e, 0x32, 0x31, 0x46, 0x9a, 0x9e, 0x8f, 0x45, 0x73, 0xce, 0x0b, 0x94, 0x1a, 0x52, 0x07, 0xf4, 0x50, 0x30, 0x49, 0x53, 0x50, 0xfb, 0x71, 0x1f, 0x5a, 0x03, 0xa9, 0x76, 0xf2, 0x8f, 0x42, 0xff, 0xed, 0xed,
/* (2^213)P */ 0xed, 0x08, 0xdb, 0x91, 0x1c, 0xee, 0xa2, 0xb4, 0x47, 0xa2, 0xfa, 0xcb, 0x03, 0xd1, 0xff, 0x8c, 0xad, 0x64, 0x50, 0x61, 0xcd, 0xfc, 0x88, 0xa0, 0x31, 0x95, 0x30, 0xb9, 0x58, 0xdd, 0xd7, 0x43, 0xe4, 0x46, 0xc2, 0x16, 0xd9, 0x72, 0x4a, 0x56, 0x51, 0x70, 0x85, 0xf1, 0xa1, 0x80, 0x40, 0xd5, 0xba, 0x67, 0x81, 0xda, 0xcd, 0x03, 0xea, 0x51,
/* (2^214)P */ 0x42, 0x50, 0xf0, 0xef, 0x37, 0x61, 0x72, 0x85, 0xe1, 0xf1, 0xff, 0x6f, 0x3d, 0xe8, 0x7b, 0x21, 0x5c, 0xe5, 0x50, 0x03, 0xde, 0x00, 0xc1, 0xf7, 0x3a, 0x55, 0x12, 0x1c, 0x9e, 0x1e, 0xce, 0xd1, 0x2f, 0xaf, 0x05, 0x70, 0x5b, 0x47, 0xf2, 0x04, 0x7a, 0x89, 0xbc, 0x78, 0xa6, 0x65, 0x6c, 0xaa, 0x3c, 0xa2, 0x3c, 0x8b, 0x5c, 0xa9, 0x22, 0x48,
/* (2^215)P */ 0x7e, 0x8c, 0x8f, 0x2f, 0x60, 0xe3, 0x5a, 0x94, 0xd4, 0xce, 0xdd, 0x9d, 0x83, 0x3b, 0x77, 0x78, 0x43, 0x1d, 0xfd, 0x8f, 0xc8, 0xe8, 0x02, 0x90, 0xab, 0xf6, 0xc9, 0xfc, 0xf1, 0x63, 0xaa, 0x5f, 0x42, 0xf1, 0x78, 0x34, 0x64, 0x16, 0x75, 0x9c, 0x7d, 0xd0, 0xe4, 0x74, 0x5a, 0xa8, 0xfb, 0xcb, 0xac, 0x20, 0xa3, 0xc2, 0xa6, 0x20, 0xf8, 0x1b,
/* (2^216)P */ 0x00, 0x4f, 0x1e, 0x56, 0xb5, 0x34, 0xb2, 0x87, 0x31, 0xe5, 0xee, 0x8d, 0xf1, 0x41, 0x67, 0xb7, 0x67, 0x3a, 0x54, 0x86, 0x5c, 0xf0, 0x0b, 0x37, 0x2f, 0x1b, 0x92, 0x5d, 0x58, 0x93, 0xdc, 0xd8, 0x58, 0xcc, 0x9e, 0x67, 0xd0, 0x97, 0x3a, 0xaf, 0x49, 0x39, 0x2d, 0x3b, 0xd8, 0x98, 0xfb, 0x76, 0x6b, 0xe7, 0xaf, 0xc3, 0x45, 0x44, 0x53, 0x94,
/* (2^217)P */ 0x30, 0xbd, 0x90, 0x75, 0xd3, 0xbd, 0x3b, 0x58, 0x27, 0x14, 0x9f, 0x6b, 0xd4, 0x31, 0x99, 0xcd, 0xde, 0x3a, 0x21, 0x1e, 0xb4, 0x02, 0xe4, 0x33, 0x04, 0x02, 0xb0, 0x50, 0x66, 0x68, 0x90, 0xdd, 0x7b, 0x69, 0x31, 0xd9, 0xcf, 0x68, 0x73, 0xf1, 0x60, 0xdd, 0xc8, 0x1d, 0x5d, 0xe3, 0xd6, 0x5b, 0x2a, 0xa4, 0xea, 0xc4, 0x3f, 0x08, 0xcd, 0x9c,
/* (2^218)P */ 0x6b, 0x1a, 0xbf, 0x55, 0xc1, 0x1b, 0x0c, 0x05, 0x09, 0xdf, 0xf5, 0x5e, 0xa3, 0x77, 0x95, 0xe9, 0xdf, 0x19, 0xdd, 0xc7, 0x94, 0xcb, 0x06, 0x73, 0xd0, 0x88, 0x02, 0x33, 0x94, 0xca, 0x7a, 0x2f, 0x8e, 0x3d, 0x72, 0x61, 0x2d, 0x4d, 0xa6, 0x61, 0x1f, 0x32, 0x5e, 0x87, 0x53, 0x36, 0x11, 0x15, 0x20, 0xb3, 0x5a, 0x57, 0x51, 0x93, 0x20, 0xd8,
/* (2^219)P */ 0xb7, 0x56, 0xf4, 0xab, 0x7d, 0x0c, 0xfb, 0x99, 0x1a, 0x30, 0x29, 0xb0, 0x75, 0x2a, 0xf8, 0x53, 0x71, 0x23, 0xbd, 0xa7, 0xd8, 0x0a, 0xe2, 0x27, 0x65, 0xe9, 0x74, 0x26, 0x98, 0x4a, 0x69, 0x19, 0xb2, 0x4d, 0x0a, 0x17, 0x98, 0xb2, 0xa9, 0x57, 0x4e, 0xf6, 0x86, 0xc8, 0x01, 0xa4, 0xc6, 0x98, 0xad, 0x5a, 0x90, 0x2c, 0x05, 0x46, 0x64, 0xb7,
/* (2^220)P */ 0x7b, 0x91, 0xdf, 0xfc, 0xf8, 0x1c, 0x8c, 0x15, 0x9e, 0xf7, 0xd5, 0xa8, 0xe8, 0xe7, 0xe3, 0xa3, 0xb0, 0x04, 0x74, 0xfa, 0x78, 0xfb, 0x26, 0xbf, 0x67, 0x42, 0xf9, 0x8c, 0x9b, 0xb4, 0x69, 0x5b, 0x02, 0x13, 0x6d, 0x09, 0x6c, 0xd6, 0x99, 0x61, 0x7b, 0x89, 0x4a, 0x67, 0x75, 0xa3, 0x98, 0x13, 0x23, 0x1d, 0x18, 0x24, 0x0e, 0xef, 0x41, 0x79,
/* (2^221)P */ 0x86, 0x33, 0xab, 0x08, 0xcb, 0xbf, 0x1e, 0x76, 0x3c, 0x0b, 0xbd, 0x30, 0xdb, 0xe9, 0xa3, 0x35, 0x87, 0x1b, 0xe9, 0x07, 0x00, 0x66, 0x7f, 0x3b, 0x35, 0x0c, 0x8a, 0x3f, 0x61, 0xbc, 0xe0, 0xae, 0xf6, 0xcc, 0x54, 0xe1, 0x72, 0x36, 0x2d, 0xee, 0x93, 0x24, 0xf8, 0xd7, 0xc5, 0xf9, 0xcb, 0xb0, 0xe5, 0x88, 0x0d, 0x23, 0x4b, 0x76, 0x15, 0xa2,
/* (2^222)P */ 0x37, 0xdb, 0x83, 0xd5, 0x6d, 0x06, 0x24, 0x37, 0x1b, 0x15, 0x85, 0x15, 0xe2, 0xc0, 0x4e, 0x02, 0xa9, 0x6d, 0x0a, 0x3a, 0x94, 0x4a, 0x6f, 0x49, 0x00, 0x01, 0x72, 0xbb, 0x60, 0x14, 0x35, 0xae, 0xb4, 0xc6, 0x01, 0x0a, 0x00, 0x9e, 0xc3, 0x58, 0xc5, 0xd1, 0x5e, 0x30, 0x73, 0x96, 0x24, 0x85, 0x9d, 0xf0, 0xf9, 0xec, 0x09, 0xd3, 0xe7, 0x70,
/* (2^223)P */ 0xf3, 0xbd, 0x96, 0x87, 0xe9, 0x71, 0xbd, 0xd6, 0xa2, 0x45, 0xeb, 0x0a, 0xcd, 0x2c, 0xf1, 0x72, 0xa6, 0x31, 0xa9, 0x6f, 0x09, 0xa1, 0x5e, 0xdd, 0xc8, 0x8d, 0x0d, 0xbc, 0x5a, 0x8d, 0xb1, 0x2c, 0x9a, 0xcc, 0x37, 0x74, 0xc2, 0xa9, 0x4e, 0xd6, 0xc0, 0x3c, 0xa0, 0x23, 0xb0, 0xa0, 0x77, 0x14, 0x80, 0x45, 0x71, 0x6a, 0x2d, 0x41, 0xc3, 0x82,
/* (2^224)P */ 0x37, 0x44, 0xec, 0x8a, 0x3e, 0xc1, 0x0c, 0xa9, 0x12, 0x9c, 0x08, 0x88, 0xcb, 0xd9, 0xf8, 0xba, 0x00, 0xd6, 0xc3, 0xdf, 0xef, 0x7a, 0x44, 0x7e, 0x25, 0x69, 0xc9, 0xc1, 0x46, 0xe5, 0x20, 0x9e, 0xcc, 0x0b, 0x05, 0x3e, 0xf4, 0x78, 0x43, 0x0c, 0xa6, 0x2f, 0xc1, 0xfa, 0x70, 0xb2, 0x3c, 0x31, 0x7a, 0x63, 0x58, 0xab, 0x17, 0xcf, 0x4c, 0x4f,
/* (2^225)P */ 0x2b, 0x08, 0x31, 0x59, 0x75, 0x8b, 0xec, 0x0a, 0xa9, 0x79, 0x70, 0xdd, 0xf1, 0x11, 0xc3, 0x11, 0x1f, 0xab, 0x37, 0xaa, 0x26, 0xea, 0x53, 0xc4, 0x79, 0xa7, 0x91, 0x00, 0xaa, 0x08, 0x42, 0xeb, 0x8b, 0x8b, 0xe8, 0xc3, 0x2f, 0xb8, 0x78, 0x90, 0x38, 0x0e, 0x8a, 0x42, 0x0c, 0x0f, 0xbf, 0x3e, 0xf8, 0xd8, 0x07, 0xcf, 0x6a, 0x34, 0xc9, 0xfa,
/* (2^226)P */ 0x11, 0xe0, 0x76, 0x4d, 0x23, 0xc5, 0xa6, 0xcc, 0x9f, 0x9a, 0x2a, 0xde, 0x3a, 0xb5, 0x92, 0x39, 0x19, 0x8a, 0xf1, 0x8d, 0xf9, 0x4d, 0xc9, 0xb4, 0x39, 0x9f, 0x57, 0xd8, 0x72, 0xab, 0x1d, 0x61, 0x6a, 0xb2, 0xff, 0x52, 0xba, 0x54, 0x0e, 0xfb, 0x83, 0x30, 0x8a, 0xf7, 0x3b, 0xf4, 0xd8, 0xae, 0x1a, 0x94, 0x3a, 0xec, 0x63, 0xfe, 0x6e, 0x7c,
/* (2^227)P */ 0xdc, 0x70, 0x8e, 0x55, 0x44, 0xbf, 0xd2, 0x6a, 0xa0, 0x14, 0x61, 0x89, 0xd5, 0x55, 0x45, 0x3c, 0xf6, 0x40, 0x0d, 0x83, 0x85, 0x44, 0xb4, 0x62, 0x56, 0xfe, 0x60, 0xd7, 0x07, 0x1d, 0x47, 0x30, 0x3b, 0x73, 0xa4, 0xb5, 0xb7, 0xea, 0xac, 0xda, 0xf1, 0x17, 0xaa, 0x60, 0xdf, 0xe9, 0x84, 0xda, 0x31, 0x32, 0x61, 0xbf, 0xd0, 0x7e, 0x8a, 0x02,
/* (2^228)P */ 0xb9, 0x51, 0xb3, 0x89, 0x21, 0x5d, 0xa2, 0xfe, 0x79, 0x2a, 0xb3, 0x2a, 0x3b, 0xe6, 0x6f, 0x2b, 0x22, 0x03, 0xea, 0x7b, 0x1f, 0xaf, 0x85, 0xc3, 0x38, 0x55, 0x5b, 0x8e, 0xb4, 0xaa, 0x77, 0xfe, 0x03, 0x6e, 0xda, 0x91, 0x24, 0x0c, 0x48, 0x39, 0x27, 0x43, 0x16, 0xd2, 0x0a, 0x0d, 0x43, 0xa3, 0x0e, 0xca, 0x45, 0xd1, 0x7f, 0xf5, 0xd3, 0x16,
/* (2^229)P */ 0x3d, 0x32, 0x9b, 0x38, 0xf8, 0x06, 0x93, 0x78, 0x5b, 0x50, 0x2b, 0x06, 0xd8, 0x66, 0xfe, 0xab, 0x9b, 0x58, 0xc7, 0xd1, 0x4d, 0xd5, 0xf8, 0x3b, 0x10, 0x7e, 0x85, 0xde, 0x58, 0x4e, 0xdf, 0x53, 0xd9, 0x58, 0xe0, 0x15, 0x81, 0x9f, 0x1a, 0x78, 0xfc, 0x9f, 0x10, 0xc2, 0x23, 0xd6, 0x78, 0xd1, 0x9d, 0xd2, 0xd5, 0x1c, 0x53, 0xe2, 0xc9, 0x76,
/* (2^230)P */ 0x98, 0x1e, 0x38, 0x7b, 0x71, 0x18, 0x4b, 0x15, 0xaf, 0xa1, 0xa6, 0x98, 0xcb, 0x26, 0xa3, 0xc8, 0x07, 0x46, 0xda, 0x3b, 0x70, 0x65, 0xec, 0x7a, 0x2b, 0x34, 0x94, 0xa8, 0xb6, 0x14, 0xf8, 0x1a, 0xce, 0xf7, 0xc8, 0x60, 0xf3, 0x88, 0xf4, 0x33, 0x60, 0x7b, 0xd1, 0x02, 0xe7, 0xda, 0x00, 0x4a, 0xea, 0xd2, 0xfd, 0x88, 0xd2, 0x99, 0x28, 0xf3,
/* (2^231)P */ 0x28, 0x24, 0x1d, 0x26, 0xc2, 0xeb, 0x8b, 0x3b, 0xb4, 0x6b, 0xbe, 0x6b, 0x77, 0xff, 0xf3, 0x21, 0x3b, 0x26, 0x6a, 0x8c, 0x8e, 0x2a, 0x44, 0xa8, 0x01, 0x2b, 0x71, 0xea, 0x64, 0x30, 0xfd, 0xfd, 0x95, 0xcb, 0x39, 0x38, 0x48, 0xfa, 0x96, 0x97, 0x8c, 0x2f, 0x33, 0xca, 0x03, 0xe6, 0xd7, 0x94, 0x55, 0x6c, 0xc3, 0xb3, 0xa8, 0xf7, 0xae, 0x8c,
/* (2^232)P */ 0xea, 0x62, 0x8a, 0xb4, 0xeb, 0x74, 0xf7, 0xb8, 0xae, 0xc5, 0x20, 0x71, 0x06, 0xd6, 0x7c, 0x62, 0x9b, 0x69, 0x74, 0xef, 0xa7, 0x6d, 0xd6, 0x8c, 0x37, 0xb9, 0xbf, 0xcf, 0xeb, 0xe4, 0x2f, 0x04, 0x02, 0x21, 0x7d, 0x75, 0x6b, 0x92, 0x48, 0xf8, 0x70, 0xad, 0x69, 0xe2, 0xea, 0x0e, 0x88, 0x67, 0x72, 0xcc, 0x2d, 0x10, 0xce, 0x2d, 0xcf, 0x65,
/* (2^233)P */ 0x49, 0xf3, 0x57, 0x64, 0xe5, 0x5c, 0xc5, 0x65, 0x49, 0x97, 0xc4, 0x8a, 0xcc, 0xa9, 0xca, 0x94, 0x7b, 0x86, 0x88, 0xb6, 0x51, 0x27, 0x69, 0xa5, 0x0f, 0x8b, 0x06, 0x59, 0xa0, 0x94, 0xef, 0x63, 0x1a, 0x01, 0x9e, 0x4f, 0xd2, 0x5a, 0x93, 0xc0, 0x7c, 0xe6, 0x61, 0x77, 0xb6, 0xf5, 0x40, 0xd9, 0x98, 0x43, 0x5b, 0x56, 0x68, 0xe9, 0x37, 0x8f,
/* (2^234)P */ 0xee, 0x87, 0xd2, 0x05, 0x1b, 0x39, 0x89, 0x10, 0x07, 0x6d, 0xe8, 0xfd, 0x8b, 0x4d, 0xb2, 0xa7, 0x7b, 0x1e, 0xa0, 0x6c, 0x0d, 0x3d, 0x3d, 0x49, 0xba, 0x61, 0x36, 0x1f, 0xc2, 0x84, 0x4a, 0xcc, 0x87, 0xa9, 0x1b, 0x23, 0x04, 0xe2, 0x3e, 0x97, 0xe1, 0xdb, 0xd5, 0x5a, 0xe8, 0x41, 0x6b, 0xe5, 0x5a, 0xa1, 0x99, 0xe5, 0x7b, 0xa7, 0xe0, 0x3b,
/* (2^235)P */ 0xea, 0xa3, 0x6a, 0xdd, 0x77, 0x7f, 0x77, 0x41, 0xc5, 0x6a, 0xe4, 0xaf, 0x11, 0x5f, 0x88, 0xa5, 0x10, 0xee, 0xd0, 0x8c, 0x0c, 0xb4, 0xa5, 0x2a, 0xd0, 0xd8, 0x1d, 0x47, 0x06, 0xc0, 0xd5, 0xce, 0x51, 0x54, 0x9b, 0x2b, 0xe6, 0x2f, 0xe7, 0xe7, 0x31, 0x5f, 0x5c, 0x23, 0x81, 0x3e, 0x03, 0x93, 0xaa, 0x2d, 0x71, 0x84, 0xa0, 0x89, 0x32, 0xa6,
/* (2^236)P */ 0x55, 0xa3, 0x13, 0x92, 0x4e, 0x93, 0x7d, 0xec, 0xca, 0x57, 0xfb, 0x37, 0xae, 0xd2, 0x18, 0x2e, 0x54, 0x05, 0x6c, 0xd1, 0x28, 0xca, 0x90, 0x40, 0x82, 0x2e, 0x79, 0xc6, 0x5a, 0xc7, 0xdd, 0x84, 0x93, 0xdf, 0x15, 0xb8, 0x1f, 0xb1, 0xf9, 0xaf, 0x2c, 0xe5, 0x32, 0xcd, 0xc2, 0x99, 0x6d, 0xac, 0x85, 0x5c, 0x63, 0xd3, 0xe2, 0xff, 0x24, 0xda,
/* (2^237)P */ 0x2d, 0x8d, 0xfd, 0x65, 0xcc, 0xe5, 0x02, 0xa0, 0xe5, 0xb9, 0xec, 0x59, 0x09, 0x50, 0x27, 0xb7, 0x3d, 0x2a, 0x79, 0xb2, 0x76, 0x5d, 0x64, 0x95, 0xf8, 0xc5, 0xaf, 0x8a, 0x62, 0x11, 0x5c, 0x56, 0x1c, 0x05, 0x64, 0x9e, 0x5e, 0xbd, 0x54, 0x04, 0xe6, 0x9e, 0xab, 0xe6, 0x22, 0x7e, 0x42, 0x54, 0xb5, 0xa5, 0xd0, 0x8d, 0x28, 0x6b, 0x0f, 0x0b,
/* (2^238)P */ 0x2d, 0xb2, 0x8c, 0x59, 0x10, 0x37, 0x84, 0x3b, 0x9b, 0x65, 0x1b, 0x0f, 0x10, 0xf9, 0xea, 0x60, 0x1b, 0x02, 0xf5, 0xee, 0x8b, 0xe6, 0x32, 0x7d, 0x10, 0x7f, 0x5f, 0x8c, 0x72, 0x09, 0x4e, 0x1f, 0x29, 0xff, 0x65, 0xcb, 0x3e, 0x3a, 0xd2, 0x96, 0x50, 0x1e, 0xea, 0x64, 0x99, 0xb5, 0x4c, 0x7a, 0x69, 0xb8, 0x95, 0xae, 0x48, 0xc0, 0x7c, 0xb1,
/* (2^239)P */ 0xcd, 0x7c, 0x4f, 0x3e, 0xea, 0xf3, 0x90, 0xcb, 0x12, 0x76, 0xd1, 0x17, 0xdc, 0x0d, 0x13, 0x0f, 0xfd, 0x4d, 0xb5, 0x1f, 0xe4, 0xdd, 0xf2, 0x4d, 0x58, 0xea, 0xa5, 0x66, 0x92, 0xcf, 0xe5, 0x54, 0xea, 0x9b, 0x35, 0x83, 0x1a, 0x44, 0x8e, 0x62, 0x73, 0x45, 0x98, 0xa3, 0x89, 0x95, 0x52, 0x93, 0x1a, 0x8d, 0x63, 0x0f, 0xc2, 0x57, 0x3c, 0xb1,
/* (2^240)P */ 0x72, 0xb4, 0xdf, 0x51, 0xb7, 0xf6, 0x52, 0xa2, 0x14, 0x56, 0xe5, 0x0a, 0x2e, 0x75, 0x81, 0x02, 0xee, 0x93, 0x48, 0x0a, 0x92, 0x4e, 0x0c, 0x0f, 0xdf, 0x09, 0x89, 0x99, 0xf6, 0xf9, 0x22, 0xa2, 0x32, 0xf8, 0xb0, 0x76, 0x0c, 0xb2, 0x4d, 0x6e, 0xbe, 0x83, 0x35, 0x61, 0x44, 0xd2, 0x58, 0xc7, 0xdd, 0x14, 0xcf, 0xc3, 0x4b, 0x7c, 0x07, 0xee,
/* (2^241)P */ 0x8b, 0x03, 0xee, 0xcb, 0xa7, 0x2e, 0x28, 0xbd, 0x97, 0xd1, 0x4c, 0x2b, 0xd1, 0x92, 0x67, 0x5b, 0x5a, 0x12, 0xbf, 0x29, 0x17, 0xfc, 0x50, 0x09, 0x74, 0x76, 0xa2, 0xd4, 0x82, 0xfd, 0x2c, 0x0c, 0x90, 0xf7, 0xe7, 0xe5, 0x9a, 0x2c, 0x16, 0x40, 0xb9, 0x6c, 0xd9, 0xe0, 0x22, 0x9e, 0xf8, 0xdd, 0x73, 0xe4, 0x7b, 0x9e, 0xbe, 0x4f, 0x66, 0x22,
/* (2^242)P */ 0xa4, 0x10, 0xbe, 0xb8, 0x83, 0x3a, 0x77, 0x8e, 0xea, 0x0a, 0xc4, 0x97, 0x3e, 0xb6, 0x6c, 0x81, 0xd7, 0x65, 0xd9, 0xf7, 0xae, 0xe6, 0xbe, 0xab, 0x59, 0x81, 0x29, 0x4b, 0xff, 0xe1, 0x0f, 0xc3, 0x2b, 0xad, 0x4b, 0xef, 0xc4, 0x50, 0x9f, 0x88, 0x31, 0xf2, 0xde, 0x80, 0xd6, 0xf4, 0x20, 0x9c, 0x77, 0x9b, 0xbe, 0xbe, 0x08, 0xf5, 0xf0, 0x95,
/* (2^243)P */ 0x0e, 0x7c, 0x7b, 0x7c, 0xb3, 0xd8, 0x83, 0xfc, 0x8c, 0x75, 0x51, 0x74, 0x1b, 0xe1, 0x6d, 0x11, 0x05, 0x46, 0x24, 0x0d, 0xa4, 0x2b, 0x32, 0xfd, 0x2c, 0x4e, 0x21, 0xdf, 0x39, 0x6b, 0x96, 0xfc, 0xff, 0x92, 0xfc, 0x35, 0x0d, 0x9a, 0x4b, 0xc0, 0x70, 0x46, 0x32, 0x7d, 0xc0, 0xc4, 0x04, 0xe0, 0x2d, 0x83, 0xa7, 0x00, 0xc7, 0xcb, 0xb4, 0x8f,
/* (2^244)P */ 0xa9, 0x5a, 0x7f, 0x0e, 0xdd, 0x2c, 0x85, 0xaa, 0x4d, 0xac, 0xde, 0xb3, 0xb6, 0xaf, 0xe6, 0xd1, 0x06, 0x7b, 0x2c, 0xa4, 0x01, 0x19, 0x22, 0x7d, 0x78, 0xf0, 0x3a, 0xea, 0x89, 0xfe, 0x21, 0x61, 0x6d, 0xb8, 0xfe, 0xa5, 0x2a, 0xab, 0x0d, 0x7b, 0x51, 0x39, 0xb6, 0xde, 0xbc, 0xf0, 0xc5, 0x48, 0xd7, 0x09, 0x82, 0x6e, 0x66, 0x75, 0xc5, 0xcd,
/* (2^245)P */ 0xee, 0xdf, 0x2b, 0x6c, 0xa8, 0xde, 0x61, 0xe1, 0x27, 0xfa, 0x2a, 0x0f, 0x68, 0xe7, 0x7a, 0x9b, 0x13, 0xe9, 0x56, 0xd2, 0x1c, 0x3d, 0x2f, 0x3c, 0x7a, 0xf6, 0x6f, 0x45, 0xee, 0xe8, 0xf4, 0xa0, 0xa6, 0xe8, 0xa5, 0x27, 0xee, 0xf2, 0x85, 0xa9, 0xd5, 0x0e, 0xa9, 0x26, 0x60, 0xfe, 0xee, 0xc7, 0x59, 0x99, 0x5e, 0xa3, 0xdf, 0x23, 0x36, 0xd5,
/* (2^246)P */ 0x15, 0x66, 0x6f, 0xd5, 0x78, 0xa4, 0x0a, 0xf7, 0xb1, 0xe8, 0x75, 0x6b, 0x48, 0x7d, 0xa6, 0x4d, 0x3d, 0x36, 0x9b, 0xc7, 0xcc, 0x68, 0x9a, 0xfe, 0x2f, 0x39, 0x2a, 0x51, 0x31, 0x39, 0x7d, 0x73, 0x6f, 0xc8, 0x74, 0x72, 0x6f, 0x6e, 0xda, 0x5f, 0xad, 0x48, 0xc8, 0x40, 0xe1, 0x06, 0x01, 0x36, 0xa1, 0x88, 0xc8, 0x99, 0x9c, 0xd1, 0x11, 0x8f,
/* (2^247)P */ 0xab, 0xc5, 0xcb, 0xcf, 0xbd, 0x73, 0x21, 0xd0, 0x82, 0xb1, 0x2e, 0x2d, 0xd4, 0x36, 0x1b, 0xed, 0xa9, 0x8a, 0x26, 0x79, 0xc4, 0x17, 0xae, 0xe5, 0x09, 0x0a, 0x0c, 0xa4, 0x21, 0xa0, 0x6e, 0xdd, 0x62, 0x8e, 0x44, 0x62, 0xcc, 0x50, 0xff, 0x93, 0xb3, 0x9a, 0x72, 0x8c, 0x3f, 0xa1, 0xa6, 0x4d, 0x87, 0xd5, 0x1c, 0x5a, 0xc0, 0x0b, 0x1a, 0xd6,
/* (2^248)P */ 0x67, 0x36, 0x6a, 0x1f, 0x96, 0xe5, 0x80, 0x20, 0xa9, 0xe8, 0x0b, 0x0e, 0x21, 0x29, 0x3f, 0xc8, 0x0a, 0x6d, 0x27, 0x47, 0xca, 0xd9, 0x05, 0x55, 0xbf, 0x11, 0xcf, 0x31, 0x7a, 0x37, 0xc7, 0x90, 0xa9, 0xf4, 0x07, 0x5e, 0xd5, 0xc3, 0x92, 0xaa, 0x95, 0xc8, 0x23, 0x2a, 0x53, 0x45, 0xe3, 0x3a, 0x24, 0xe9, 0x67, 0x97, 0x3a, 0x82, 0xf9, 0xa6,
/* (2^249)P */ 0x92, 0x9e, 0x6d, 0x82, 0x67, 0xe9, 0xf9, 0x17, 0x96, 0x2c, 0xa7, 0xd3, 0x89, 0xf9, 0xdb, 0xd8, 0x20, 0xc6, 0x2e, 0xec, 0x4a, 0x76, 0x64, 0xbf, 0x27, 0x40, 0xe2, 0xb4, 0xdf, 0x1f, 0xa0, 0xef, 0x07, 0x80, 0xfb, 0x8e, 0x12, 0xf8, 0xb8, 0xe1, 0xc6, 0xdf, 0x7c, 0x69, 0x35, 0x5a, 0xe1, 0x8e, 0x5d, 0x69, 0x84, 0x56, 0xb6, 0x31, 0x1c, 0x0b,
/* (2^250)P */ 0xd6, 0x94, 0x5c, 0xef, 0xbb, 0x46, 0x45, 0x44, 0x5b, 0xa1, 0xae, 0x03, 0x65, 0xdd, 0xb5, 0x66, 0x88, 0x35, 0x29, 0x95, 0x16, 0x54, 0xa6, 0xf5, 0xc9, 0x78, 0x34, 0xe6, 0x0f, 0xc4, 0x2b, 0x5b, 0x79, 0x51, 0x68, 0x48, 0x3a, 0x26, 0x87, 0x05, 0x70, 0xaf, 0x8b, 0xa6, 0xc7, 0x2e, 0xb3, 0xa9, 0x10, 0x01, 0xb0, 0xb9, 0x31, 0xfd, 0xdc, 0x80,
/* (2^251)P */ 0x25, 0xf2, 0xad, 0xd6, 0x75, 0xa3, 0x04, 0x05, 0x64, 0x8a, 0x97, 0x60, 0x27, 0x2a, 0xe5, 0x6d, 0xb0, 0x73, 0xf4, 0x07, 0x2a, 0x9d, 0xe9, 0x46, 0xb4, 0x1c, 0x51, 0xf8, 0x63, 0x98, 0x7e, 0xe5, 0x13, 0x51, 0xed, 0x98, 0x65, 0x98, 0x4f, 0x8f, 0xe7, 0x7e, 0x72, 0xd7, 0x64, 0x11, 0x2f, 0xcd, 0x12, 0xf8, 0xc4, 0x63, 0x52, 0x0f, 0x7f, 0xc4,
/* (2^252)P */ 0x5c, 0xd9, 0x85, 0x63, 0xc7, 0x8a, 0x65, 0x9a, 0x25, 0x83, 0x31, 0x73, 0x49, 0xf0, 0x93, 0x96, 0x70, 0x67, 0x6d, 0xb1, 0xff, 0x95, 0x54, 0xe4, 0xf8, 0x15, 0x6c, 0x5f, 0xbd, 0xf6, 0x0f, 0x38, 0x7b, 0x68, 0x7d, 0xd9, 0x3d, 0xf0, 0xa9, 0xa0, 0xe4, 0xd1, 0xb6, 0x34, 0x6d, 0x14, 0x16, 0xc2, 0x4c, 0x30, 0x0e, 0x67, 0xd3, 0xbe, 0x2e, 0xc0,
/* (2^253)P */ 0x06, 0x6b, 0x52, 0xc8, 0x14, 0xcd, 0xae, 0x03, 0x93, 0xea, 0xc1, 0xf2, 0xf6, 0x8b, 0xc5, 0xb6, 0xdc, 0x82, 0x42, 0x29, 0x94, 0xe0, 0x25, 0x6c, 0x3f, 0x9f, 0x5d, 0xe4, 0x96, 0xf6, 0x8e, 0x3f, 0xf9, 0x72, 0xc4, 0x77, 0x60, 0x8b, 0xa4, 0xf9, 0xa8, 0xc3, 0x0a, 0x81, 0xb1, 0x97, 0x70, 0x18, 0xab, 0xea, 0x37, 0x8a, 0x08, 0xc7, 0xe2, 0x95,
/* (2^254)P */ 0x94, 0x49, 0xd9, 0x5f, 0x76, 0x72, 0x82, 0xad, 0x2d, 0x50, 0x1a, 0x7a, 0x5b, 0xe6, 0x95, 0x1e, 0x95, 0x65, 0x87, 0x1c, 0x52, 0xd7, 0x44, 0xe6, 0x9b, 0x56, 0xcd, 0x6f, 0x05, 0xff, 0x67, 0xc5, 0xdb, 0xa2, 0xac, 0xe4, 0xa2, 0x28, 0x63, 0x5f, 0xfb, 0x0c, 0x3b, 0xf1, 0x87, 0xc3, 0x36, 0x78, 0x3f, 0x77, 0xfa, 0x50, 0x85, 0xf9, 0xd7, 0x82,
/* (2^255)P */ 0x64, 0xc0, 0xe0, 0xd8, 0x2d, 0xed, 0xcb, 0x6a, 0xfd, 0xcd, 0xbc, 0x7e, 0x9f, 0xc8, 0x85, 0xe9, 0xc1, 0x7c, 0x0f, 0xe5, 0x18, 0xea, 0xd4, 0x51, 0xad, 0x59, 0x13, 0x75, 0xd9, 0x3d, 0xd4, 0x8a, 0xb2, 0xbe, 0x78, 0x52, 0x2b, 0x52, 0x94, 0x37, 0x41, 0xd6, 0xb4, 0xb6, 0x45, 0x20, 0x76, 0xe0, 0x1f, 0x31, 0xdb, 0xb1, 0xa1, 0x43, 0xf0, 0x18,
/* (2^256)P */ 0x74, 0xa9, 0xa4, 0xa9, 0xdd, 0x6e, 0x3e, 0x68, 0xe5, 0xc3, 0x2e, 0x92, 0x17, 0xa4, 0xcb, 0x80, 0xb1, 0xf0, 0x06, 0x93, 0xef, 0xe6, 0x00, 0xe6, 0x3b, 0xb1, 0x32, 0x65, 0x7b, 0x83, 0xb6, 0x8a, 0x49, 0x1b, 0x14, 0x89, 0xee, 0xba, 0xf5, 0x6a, 0x8d, 0x36, 0xef, 0xb0, 0xd8, 0xb2, 0x16, 0x99, 0x17, 0x35, 0x02, 0x16, 0x55, 0x58, 0xdd, 0x82,
/* (2^257)P */ 0x36, 0x95, 0xe8, 0xf4, 0x36, 0x42, 0xbb, 0xc5, 0x3e, 0xfa, 0x30, 0x84, 0x9e, 0x59, 0xfd, 0xd2, 0x95, 0x42, 0xf8, 0x64, 0xd9, 0xb9, 0x0e, 0x9f, 0xfa, 0xd0, 0x7b, 0x20, 0x31, 0x77, 0x48, 0x29, 0x4d, 0xd0, 0x32, 0x57, 0x56, 0x30, 0xa6, 0x17, 0x53, 0x04, 0xbf, 0x08, 0x28, 0xec, 0xb8, 0x46, 0xc1, 0x03, 0x89, 0xdc, 0xed, 0xa0, 0x35, 0x53,
/* (2^258)P */ 0xc5, 0x7f, 0x9e, 0xd8, 0xc5, 0xba, 0x5f, 0x68, 0xc8, 0x23, 0x75, 0xea, 0x0d, 0xd9, 0x5a, 0xfd, 0x61, 0x1a, 0xa3, 0x2e, 0x45, 0x63, 0x14, 0x55, 0x86, 0x21, 0x29, 0xbe, 0xef, 0x5e, 0x50, 0xe5, 0x18, 0x59, 0xe7, 0xe3, 0xce, 0x4d, 0x8c, 0x15, 0x8f, 0x89, 0x66, 0x44, 0x52, 0x3d, 0xfa, 0xc7, 0x9a, 0x59, 0x90, 0x8e, 0xc0, 0x06, 0x3f, 0xc9,
/* (2^259)P */ 0x8e, 0x04, 0xd9, 0x16, 0x50, 0x1d, 0x8c, 0x9f, 0xd5, 0xe3, 0xce, 0xfd, 0x47, 0x04, 0x27, 0x4d, 0xc2, 0xfa, 0x71, 0xd9, 0x0b, 0xb8, 0x65, 0xf4, 0x11, 0xf3, 0x08, 0xee, 0x81, 0xc8, 0x67, 0x99, 0x0b, 0x8d, 0x77, 0xa3, 0x4f, 0xb5, 0x9b, 0xdb, 0x26, 0xf1, 0x97, 0xeb, 0x04, 0x54, 0xeb, 0x80, 0x08, 0x1d, 0x1d, 0xf6, 0x3d, 0x1f, 0x5a, 0xb8,
/* (2^260)P */ 0xb7, 0x9c, 0x9d, 0xee, 0xb9, 0x5c, 0xad, 0x0d, 0x9e, 0xfd, 0x60, 0x3c, 0x27, 0x4e, 0xa2, 0x95, 0xfb, 0x64, 0x7e, 0x79, 0x64, 0x87, 0x10, 0xb4, 0x73, 0xe0, 0x9d, 0x46, 0x4d, 0x3d, 0xee, 0x83, 0xe4, 0x16, 0x88, 0x97, 0xe6, 0x4d, 0xba, 0x70, 0xb6, 0x96, 0x7b, 0xff, 0x4b, 0xc8, 0xcf, 0x72, 0x83, 0x3e, 0x5b, 0x24, 0x2e, 0x57, 0xf1, 0x82,
/* (2^261)P */ 0x30, 0x71, 0x40, 0x51, 0x4f, 0x44, 0xbb, 0xc7, 0xf0, 0x54, 0x6e, 0x9d, 0xeb, 0x15, 0xad, 0xf8, 0x61, 0x43, 0x5a, 0xef, 0xc0, 0xb1, 0x57, 0xae, 0x03, 0x40, 0xe8, 0x68, 0x6f, 0x03, 0x20, 0x4f, 0x8a, 0x51, 0x2a, 0x9e, 0xd2, 0x45, 0xaf, 0xb4, 0xf5, 0xd4, 0x95, 0x7f, 0x3d, 0x3d, 0xb7, 0xb6, 0x28, 0xc5, 0x08, 0x8b, 0x44, 0xd6, 0x3f, 0xe7,
/* (2^262)P */ 0xa9, 0x52, 0x04, 0x67, 0xcb, 0x20, 0x63, 0xf8, 0x18, 0x01, 0x44, 0x21, 0x6a, 0x8a, 0x83, 0x48, 0xd4, 0xaf, 0x23, 0x0f, 0x35, 0x8d, 0xe5, 0x5a, 0xc4, 0x7c, 0x55, 0x46, 0x19, 0x5f, 0x35, 0xe0, 0x5d, 0x97, 0x4c, 0x2d, 0x04, 0xed, 0x59, 0xd4, 0xb0, 0xb2, 0xc6, 0xe3, 0x51, 0xe1, 0x38, 0xc6, 0x30, 0x49, 0x8f, 0xae, 0x61, 0x64, 0xce, 0xa8,
/* (2^263)P */ 0x9b, 0x64, 0x83, 0x3c, 0xd3, 0xdf, 0xb9, 0x27, 0xe7, 0x5b, 0x7f, 0xeb, 0xf3, 0x26, 0xcf, 0xb1, 0x8f, 0xaf, 0x26, 0xc8, 0x48, 0xce, 0xa1, 0xac, 0x7d, 0x10, 0x34, 0x28, 0xe1, 0x1f, 0x69, 0x03, 0x64, 0x77, 0x61, 0xdd, 0x4a, 0x9b, 0x18, 0x47, 0xf8, 0xca, 0x63, 0xc9, 0x03, 0x2d, 0x20, 0x2a, 0x69, 0x6e, 0x42, 0xd0, 0xe7, 0xaa, 0xb5, 0xf3,
/* (2^264)P */ 0xea, 0x31, 0x0c, 0x57, 0x0f, 0x3e, 0xe3, 0x35, 0xd8, 0x30, 0xa5, 0x6f, 0xdd, 0x95, 0x43, 0xc6, 0x66, 0x07, 0x4f, 0x34, 0xc3, 0x7e, 0x04, 0x10, 0x2d, 0xc4, 0x1c, 0x94, 0x52, 0x2e, 0x5b, 0x9a, 0x65, 0x2f, 0x91, 0xaa, 0x4f, 0x3c, 0xdc, 0x23, 0x18, 0xe1, 0x4f, 0x85, 0xcd, 0xf4, 0x8c, 0x51, 0xf7, 0xab, 0x4f, 0xdc, 0x15, 0x5c, 0x9e, 0xc5,
/* (2^265)P */ 0x54, 0x57, 0x23, 0x17, 0xe7, 0x82, 0x2f, 0x04, 0x7d, 0xfe, 0xe7, 0x1f, 0xa2, 0x57, 0x79, 0xe9, 0x58, 0x9b, 0xbe, 0xc6, 0x16, 0x4a, 0x17, 0x50, 0x90, 0x4a, 0x34, 0x70, 0x87, 0x37, 0x01, 0x26, 0xd8, 0xa3, 0x5f, 0x07, 0x7c, 0xd0, 0x7d, 0x05, 0x8a, 0x93, 0x51, 0x2f, 0x99, 0xea, 0xcf, 0x00, 0xd8, 0xc7, 0xe6, 0x9b, 0x8c, 0x62, 0x45, 0x87,
/* (2^266)P */ 0xc3, 0xfd, 0x29, 0x66, 0xe7, 0x30, 0x29, 0x77, 0xe0, 0x0d, 0x63, 0x5b, 0xe6, 0x90, 0x1a, 0x1e, 0x99, 0xc2, 0xa7, 0xab, 0xff, 0xa7, 0xbd, 0x79, 0x01, 0x97, 0xfd, 0x27, 0x1b, 0x43, 0x2b, 0xe6, 0xfe, 0x5e, 0xf1, 0xb9, 0x35, 0x38, 0x08, 0x25, 0x55, 0x90, 0x68, 0x2e, 0xc3, 0x67, 0x39, 0x9f, 0x2b, 0x2c, 0x70, 0x48, 0x8c, 0x47, 0xee, 0x56,
/* (2^267)P */ 0xf7, 0x32, 0x70, 0xb5, 0xe6, 0x42, 0xfd, 0x0a, 0x39, 0x9b, 0x07, 0xfe, 0x0e, 0xf4, 0x47, 0xba, 0x6a, 0x3f, 0xf5, 0x2c, 0x15, 0xf3, 0x60, 0x3f, 0xb1, 0x83, 0x7b, 0x2e, 0x34, 0x58, 0x1a, 0x6e, 0x4a, 0x49, 0x05, 0x45, 0xca, 0xdb, 0x00, 0x01, 0x0c, 0x42, 0x5e, 0x60, 0x40, 0x5f, 0xd9, 0xc7, 0x3a, 0x9e, 0x1c, 0x8d, 0xab, 0x11, 0x55, 0x65,
/* (2^268)P */ 0x87, 0x40, 0xb7, 0x0d, 0xaa, 0x34, 0x89, 0x90, 0x75, 0x6d, 0xa2, 0xfe, 0x3b, 0x6d, 0x5c, 0x39, 0x98, 0x10, 0x9e, 0x15, 0xc5, 0x35, 0xa2, 0x27, 0x23, 0x0a, 0x2d, 0x60, 0xe2, 0xa8, 0x7f, 0x3e, 0x77, 0x8f, 0xcc, 0x44, 0xcc, 0x30, 0x28, 0xe2, 0xf0, 0x04, 0x8c, 0xee, 0xe4, 0x5f, 0x68, 0x8c, 0xdf, 0x70, 0xbf, 0x31, 0xee, 0x2a, 0xfc, 0xce,
/* (2^269)P */ 0x92, 0xf2, 0xa0, 0xd9, 0x58, 0x3b, 0x7c, 0x1a, 0x99, 0x46, 0x59, 0x54, 0x60, 0x06, 0x8d, 0x5e, 0xf0, 0x22, 0xa1, 0xed, 0x92, 0x8a, 0x4d, 0x76, 0x95, 0x05, 0x0b, 0xff, 0xfc, 0x9a, 0xd1, 0xcc, 0x05, 0xb9, 0x5e, 0x99, 0xe8, 0x2a, 0x76, 0x7b, 0xfd, 0xa6, 0xe2, 0xd1, 0x1a, 0xd6, 0x76, 0x9f, 0x2f, 0x0e, 0xd1, 0xa8, 0x77, 0x5a, 0x40, 0x5a,
/* (2^270)P */ 0xff, 0xf9, 0x3f, 0xa9, 0xa6, 0x6c, 0x6d, 0x03, 0x8b, 0xa7, 0x10, 0x5d, 0x3f, 0xec, 0x3e, 0x1c, 0x0b, 0x6b, 0xa2, 0x6a, 0x22, 0xa9, 0x28, 0xd0, 0x66, 0xc9, 0xc2, 0x3d, 0x47, 0x20, 0x7d, 0xa6, 0x1d, 0xd8, 0x25, 0xb5, 0xf2, 0xf9, 0x70, 0x19, 0x6b, 0xf8, 0x43, 0x36, 0xc5, 0x1f, 0xe4, 0x5a, 0x4c, 0x13, 0xe4, 0x6d, 0x08, 0x0b, 0x1d, 0xb1,
/* (2^271)P */ 0x3f, 0x20, 0x9b, 0xfb, 0xec, 0x7d, 0x31, 0xc5, 0xfc, 0x88, 0x0b, 0x30, 0xed, 0x36, 0xc0, 0x63, 0xb1, 0x7d, 0x10, 0xda, 0xb6, 0x2e, 0xad, 0xf3, 0xec, 0x94, 0xe7, 0xec, 0xb5, 0x9c, 0xfe, 0xf5, 0x35, 0xf0, 0xa2, 0x2d, 0x7f, 0xca, 0x6b, 0x67, 0x1a, 0xf6, 0xb3, 0xda, 0x09, 0x2a, 0xaa, 0xdf, 0xb1, 0xca, 0x9b, 0xfb, 0xeb, 0xb3, 0xcd, 0xc0,
/* (2^272)P */ 0xcd, 0x4d, 0x89, 0x00, 0xa4, 0x3b, 0x48, 0xf0, 0x76, 0x91, 0x35, 0xa5, 0xf8, 0xc9, 0xb6, 0x46, 0xbc, 0xf6, 0x9a, 0x45, 0x47, 0x17, 0x96, 0x80, 0x5b, 0x3a, 0x28, 0x33, 0xf9, 0x5a, 0xef, 0x43, 0x07, 0xfe, 0x3b, 0xf4, 0x8e, 0x19, 0xce, 0xd2, 0x94, 0x4b, 0x6d, 0x8e, 0x67, 0x20, 0xc7, 0x4f, 0x2f, 0x59, 0x8e, 0xe1, 0xa1, 0xa9, 0xf9, 0x0e,
/* (2^273)P */ 0xdc, 0x7b, 0xb5, 0x50, 0x2e, 0xe9, 0x7e, 0x8b, 0x78, 0xa1, 0x38, 0x96, 0x22, 0xc3, 0x61, 0x67, 0x6d, 0xc8, 0x58, 0xed, 0x41, 0x1d, 0x5d, 0x86, 0x98, 0x7f, 0x2f, 0x1b, 0x8d, 0x3e, 0xaa, 0xc1, 0xd2, 0x0a, 0xf3, 0xbf, 0x95, 0x04, 0xf3, 0x10, 0x3c, 0x2b, 0x7f, 0x90, 0x46, 0x04, 0xaa, 0x6a, 0xa9, 0x35, 0x76, 0xac, 0x49, 0xb5, 0x00, 0x45,
/* (2^274)P */ 0xb1, 0x93, 0x79, 0x84, 0x4a, 0x2a, 0x30, 0x78, 0x16, 0xaa, 0xc5, 0x74, 0x06, 0xce, 0xa5, 0xa7, 0x32, 0x86, 0xe0, 0xf9, 0x10, 0xd2, 0x58, 0x76, 0xfb, 0x66, 0x49, 0x76, 0x3a, 0x90, 0xba, 0xb5, 0xcc, 0x99, 0xcd, 0x09, 0xc1, 0x9a, 0x74, 0x23, 0xdf, 0x0c, 0xfe, 0x99, 0x52, 0x80, 0xa3, 0x7c, 0x1c, 0x71, 0x5f, 0x2c, 0x49, 0x57, 0xf4, 0xf9,
/* (2^275)P */ 0x6d, 0xbf, 0x52, 0xe6, 0x25, 0x98, 0xed, 0xcf, 0xe3, 0xbc, 0x08, 0xa2, 0x1a, 0x90, 0xae, 0xa0, 0xbf, 0x07, 0x15, 0xad, 0x0a, 0x9f, 0x3e, 0x47, 0x44, 0xc2, 0x10, 0x46, 0xa6, 0x7a, 0x9e, 0x2f, 0x57, 0xbc, 0xe2, 0xf0, 0x1d, 0xd6, 0x9a, 0x06, 0xed, 0xfc, 0x54, 0x95, 0x92, 0x15, 0xa2, 0xf7, 0x8d, 0x6b, 0xef, 0xb2, 0x05, 0xed, 0x5c, 0x63,
/* (2^276)P */ 0xbc, 0x0b, 0x27, 0x3a, 0x3a, 0xf8, 0xe1, 0x48, 0x02, 0x7e, 0x27, 0xe6, 0x81, 0x62, 0x07, 0x73, 0x74, 0xe5, 0x52, 0xd7, 0xf8, 0x26, 0xca, 0x93, 0x4d, 0x3e, 0x9b, 0x55, 0x09, 0x8e, 0xe3, 0xd7, 0xa6, 0xe3, 0xb6, 0x2a, 0xa9, 0xb3, 0xb0, 0xa0, 0x8c, 0x01, 0xbb, 0x07, 0x90, 0x78, 0x6d, 0x6d, 0xe9, 0xf0, 0x7a, 0x90, 0xbd, 0xdc, 0x0c, 0x36,
/* (2^277)P */ 0x7f, 0x20, 0x12, 0x0f, 0x40, 0x00, 0x53, 0xd8, 0x0c, 0x27, 0x47, 0x47, 0x22, 0x80, 0xfb, 0x62, 0xe4, 0xa7, 0xf7, 0xbd, 0x42, 0xa5, 0xc3, 0x2b, 0xb2, 0x7f, 0x50, 0xcc, 0xe2, 0xfb, 0xd5, 0xc0, 0x63, 0xdd, 0x24, 0x5f, 0x7c, 0x08, 0x91, 0xbf, 0x6e, 0x47, 0x44, 0xd4, 0x6a, 0xc0, 0xc3, 0x09, 0x39, 0x27, 0xdd, 0xc7, 0xca, 0x06, 0x29, 0x55,
/* (2^278)P */ 0x76, 0x28, 0x58, 0xb0, 0xd2, 0xf3, 0x0f, 0x04, 0xe9, 0xc9, 0xab, 0x66, 0x5b, 0x75, 0x51, 0xdc, 0xe5, 0x8f, 0xe8, 0x1f, 0xdb, 0x03, 0x0f, 0xb0, 0x7d, 0xf9, 0x20, 0x64, 0x89, 0xe9, 0xdc, 0xe6, 0x24, 0xc3, 0xd5, 0xd2, 0x41, 0xa6, 0xe4, 0xe3, 0xc4, 0x79, 0x7c, 0x0f, 0xa1, 0x61, 0x2f, 0xda, 0xa4, 0xc9, 0xfd, 0xad, 0x5c, 0x65, 0x6a, 0xf3,
/* (2^279)P */ 0xd5, 0xab, 0x72, 0x7a, 0x3b, 0x59, 0xea, 0xcf, 0xd5, 0x17, 0xd2, 0xb2, 0x5f, 0x2d, 0xab, 0xad, 0x9e, 0x88, 0x64, 0x55, 0x96, 0x6e, 0xf3, 0x44, 0xa9, 0x11, 0xf5, 0xf8, 0x3a, 0xf1, 0xcd, 0x79, 0x4c, 0x99, 0x6d, 0x23, 0x6a, 0xa0, 0xc2, 0x1a, 0x19, 0x45, 0xb5, 0xd8, 0x95, 0x2f, 0x49, 0xe9, 0x46, 0x39, 0x26, 0x60, 0x04, 0x15, 0x8b, 0xcc,
/* (2^280)P */ 0x66, 0x0c, 0xf0, 0x54, 0x41, 0x02, 0x91, 0xab, 0xe5, 0x85, 0x8a, 0x44, 0xa6, 0x34, 0x96, 0x32, 0xc0, 0xdf, 0x6c, 0x41, 0x39, 0xd4, 0xc6, 0xe1, 0xe3, 0x81, 0xb0, 0x4c, 0x34, 0x4f, 0xe5, 0xf4, 0x35, 0x46, 0x1f, 0xeb, 0x75, 0xfd, 0x43, 0x37, 0x50, 0x99, 0xab, 0xad, 0xb7, 0x8c, 0xa1, 0x57, 0xcb, 0xe6, 0xce, 0x16, 0x2e, 0x85, 0xcc, 0xf9,
/* (2^281)P */ 0x63, 0xd1, 0x3f, 0x9e, 0xa2, 0x17, 0x2e, 0x1d, 0x3e, 0xce, 0x48, 0x2d, 0xbb, 0x8f, 0x69, 0xc9, 0xa6, 0x3d, 0x4e, 0xfe, 0x09, 0x56, 0xb3, 0x02, 0x5f, 0x99, 0x97, 0x0c, 0x54, 0xda, 0x32, 0x97, 0x9b, 0xf4, 0x95, 0xf1, 0xad, 0xe3, 0x2b, 0x04, 0xa7, 0x9b, 0x3f, 0xbb, 0xe7, 0x87, 0x2e, 0x1f, 0x8b, 0x4b, 0x7a, 0xa4, 0x43, 0x0c, 0x0f, 0x35,
/* (2^282)P */ 0x05, 0xdc, 0xe0, 0x2c, 0xa1, 0xc1, 0xd0, 0xf1, 0x1f, 0x4e, 0xc0, 0x6c, 0x35, 0x7b, 0xca, 0x8f, 0x8b, 0x02, 0xb1, 0xf7, 0xd6, 0x2e, 0xe7, 0x93, 0x80, 0x85, 0x18, 0x88, 0x19, 0xb9, 0xb4, 0x4a, 0xbc, 0xeb, 0x5a, 0x78, 0x38, 0xed, 0xc6, 0x27, 0x2a, 0x74, 0x76, 0xf0, 0x1b, 0x79, 0x92, 0x2f, 0xd2, 0x81, 0x98, 0xdf, 0xa9, 0x50, 0x19, 0xeb,
/* (2^283)P */ 0xb5, 0xe7, 0xb4, 0x11, 0x3a, 0x81, 0xb6, 0xb4, 0xf8, 0xa2, 0xb3, 0x6c, 0xfc, 0x9d, 0xe0, 0xc0, 0xe0, 0x59, 0x7f, 0x05, 0x37, 0xef, 0x2c, 0xa9, 0x3a, 0x24, 0xac, 0x7b, 0x25, 0xa0, 0x55, 0xd2, 0x44, 0x82, 0x82, 0x6e, 0x64, 0xa3, 0x58, 0xc8, 0x67, 0xae, 0x26, 0xa7, 0x0f, 0x42, 0x63, 0xe1, 0x93, 0x01, 0x52, 0x19, 0xaf, 0x49, 0x3e, 0x33,
/* (2^284)P */ 0x05, 0x85, 0xe6, 0x66, 0xaf, 0x5f, 0xdf, 0xbf, 0x9d, 0x24, 0x62, 0x60, 0x90, 0xe2, 0x4c, 0x7d, 0x4e, 0xc3, 0x74, 0x5d, 0x4f, 0x53, 0xf3, 0x63, 0x13, 0xf4, 0x74, 0x28, 0x6b, 0x7d, 0x57, 0x0c, 0x9d, 0x84, 0xa7, 0x1a, 0xff, 0xa0, 0x79, 0xdf, 0xfc, 0x65, 0x98, 0x8e, 0x22, 0x0d, 0x62, 0x7e, 0xf2, 0x34, 0x60, 0x83, 0x05, 0x14, 0xb1, 0xc1,
/* (2^285)P */ 0x64, 0x22, 0xcc, 0xdf, 0x5c, 0xbc, 0x88, 0x68, 0x4c, 0xd9, 0xbc, 0x0e, 0xc9, 0x8b, 0xb4, 0x23, 0x52, 0xad, 0xb0, 0xb3, 0xf1, 0x17, 0xd8, 0x15, 0x04, 0x6b, 0x99, 0xf0, 0xc4, 0x7d, 0x48, 0x22, 0x4a, 0xf8, 0x6f, 0xaa, 0x88, 0x0d, 0xc5, 0x5e, 0xa9, 0x1c, 0x61, 0x3d, 0x95, 0xa9, 0x7b, 0x6a, 0x79, 0x33, 0x0a, 0x2b, 0x99, 0xe3, 0x4e, 0x48,
/* (2^286)P */ 0x6b, 0x9b, 0x6a, 0x2a, 0xf1, 0x60, 0x31, 0xb4, 0x73, 0xd1, 0x87, 0x45, 0x9c, 0x15, 0x58, 0x4b, 0x91, 0x6d, 0x94, 0x1c, 0x41, 0x11, 0x4a, 0x83, 0xec, 0xaf, 0x65, 0xbc, 0x34, 0xaa, 0x26, 0xe2, 0xaf, 0xed, 0x46, 0x05, 0x4e, 0xdb, 0xc6, 0x4e, 0x10, 0x28, 0x4e, 0x72, 0xe5, 0x31, 0xa3, 0x20, 0xd7, 0xb1, 0x96, 0x64, 0xf6, 0xce, 0x08, 0x08,
/* (2^287)P */ 0x16, 0xa9, 0x5c, 0x9f, 0x9a, 0xb4, 0xb8, 0xc8, 0x32, 0x78, 0xc0, 0x3a, 0xd9, 0x5f, 0x94, 0xac, 0x3a, 0x42, 0x1f, 0x43, 0xd6, 0x80, 0x47, 0x2c, 0xdc, 0x76, 0x27, 0xfa, 0x50, 0xe5, 0xa1, 0xe4, 0xc3, 0xcb, 0x61, 0x31, 0xe1, 0x2e, 0xde, 0x81, 0x3b, 0x77, 0x1c, 0x39, 0x3c, 0xdb, 0xda, 0x87, 0x4b, 0x84, 0x12, 0xeb, 0xdd, 0x54, 0xbf, 0xe7,
/* (2^288)P */ 0xbf, 0xcb, 0x73, 0x21, 0x3d, 0x7e, 0x13, 0x8c, 0xa6, 0x34, 0x21, 0x2b, 0xa5, 0xe4, 0x9f, 0x8e, 0x9c, 0x01, 0x9c, 0x43, 0xd9, 0xc7, 0xb9, 0xf1, 0xbe, 0x7f, 0x45, 0x51, 0x97, 0xa1, 0x8e, 0x01, 0xf8, 0xbd, 0xd2, 0xbf, 0x81, 0x3a, 0x8b, 0xab, 0xe4, 0x89, 0xb7, 0xbd, 0xf2, 0xcd, 0xa9, 0x8a, 0x8a, 0xde, 0xfb, 0x8a, 0x55, 0x12, 0x7b, 0x17,
/* (2^289)P */ 0x1b, 0x95, 0x58, 0x4d, 0xe6, 0x51, 0x31, 0x52, 0x1c, 0xd8, 0x15, 0x84, 0xb1, 0x0d, 0x36, 0x25, 0x88, 0x91, 0x46, 0x71, 0x42, 0x56, 0xe2, 0x90, 0x08, 0x9e, 0x77, 0x1b, 0xee, 0x22, 0x3f, 0xec, 0xee, 0x8c, 0x7b, 0x2e, 0x79, 0xc4, 0x6c, 0x07, 0xa1, 0x7e, 0x52, 0xf5, 0x26, 0x5c, 0x84, 0x2a, 0x50, 0x6e, 0x82, 0xb3, 0x76, 0xda, 0x35, 0x16,
/* (2^290)P */ 0x0a, 0x6f, 0x99, 0x87, 0xc0, 0x7d, 0x8a, 0xb2, 0xca, 0xae, 0xe8, 0x65, 0x98, 0x0f, 0xb3, 0x44, 0xe1, 0xdc, 0x52, 0x79, 0x75, 0xec, 0x8f, 0x95, 0x87, 0x45, 0xd1, 0x32, 0x18, 0x55, 0x15, 0xce, 0x64, 0x9b, 0x08, 0x4f, 0x2c, 0xea, 0xba, 0x1c, 0x57, 0x06, 0x63, 0xc8, 0xb1, 0xfd, 0xc5, 0x67, 0xe7, 0x1f, 0x87, 0x9e, 0xde, 0x72, 0x7d, 0xec,
/* (2^291)P */ 0x36, 0x8b, 0x4d, 0x2c, 0xc2, 0x46, 0xe8, 0x96, 0xac, 0x0b, 0x8c, 0xc5, 0x09, 0x10, 0xfc, 0xf2, 0xda, 0xea, 0x22, 0xb2, 0xd3, 0x89, 0xeb, 0xb2, 0x85, 0x0f, 0xff, 0x59, 0x50, 0x2c, 0x99, 0x5a, 0x1f, 0xec, 0x2a, 0x6f, 0xec, 0xcf, 0xe9, 0xce, 0x12, 0x6b, 0x19, 0xd8, 0xde, 0x9b, 0xce, 0x0e, 0x6a, 0xaa, 0xe1, 0x32, 0xea, 0x4c, 0xfe, 0x92,
/* (2^292)P */ 0x5f, 0x17, 0x70, 0x53, 0x26, 0x03, 0x0b, 0xab, 0xd1, 0xc1, 0x42, 0x0b, 0xab, 0x2b, 0x3d, 0x31, 0xa4, 0xd5, 0x2b, 0x5e, 0x00, 0xd5, 0x9a, 0x22, 0x34, 0xe0, 0x53, 0x3f, 0x59, 0x7f, 0x2c, 0x6d, 0x72, 0x9a, 0xa4, 0xbe, 0x3d, 0x42, 0x05, 0x1b, 0xf2, 0x7f, 0x88, 0x56, 0xd1, 0x7c, 0x7d, 0x6b, 0x9f, 0x43, 0xfe, 0x65, 0x19, 0xae, 0x9c, 0x4c,
/* (2^293)P */ 0xf3, 0x7c, 0x20, 0xa9, 0xfc, 0xf2, 0xf2, 0x3b, 0x3c, 0x57, 0x41, 0x94, 0xe5, 0xcc, 0x6a, 0x37, 0x5d, 0x09, 0xf2, 0xab, 0xc2, 0xca, 0x60, 0x38, 0x6b, 0x7a, 0xe1, 0x78, 0x2b, 0xc1, 0x1d, 0xe8, 0xfd, 0xbc, 0x3d, 0x5c, 0xa2, 0xdb, 0x49, 0x20, 0x79, 0xe6, 0x1b, 0x9b, 0x65, 0xd9, 0x6d, 0xec, 0x57, 0x1d, 0xd2, 0xe9, 0x90, 0xeb, 0x43, 0x7b,
/* (2^294)P */ 0x2a, 0x8b, 0x2e, 0x19, 0x18, 0x10, 0xb8, 0x83, 0xe7, 0x7d, 0x2d, 0x9a, 0x3a, 0xe5, 0xd1, 0xe4, 0x7c, 0x38, 0xe5, 0x59, 0x2a, 0x6e, 0xd9, 0x01, 0x29, 0x3d, 0x23, 0xf7, 0x52, 0xba, 0x61, 0x04, 0x9a, 0xde, 0xc4, 0x31, 0x50, 0xeb, 0x1b, 0xaa, 0xde, 0x39, 0x58, 0xd8, 0x1b, 0x1e, 0xfc, 0x57, 0x9a, 0x28, 0x43, 0x9e, 0x97, 0x5e, 0xaa, 0xa3,
/* (2^295)P */ 0x97, 0x0a, 0x74, 0xc4, 0x39, 0x99, 0x6b, 0x40, 0xc7, 0x3e, 0x8c, 0xa7, 0xb1, 0x4e, 0x9a, 0x59, 0x6e, 0x1c, 0xfe, 0xfc, 0x2a, 0x5e, 0x73, 0x2b, 0x8c, 0xa9, 0x71, 0xf5, 0xda, 0x6b, 0x15, 0xab, 0xf7, 0xbe, 0x2a, 0x44, 0x5f, 0xba, 0xae, 0x67, 0x93, 0xc5, 0x86, 0xc1, 0xb8, 0xdf, 0xdc, 0xcb, 0xd7, 0xff, 0xb1, 0x71, 0x7c, 0x6f, 0x88, 0xf8,
/* (2^296)P */ 0x3f, 0x89, 0xb1, 0xbf, 0x24, 0x16, 0xac, 0x56, 0xfe, 0xdf, 0x94, 0x71, 0xbf, 0xd6, 0x57, 0x0c, 0xb4, 0x77, 0x37, 0xaa, 0x2a, 0x70, 0x76, 0x49, 0xaf, 0x0c, 0x97, 0x8e, 0x78, 0x2a, 0x67, 0xc9, 0x3b, 0x3d, 0x5b, 0x01, 0x2f, 0xda, 0xd5, 0xa8, 0xde, 0x02, 0xa9, 0xac, 0x76, 0x00, 0x0b, 0x46, 0xc6, 0x2d, 0xdc, 0x08, 0xf4, 0x10, 0x2c, 0xbe,
/* (2^297)P */ 0xcb, 0x07, 0xf9, 0x91, 0xc6, 0xd5, 0x3e, 0x54, 0x63, 0xae, 0xfc, 0x10, 0xbe, 0x3a, 0x20, 0x73, 0x4e, 0x65, 0x0e, 0x2d, 0x86, 0x77, 0x83, 0x9d, 0xe2, 0x0a, 0xe9, 0xac, 0x22, 0x52, 0x76, 0xd4, 0x6e, 0xfa, 0xe0, 0x09, 0xef, 0x78, 0x82, 0x9f, 0x26, 0xf9, 0x06, 0xb5, 0xe7, 0x05, 0x0e, 0xf2, 0x46, 0x72, 0x93, 0xd3, 0x24, 0xbd, 0x87, 0x60,
/* (2^298)P */ 0x14, 0x55, 0x84, 0x7b, 0x6c, 0x60, 0x80, 0x73, 0x8c, 0xbe, 0x2d, 0xd6, 0x69, 0xd6, 0x17, 0x26, 0x44, 0x9f, 0x88, 0xa2, 0x39, 0x7c, 0x89, 0xbc, 0x6d, 0x9e, 0x46, 0xb6, 0x68, 0x66, 0xea, 0xdc, 0x31, 0xd6, 0x21, 0x51, 0x9f, 0x28, 0x28, 0xaf, 0x9e, 0x47, 0x2c, 0x4c, 0x8f, 0xf3, 0xaf, 0x1f, 0xe4, 0xab, 0xac, 0xe9, 0x0c, 0x91, 0x3a, 0x61,
/* (2^299)P */ 0xb0, 0x37, 0x55, 0x4b, 0xe9, 0xc3, 0xb1, 0xce, 0x42, 0xe6, 0xc5, 0x11, 0x7f, 0x2c, 0x11, 0xfc, 0x4e, 0x71, 0x17, 0x00, 0x74, 0x7f, 0xbf, 0x07, 0x4d, 0xfd, 0x40, 0xb2, 0x87, 0xb0, 0xef, 0x1f, 0x35, 0x2c, 0x2d, 0xd7, 0xe1, 0xe4, 0xad, 0x0e, 0x7f, 0x63, 0x66, 0x62, 0x23, 0x41, 0xf6, 0xc1, 0x14, 0xa6, 0xd7, 0xa9, 0x11, 0x56, 0x9d, 0x1b,
/* (2^300)P */ 0x02, 0x82, 0x42, 0x18, 0x4f, 0x1b, 0xc9, 0x5d, 0x78, 0x5f, 0xee, 0xed, 0x01, 0x49, 0x8f, 0xf2, 0xa0, 0xe2, 0x6e, 0xbb, 0x6b, 0x04, 0x8d, 0xb2, 0x41, 0xae, 0xc8, 0x1b, 0x59, 0x34, 0xb8, 0x2a, 0xdb, 0x1f, 0xd2, 0x52, 0xdf, 0x3f, 0x35, 0x00, 0x8b, 0x61, 0xbc, 0x97, 0xa0, 0xc4, 0x77, 0xd1, 0xe4, 0x2c, 0x59, 0x68, 0xff, 0x30, 0xf2, 0xe2,
/* (2^301)P */ 0x79, 0x08, 0xb1, 0xdb, 0x55, 0xae, 0xd0, 0xed, 0xda, 0xa0, 0xec, 0x6c, 0xae, 0x68, 0xf2, 0x0b, 0x61, 0xb3, 0xf5, 0x21, 0x69, 0x87, 0x0b, 0x03, 0xea, 0x8a, 0x15, 0xd9, 0x7e, 0xca, 0xf7, 0xcd, 0xf3, 0x33, 0xb3, 0x4c, 0x5b, 0x23, 0x4e, 0x6f, 0x90, 0xad, 0x91, 0x4b, 0x4f, 0x46, 0x37, 0xe5, 0xe8, 0xb7, 0xeb, 0xd5, 0xca, 0x34, 0x4e, 0x23,
/* (2^302)P */ 0x09, 0x02, 0xdd, 0xfd, 0x70, 0xac, 0x56, 0x80, 0x36, 0x5e, 0x49, 0xd0, 0x3f, 0xc2, 0xe0, 0xba, 0x46, 0x7f, 0x5c, 0xf7, 0xc5, 0xbd, 0xd5, 0x55, 0x7d, 0x3f, 0xd5, 0x7d, 0x06, 0xdf, 0x27, 0x20, 0x4f, 0xe9, 0x30, 0xec, 0x1b, 0xa0, 0x0c, 0xd4, 0x2c, 0xe1, 0x2b, 0x65, 0x73, 0xea, 0x75, 0x35, 0xe8, 0xe6, 0x56, 0xd6, 0x07, 0x15, 0x99, 0xdf,
/* (2^303)P */ 0x4e, 0x10, 0xb7, 0xd0, 0x63, 0x8c, 0xcf, 0x16, 0x00, 0x7c, 0x58, 0xdf, 0x86, 0xdc, 0x4e, 0xca, 0x9c, 0x40, 0x5a, 0x42, 0xfd, 0xec, 0x98, 0xa4, 0x42, 0x53, 0xae, 0x16, 0x9d, 0xfd, 0x75, 0x5a, 0x12, 0x56, 0x1e, 0xc6, 0x57, 0xcc, 0x79, 0x27, 0x96, 0x00, 0xcf, 0x80, 0x4f, 0x8a, 0x36, 0x5c, 0xbb, 0xe9, 0x12, 0xdb, 0xb6, 0x2b, 0xad, 0x96,
/* (2^304)P */ 0x92, 0x32, 0x1f, 0xfd, 0xc6, 0x02, 0x94, 0x08, 0x1b, 0x60, 0x6a, 0x9f, 0x8b, 0xd6, 0xc8, 0xad, 0xd5, 0x1b, 0x27, 0x4e, 0xa4, 0x4d, 0x4a, 0x00, 0x10, 0x5f, 0x86, 0x11, 0xf5, 0xe3, 0x14, 0x32, 0x43, 0xee, 0xb9, 0xc7, 0xab, 0xf4, 0x6f, 0xe5, 0x66, 0x0c, 0x06, 0x0d, 0x96, 0x79, 0x28, 0xaf, 0x45, 0x2b, 0x56, 0xbe, 0xe4, 0x4a, 0x52, 0xd6,
/* (2^305)P */ 0x15, 0x16, 0x69, 0xef, 0x60, 0xca, 0x82, 0x25, 0x0f, 0xc6, 0x30, 0xa0, 0x0a, 0xd1, 0x83, 0x29, 0xcd, 0xb6, 0x89, 0x6c, 0xf5, 0xb2, 0x08, 0x38, 0xe6, 0xca, 0x6b, 0x19, 0x93, 0xc6, 0x5f, 0x75, 0x8e, 0x60, 0x34, 0x23, 0xc4, 0x13, 0x17, 0x69, 0x55, 0xcc, 0x72, 0x9c, 0x2b, 0x6c, 0x80, 0xf4, 0x4b, 0x8b, 0xb6, 0x97, 0x65, 0x07, 0xb6, 0xfb,
/* (2^306)P */ 0x01, 0x99, 0x74, 0x28, 0xa6, 0x67, 0xa3, 0xe5, 0x25, 0xfb, 0xdf, 0x82, 0x93, 0xe7, 0x35, 0x74, 0xce, 0xe3, 0x15, 0x1c, 0x1d, 0x79, 0x52, 0x84, 0x08, 0x04, 0x2f, 0x5c, 0xb8, 0xcd, 0x7f, 0x89, 0xb0, 0x39, 0x93, 0x63, 0xc9, 0x5d, 0x06, 0x01, 0x59, 0xf7, 0x7e, 0xf1, 0x4c, 0x3d, 0x12, 0x8d, 0x69, 0x1d, 0xb7, 0x21, 0x5e, 0x88, 0x82, 0xa2,
/* (2^307)P */ 0x8e, 0x69, 0xaf, 0x9a, 0x41, 0x0d, 0x9d, 0xcf, 0x8e, 0x8d, 0x5c, 0x51, 0x6e, 0xde, 0x0e, 0x48, 0x23, 0x89, 0xe5, 0x37, 0x80, 0xd6, 0x9d, 0x72, 0x32, 0x26, 0x38, 0x2d, 0x63, 0xa0, 0xfa, 0xd3, 0x40, 0xc0, 0x8c, 0x68, 0x6f, 0x2b, 0x1e, 0x9a, 0x39, 0x51, 0x78, 0x74, 0x9a, 0x7b, 0x4a, 0x8f, 0x0c, 0xa0, 0x88, 0x60, 0xa5, 0x21, 0xcd, 0xc7,
/* (2^308)P */ 0x3a, 0x7f, 0x73, 0x14, 0xbf, 0x89, 0x6a, 0x4c, 0x09, 0x5d, 0xf2, 0x93, 0x20, 0x2d, 0xc4, 0x29, 0x86, 0x06, 0x95, 0xab, 0x22, 0x76, 0x4c, 0x54, 0xe1, 0x7e, 0x80, 0x6d, 0xab, 0x29, 0x61, 0x87, 0x77, 0xf6, 0xc0, 0x3e, 0xda, 0xab, 0x65, 0x7e, 0x39, 0x12, 0xa1, 0x6b, 0x42, 0xf7, 0xc5, 0x97, 0x77, 0xec, 0x6f, 0x22, 0xbe, 0x44, 0xc7, 0x03,
/* (2^309)P */ 0xa5, 0x23, 0x90, 0x41, 0xa3, 0xc5, 0x3e, 0xe0, 0xa5, 0x32, 0x49, 0x1f, 0x39, 0x78, 0xb1, 0xd8, 0x24, 0xea, 0xd4, 0x87, 0x53, 0x42, 0x51, 0xf4, 0xd9, 0x46, 0x25, 0x2f, 0x62, 0xa9, 0x90, 0x9a, 0x4a, 0x25, 0x8a, 0xd2, 0x10, 0xe7, 0x3c, 0xbc, 0x58, 0x8d, 0x16, 0x14, 0x96, 0xa4, 0x6f, 0xf8, 0x12, 0x69, 0x91, 0x73, 0xe2, 0xfa, 0xf4, 0x57,
/* (2^310)P */ 0x51, 0x45, 0x3f, 0x96, 0xdc, 0x97, 0x38, 0xa6, 0x01, 0x63, 0x09, 0xea, 0xc2, 0x13, 0x30, 0xb0, 0x00, 0xb8, 0x0a, 0xce, 0xd1, 0x8f, 0x3e, 0x69, 0x62, 0x46, 0x33, 0x9c, 0xbf, 0x4b, 0xcb, 0x0c, 0x90, 0x1c, 0x45, 0xcf, 0x37, 0x5b, 0xf7, 0x4b, 0x5e, 0x95, 0xc3, 0x28, 0x9f, 0x08, 0x83, 0x53, 0x74, 0xab, 0x0c, 0xb4, 0xc0, 0xa1, 0xbc, 0x89,
/* (2^311)P */ 0x06, 0xb1, 0x51, 0x15, 0x65, 0x60, 0x21, 0x17, 0x7a, 0x20, 0x65, 0xee, 0x12, 0x35, 0x4d, 0x46, 0xf4, 0xf8, 0xd0, 0xb1, 0xca, 0x09, 0x30, 0x08, 0x89, 0x23, 0x3b, 0xe7, 0xab, 0x8b, 0x77, 0xa6, 0xad, 0x25, 0xdd, 0xea, 0x3c, 0x7d, 0xa5, 0x24, 0xb3, 0xe8, 0xfa, 0xfb, 0xc9, 0xf2, 0x71, 0xe9, 0xfa, 0xf2, 0xdc, 0x54, 0xdd, 0x55, 0x2e, 0x2f,
/* (2^312)P */ 0x7f, 0x96, 0x96, 0xfb, 0x52, 0x86, 0xcf, 0xea, 0x62, 0x18, 0xf1, 0x53, 0x1f, 0x61, 0x2a, 0x9f, 0x8c, 0x51, 0xca, 0x2c, 0xde, 0x6d, 0xce, 0xab, 0x58, 0x32, 0x0b, 0x33, 0x9b, 0x99, 0xb4, 0x5c, 0x88, 0x2a, 0x76, 0xcc, 0x3e, 0x54, 0x1e, 0x9d, 0xa2, 0x89, 0xe4, 0x19, 0xba, 0x80, 0xc8, 0x39, 0x32, 0x7f, 0x0f, 0xc7, 0x84, 0xbb, 0x43, 0x56,
/* (2^313)P */ 0x9b, 0x07, 0xb4, 0x42, 0xa9, 0xa0, 0x78, 0x4f, 0x28, 0x70, 0x2b, 0x7e, 0x61, 0xe0, 0xdd, 0x02, 0x98, 0xfc, 0xed, 0x31, 0x80, 0xf1, 0x15, 0x52, 0x89, 0x23, 0xcd, 0x5d, 0x2b, 0xc5, 0x19, 0x32, 0xfb, 0x70, 0x50, 0x7a, 0x97, 0x6b, 0x42, 0xdb, 0xca, 0xdb, 0xc4, 0x59, 0x99, 0xe0, 0x12, 0x1f, 0x17, 0xba, 0x8b, 0xf0, 0xc4, 0x38, 0x5d, 0x27,
/* (2^314)P */ 0x29, 0x1d, 0xdc, 0x2b, 0xf6, 0x5b, 0x04, 0x61, 0x36, 0x76, 0xa0, 0x56, 0x36, 0x6e, 0xd7, 0x24, 0x4d, 0xe7, 0xef, 0x44, 0xd2, 0xd5, 0x07, 0xcd, 0xc4, 0x9d, 0x80, 0x48, 0xc3, 0x38, 0xcf, 0xd8, 0xa3, 0xdd, 0xb2, 0x5e, 0xb5, 0x70, 0x15, 0xbb, 0x36, 0x85, 0x8a, 0xd7, 0xfb, 0x56, 0x94, 0x73, 0x9c, 0x81, 0xbe, 0xb1, 0x44, 0x28, 0xf1, 0x37,
/* (2^315)P */ 0xbf, 0xcf, 0x5c, 0xd2, 0xe2, 0xea, 0xc2, 0xcd, 0x70, 0x7a, 0x9d, 0xcb, 0x81, 0xc1, 0xe9, 0xf1, 0x56, 0x71, 0x52, 0xf7, 0x1b, 0x87, 0xc6, 0xd8, 0xcc, 0xb2, 0x69, 0xf3, 0xb0, 0xbd, 0xba, 0x83, 0x12, 0x26, 0xc4, 0xce, 0x72, 0xde, 0x3b, 0x21, 0x28, 0x9e, 0x5a, 0x94, 0xf5, 0x04, 0xa3, 0xc8, 0x0f, 0x5e, 0xbc, 0x71, 0xf9, 0x0d, 0xce, 0xf5,
/* (2^316)P */ 0x93, 0x97, 0x00, 0x85, 0xf4, 0xb4, 0x40, 0xec, 0xd9, 0x2b, 0x6c, 0xd6, 0x63, 0x9e, 0x93, 0x0a, 0x5a, 0xf4, 0xa7, 0x9a, 0xe3, 0x3c, 0xf0, 0x55, 0xd1, 0x96, 0x6c, 0xf5, 0x2a, 0xce, 0xd7, 0x95, 0x72, 0xbf, 0xc5, 0x0c, 0xce, 0x79, 0xa2, 0x0a, 0x78, 0xe0, 0x72, 0xd0, 0x66, 0x28, 0x05, 0x75, 0xd3, 0x23, 0x09, 0x91, 0xed, 0x7e, 0xc4, 0xbc,
/* (2^317)P */ 0x77, 0xc2, 0x9a, 0xf7, 0xa6, 0xe6, 0x18, 0xb4, 0xe7, 0xf6, 0xda, 0xec, 0x44, 0x6d, 0xfb, 0x08, 0xee, 0x65, 0xa8, 0x92, 0x85, 0x1f, 0xba, 0x38, 0x93, 0x20, 0x5c, 0x4d, 0xd2, 0x18, 0x0f, 0x24, 0xbe, 0x1a, 0x96, 0x44, 0x7d, 0xeb, 0xb3, 0xda, 0x95, 0xf4, 0xaf, 0x6c, 0x06, 0x0f, 0x47, 0x37, 0xc8, 0x77, 0x63, 0xe1, 0x29, 0xef, 0xff, 0xa5,
/* (2^318)P */ 0x16, 0x12, 0xd9, 0x47, 0x90, 0x22, 0x9b, 0x05, 0xf2, 0xa5, 0x9a, 0xae, 0x83, 0x98, 0xb5, 0xac, 0xab, 0x29, 0xaa, 0xdc, 0x5f, 0xde, 0xcd, 0xf7, 0x42, 0xad, 0x3b, 0x96, 0xd6, 0x3e, 0x6e, 0x52, 0x47, 0xb1, 0xab, 0x51, 0xde, 0x49, 0x7c, 0x87, 0x8d, 0x86, 0xe2, 0x70, 0x13, 0x21, 0x51, 0x1c, 0x0c, 0x25, 0xc1, 0xb0, 0xe6, 0x19, 0xcf, 0x12,
/* (2^319)P */ 0xf0, 0xbc, 0x97, 0x8f, 0x4b, 0x2f, 0xd1, 0x1f, 0x8c, 0x57, 0xed, 0x3c, 0xf4, 0x26, 0x19, 0xbb, 0x60, 0xca, 0x24, 0xc5, 0xd9, 0x97, 0xe2, 0x5f, 0x76, 0x49, 0x39, 0x7e, 0x2d, 0x12, 0x21, 0x98, 0xda, 0xe6, 0xdb, 0xd2, 0xd8, 0x9f, 0x18, 0xd8, 0x83, 0x6c, 0xba, 0x89, 0x8d, 0x29, 0xfa, 0x46, 0x33, 0x8c, 0x28, 0xdf, 0x6a, 0xb3, 0x69, 0x28,
/* (2^320)P */ 0x86, 0x17, 0xbc, 0xd6, 0x7c, 0xba, 0x1e, 0x83, 0xbb, 0x84, 0xb5, 0x8c, 0xad, 0xdf, 0xa1, 0x24, 0x81, 0x70, 0x40, 0x0f, 0xad, 0xad, 0x3b, 0x23, 0xd0, 0x93, 0xa0, 0x49, 0x5c, 0x4b, 0x51, 0xbe, 0x20, 0x49, 0x4e, 0xda, 0x2d, 0xd3, 0xad, 0x1b, 0x74, 0x08, 0x41, 0xf0, 0xef, 0x19, 0xe9, 0x45, 0x5d, 0x02, 0xae, 0x26, 0x25, 0xd9, 0xd1, 0xc2,
/* (2^321)P */ 0x48, 0x81, 0x3e, 0xb2, 0x83, 0xf8, 0x4d, 0xb3, 0xd0, 0x4c, 0x75, 0xb3, 0xa0, 0x52, 0x26, 0xf2, 0xaf, 0x5d, 0x36, 0x70, 0x72, 0xd6, 0xb7, 0x88, 0x08, 0x69, 0xbd, 0x15, 0x25, 0xb1, 0x45, 0x1b, 0xb7, 0x0b, 0x5f, 0x71, 0x5d, 0x83, 0x49, 0xb9, 0x84, 0x3b, 0x7c, 0xc1, 0x50, 0x93, 0x05, 0x53, 0xe0, 0x61, 0xea, 0xc1, 0xef, 0xdb, 0x82, 0x97,
/* (2^322)P */ 0x00, 0xd5, 0xc3, 0x3a, 0x4d, 0x8a, 0x23, 0x7a, 0xef, 0xff, 0x37, 0xef, 0xf3, 0xbc, 0xa9, 0xb6, 0xae, 0xd7, 0x3a, 0x7b, 0xfd, 0x3e, 0x8e, 0x9b, 0xab, 0x44, 0x54, 0x60, 0x28, 0x6c, 0xbf, 0x15, 0x24, 0x4a, 0x56, 0x60, 0x7f, 0xa9, 0x7a, 0x28, 0x59, 0x2c, 0x8a, 0xd1, 0x7d, 0x6b, 0x00, 0xfd, 0xa5, 0xad, 0xbc, 0x19, 0x3f, 0xcb, 0x73, 0xe0,
/* (2^323)P */ 0xcf, 0x9e, 0x66, 0x06, 0x4d, 0x2b, 0xf5, 0x9c, 0xc2, 0x9d, 0x9e, 0xed, 0x5a, 0x5c, 0x2d, 0x00, 0xbf, 0x29, 0x90, 0x88, 0xe4, 0x5d, 0xfd, 0xe2, 0xf0, 0x38, 0xec, 0x4d, 0x26, 0xea, 0x54, 0xf0, 0x3c, 0x84, 0x10, 0x6a, 0xf9, 0x66, 0x9c, 0xe7, 0x21, 0xfd, 0x0f, 0xc7, 0x13, 0x50, 0x81, 0xb6, 0x50, 0xf9, 0x04, 0x7f, 0xa4, 0x37, 0x85, 0x14,
/* (2^324)P */ 0xdb, 0x87, 0x49, 0xc7, 0xa8, 0x39, 0x0c, 0x32, 0x98, 0x0c, 0xb9, 0x1a, 0x1b, 0x4d, 0xe0, 0x8a, 0x9a, 0x8e, 0x8f, 0xab, 0x5a, 0x17, 0x3d, 0x04, 0x21, 0xce, 0x3e, 0x2c, 0xf9, 0xa3, 0x97, 0xe4, 0x77, 0x95, 0x0e, 0xb6, 0xa5, 0x15, 0xad, 0x3a, 0x1e, 0x46, 0x53, 0x17, 0x09, 0x83, 0x71, 0x4e, 0x86, 0x38, 0xd5, 0x23, 0x44, 0x16, 0x8d, 0xc8,
/* (2^325)P */ 0x05, 0x5e, 0x99, 0x08, 0xbb, 0xc3, 0xc0, 0xb7, 0x6c, 0x12, 0xf2, 0xf3, 0xf4, 0x7c, 0x6a, 0x4d, 0x9e, 0xeb, 0x3d, 0xb9, 0x63, 0x94, 0xce, 0x81, 0xd8, 0x11, 0xcb, 0x55, 0x69, 0x4a, 0x20, 0x0b, 0x4c, 0x2e, 0x14, 0xb8, 0xd4, 0x6a, 0x7c, 0xf0, 0xed, 0xfc, 0x8f, 0xef, 0xa0, 0xeb, 0x6c, 0x01, 0xe2, 0xdc, 0x10, 0x22, 0xa2, 0x01, 0x85, 0x64,
/* (2^326)P */ 0x58, 0xe1, 0x9c, 0x27, 0x55, 0xc6, 0x25, 0xa6, 0x7d, 0x67, 0x88, 0x65, 0x99, 0x6c, 0xcb, 0xdb, 0x27, 0x4f, 0x44, 0x29, 0xf5, 0x4a, 0x23, 0x10, 0xbc, 0x03, 0x3f, 0x36, 0x1e, 0xef, 0xb0, 0xba, 0x75, 0xe8, 0x74, 0x5f, 0x69, 0x3e, 0x26, 0x40, 0xb4, 0x2f, 0xdc, 0x43, 0xbf, 0xa1, 0x8b, 0xbd, 0xca, 0x6e, 0xc1, 0x6e, 0x21, 0x79, 0xa0, 0xd0,
/* (2^327)P */ 0x78, 0x93, 0x4a, 0x2d, 0x22, 0x6e, 0x6e, 0x7d, 0x74, 0xd2, 0x66, 0x58, 0xce, 0x7b, 0x1d, 0x97, 0xb1, 0xf2, 0xda, 0x1c, 0x79, 0xfb, 0xba, 0xd1, 0xc0, 0xc5, 0x6e, 0xc9, 0x11, 0x89, 0xd2, 0x41, 0x8d, 0x70, 0xb9, 0xcc, 0xea, 0x6a, 0xb3, 0x45, 0xb6, 0x05, 0x2e, 0xf2, 0x17, 0xf1, 0x27, 0xb8, 0xed, 0x06, 0x1f, 0xdb, 0x9d, 0x1f, 0x69, 0x28,
/* (2^328)P */ 0x93, 0x12, 0xa8, 0x11, 0xe1, 0x92, 0x30, 0x8d, 0xac, 0xe1, 0x1c, 0x60, 0x7c, 0xed, 0x2d, 0x2e, 0xd3, 0x03, 0x5c, 0x9c, 0xc5, 0xbd, 0x64, 0x4a, 0x8c, 0xba, 0x76, 0xfe, 0xc6, 0xc1, 0xea, 0xc2, 0x4f, 0xbe, 0x70, 0x3d, 0x64, 0xcf, 0x8e, 0x18, 0xcb, 0xcd, 0x57, 0xa7, 0xf7, 0x36, 0xa9, 0x6b, 0x3e, 0xb8, 0x69, 0xee, 0x47, 0xa2, 0x7e, 0xb2,
/* (2^329)P */ 0x96, 0xaf, 0x3a, 0xf5, 0xed, 0xcd, 0xaf, 0xf7, 0x82, 0xaf, 0x59, 0x62, 0x0b, 0x36, 0x85, 0xf9, 0xaf, 0xd6, 0x38, 0xff, 0x87, 0x2e, 0x1d, 0x6c, 0x8b, 0xaf, 0x3b, 0xdf, 0x28, 0xa2, 0xd6, 0x4d, 0x80, 0x92, 0xc3, 0x0f, 0x34, 0xa8, 0xae, 0x69, 0x5d, 0x7b, 0x9d, 0xbc, 0xf5, 0xfd, 0x1d, 0xb1, 0x96, 0x55, 0x86, 0xe1, 0x5c, 0xb6, 0xac, 0xb9,
/* (2^330)P */ 0x50, 0x9e, 0x37, 0x28, 0x7d, 0xa8, 0x33, 0x63, 0xda, 0x3f, 0x20, 0x98, 0x0e, 0x09, 0xa8, 0x77, 0x3b, 0x7a, 0xfc, 0x16, 0x85, 0x44, 0x64, 0x77, 0x65, 0x68, 0x92, 0x41, 0xc6, 0x1f, 0xdf, 0x27, 0xf9, 0xec, 0xa0, 0x61, 0x22, 0xea, 0x19, 0xe7, 0x75, 0x8b, 0x4e, 0xe5, 0x0f, 0xb7, 0xf7, 0xd2, 0x53, 0xf4, 0xdd, 0x4a, 0xaa, 0x78, 0x40, 0xb7,
/* (2^331)P */ 0xd4, 0x89, 0xe3, 0x79, 0xba, 0xb6, 0xc3, 0xda, 0xe6, 0x78, 0x65, 0x7d, 0x6e, 0x22, 0x62, 0xb1, 0x3d, 0xea, 0x90, 0x84, 0x30, 0x5e, 0xd4, 0x39, 0x84, 0x78, 0xd9, 0x75, 0xd6, 0xce, 0x2a, 0x11, 0x29, 0x69, 0xa4, 0x5e, 0xaa, 0x2a, 0x98, 0x5a, 0xe5, 0x91, 0x8f, 0xb2, 0xfb, 0xda, 0x97, 0xe8, 0x83, 0x6f, 0x04, 0xb9, 0x5d, 0xaf, 0xe1, 0x9b,
/* (2^332)P */ 0x8b, 0xe4, 0xe1, 0x48, 0x9c, 0xc4, 0x83, 0x89, 0xdf, 0x65, 0xd3, 0x35, 0x55, 0x13, 0xf4, 0x1f, 0x36, 0x92, 0x33, 0x38, 0xcb, 0xed, 0x15, 0xe6, 0x60, 0x2d, 0x25, 0xf5, 0x36, 0x60, 0x3a, 0x37, 0x9b, 0x71, 0x9d, 0x42, 0xb0, 0x14, 0xc8, 0xba, 0x62, 0xa3, 0x49, 0xb0, 0x88, 0xc1, 0x72, 0x73, 0xdd, 0x62, 0x40, 0xa9, 0x62, 0x88, 0x99, 0xca,
/* (2^333)P */ 0x47, 0x7b, 0xea, 0xda, 0x46, 0x2f, 0x45, 0xc6, 0xe3, 0xb4, 0x4d, 0x8d, 0xac, 0x0b, 0x54, 0x22, 0x06, 0x31, 0x16, 0x66, 0x3e, 0xe4, 0x38, 0x12, 0xcd, 0xf3, 0xe7, 0x99, 0x37, 0xd9, 0x62, 0x24, 0x4b, 0x05, 0xf2, 0x58, 0xe6, 0x29, 0x4b, 0x0d, 0xf6, 0xc1, 0xba, 0xa0, 0x1e, 0x0f, 0xcb, 0x1f, 0xc6, 0x2b, 0x19, 0xfc, 0x82, 0x01, 0xd0, 0x86,
/* (2^334)P */ 0xa2, 0xae, 0x77, 0x20, 0xfb, 0xa8, 0x18, 0xb4, 0x61, 0xef, 0xe8, 0x52, 0x79, 0xbb, 0x86, 0x90, 0x5d, 0x2e, 0x76, 0xed, 0x66, 0x60, 0x5d, 0x00, 0xb5, 0xa4, 0x00, 0x40, 0x89, 0xec, 0xd1, 0xd2, 0x0d, 0x26, 0xb9, 0x30, 0xb2, 0xd2, 0xb8, 0xe8, 0x0e, 0x56, 0xf9, 0x67, 0x94, 0x2e, 0x62, 0xe1, 0x79, 0x48, 0x2b, 0xa9, 0xfa, 0xea, 0xdb, 0x28,
/* (2^335)P */ 0x35, 0xf1, 0xb0, 0x43, 0xbd, 0x27, 0xef, 0x18, 0x44, 0xa2, 0x04, 0xb4, 0x69, 0xa1, 0x97, 0x1f, 0x8c, 0x04, 0x82, 0x9b, 0x00, 0x6d, 0xf8, 0xbf, 0x7d, 0xc1, 0x5b, 0xab, 0xe8, 0xb2, 0x34, 0xbd, 0xaf, 0x7f, 0xb2, 0x0d, 0xf3, 0xed, 0xfc, 0x5b, 0x50, 0xee, 0xe7, 0x4a, 0x20, 0xd9, 0xf5, 0xc6, 0x9a, 0x97, 0x6d, 0x07, 0x2f, 0xb9, 0x31, 0x02,
/* (2^336)P */ 0xf9, 0x54, 0x4a, 0xc5, 0x61, 0x7e, 0x1d, 0xa6, 0x0e, 0x1a, 0xa8, 0xd3, 0x8c, 0x36, 0x7d, 0xf1, 0x06, 0xb1, 0xac, 0x93, 0xcd, 0xe9, 0x8f, 0x61, 0x6c, 0x5d, 0x03, 0x23, 0xdf, 0x85, 0x53, 0x39, 0x63, 0x5e, 0xeb, 0xf3, 0xd3, 0xd3, 0x75, 0x97, 0x9b, 0x62, 0x9b, 0x01, 0xb3, 0x19, 0xd8, 0x2b, 0x36, 0xf2, 0x2c, 0x2c, 0x6f, 0x36, 0xc6, 0x3c,
/* (2^337)P */ 0x05, 0x74, 0x43, 0x10, 0xb6, 0xb0, 0xf8, 0xbf, 0x02, 0x46, 0x9a, 0xee, 0xc1, 0xaf, 0xc1, 0xe5, 0x5a, 0x2e, 0xbb, 0xe1, 0xdc, 0xc6, 0xce, 0x51, 0x29, 0x50, 0xbf, 0x1b, 0xde, 0xff, 0xba, 0x4d, 0x8d, 0x8b, 0x7e, 0xe7, 0xbd, 0x5b, 0x8f, 0xbe, 0xe3, 0x75, 0x71, 0xff, 0x37, 0x05, 0x5a, 0x10, 0xeb, 0x54, 0x7e, 0x44, 0x72, 0x2c, 0xd4, 0xfc,
/* (2^338)P */ 0x03, 0x12, 0x1c, 0xb2, 0x08, 0x90, 0xa1, 0x2d, 0x50, 0xa0, 0xad, 0x7f, 0x8d, 0xa6, 0x97, 0xc1, 0xbd, 0xdc, 0xc3, 0xa7, 0xad, 0x31, 0xdf, 0xb8, 0x03, 0x84, 0xc3, 0xb9, 0x29, 0x3d, 0x92, 0x2e, 0xc3, 0x90, 0x07, 0xe8, 0xa7, 0xc7, 0xbc, 0x61, 0xe9, 0x3e, 0xa0, 0x35, 0xda, 0x1d, 0xab, 0x48, 0xfe, 0x50, 0xc9, 0x25, 0x59, 0x23, 0x69, 0x3f,
/* (2^339)P */ 0x8e, 0x91, 0xab, 0x6b, 0x91, 0x4f, 0x89, 0x76, 0x67, 0xad, 0xb2, 0x65, 0x9d, 0xad, 0x02, 0x36, 0xdc, 0xac, 0x96, 0x93, 0x97, 0x21, 0x14, 0xd0, 0xe8, 0x11, 0x60, 0x1e, 0xeb, 0x96, 0x06, 0xf2, 0x53, 0xf2, 0x6d, 0xb7, 0x93, 0x6f, 0x26, 0x91, 0x23, 0xe3, 0x34, 0x04, 0x92, 0x91, 0x37, 0x08, 0x50, 0xd6, 0x28, 0x09, 0x27, 0xa1, 0x0c, 0x00,
/* (2^340)P */ 0x1f, 0xbb, 0x21, 0x26, 0x33, 0xcb, 0xa4, 0xd1, 0xee, 0x85, 0xf9, 0xd9, 0x3c, 0x90, 0xc3, 0xd1, 0x26, 0xa2, 0x25, 0x93, 0x43, 0x61, 0xed, 0x91, 0x6e, 0x54, 0x03, 0x2e, 0x42, 0x9d, 0xf7, 0xa6, 0x02, 0x0f, 0x2f, 0x9c, 0x7a, 0x8d, 0x12, 0xc2, 0x18, 0xfc, 0x41, 0xff, 0x85, 0x26, 0x1a, 0x44, 0x55, 0x0b, 0x89, 0xab, 0x6f, 0x62, 0x33, 0x8c,
/* (2^341)P */ 0xe0, 0x3c, 0x5d, 0x70, 0x64, 0x87, 0x81, 0x35, 0xf2, 0x37, 0xa6, 0x24, 0x3e, 0xe0, 0x62, 0xd5, 0x71, 0xe7, 0x93, 0xfb, 0xac, 0xc3, 0xe7, 0xc7, 0x04, 0xe2, 0x70, 0xd3, 0x29, 0x5b, 0x21, 0xbf, 0xf4, 0x26, 0x5d, 0xf3, 0x95, 0xb4, 0x2a, 0x6a, 0x07, 0x55, 0xa6, 0x4b, 0x3b, 0x15, 0xf2, 0x25, 0x8a, 0x95, 0x3f, 0x63, 0x2f, 0x7a, 0x23, 0x96,
/* (2^342)P */ 0x0d, 0x3d, 0xd9, 0x13, 0xa7, 0xb3, 0x5e, 0x67, 0xf7, 0x02, 0x23, 0xee, 0x84, 0xff, 0x99, 0xda, 0xb9, 0x53, 0xf8, 0xf0, 0x0e, 0x39, 0x2f, 0x3c, 0x64, 0x34, 0xe3, 0x09, 0xfd, 0x2b, 0x33, 0xc7, 0xfe, 0x62, 0x2b, 0x84, 0xdf, 0x2b, 0xd2, 0x7c, 0x26, 0x01, 0x70, 0x66, 0x5b, 0x85, 0xc2, 0xbe, 0x88, 0x37, 0xf1, 0x30, 0xac, 0xb8, 0x76, 0xa3,
/* (2^343)P */ 0x6e, 0x01, 0xf0, 0x55, 0x35, 0xe4, 0xbd, 0x43, 0x62, 0x9d, 0xd6, 0x11, 0xef, 0x6f, 0xb8, 0x8c, 0xaa, 0x98, 0x87, 0xc6, 0x6d, 0xc4, 0xcc, 0x74, 0x92, 0x53, 0x4a, 0xdf, 0xe4, 0x08, 0x89, 0x17, 0xd0, 0x0f, 0xf4, 0x00, 0x60, 0x78, 0x08, 0x44, 0xb5, 0xda, 0x18, 0xed, 0x98, 0xc8, 0x61, 0x3d, 0x39, 0xdb, 0xcf, 0x1d, 0x49, 0x40, 0x65, 0x75,
/* (2^344)P */ 0x8e, 0x10, 0xae, 0x5f, 0x06, 0xd2, 0x95, 0xfd, 0x20, 0x16, 0x49, 0x5b, 0x57, 0xbe, 0x22, 0x8b, 0x43, 0xfb, 0xe6, 0xcc, 0x26, 0xa5, 0x5d, 0xd3, 0x68, 0xc5, 0xf9, 0x5a, 0x86, 0x24, 0x87, 0x27, 0x05, 0xfd, 0xe2, 0xff, 0xb3, 0xa3, 0x7b, 0x37, 0x59, 0xc5, 0x4e, 0x14, 0x94, 0xf9, 0x3b, 0xcb, 0x7c, 0xed, 0xca, 0x1d, 0xb2, 0xac, 0x05, 0x4a,
/* (2^345)P */ 0xf4, 0xd1, 0x81, 0xeb, 0x89, 0xbf, 0xfe, 0x1e, 0x41, 0x92, 0x29, 0xee, 0xe1, 0x43, 0xf5, 0x86, 0x1d, 0x2f, 0xbb, 0x1e, 0x84, 0x5d, 0x7b, 0x8d, 0xd5, 0xda, 0xee, 0x1e, 0x8a, 0xd0, 0x27, 0xf2, 0x60, 0x51, 0x59, 0x82, 0xf4, 0x84, 0x2b, 0x5b, 0x14, 0x2d, 0x81, 0x82, 0x3e, 0x2b, 0xb4, 0x6d, 0x51, 0x4f, 0xc5, 0xcb, 0xbf, 0x74, 0xe3, 0xb4,
/* (2^346)P */ 0x19, 0x2f, 0x22, 0xb3, 0x04, 0x5f, 0x81, 0xca, 0x05, 0x60, 0xb9, 0xaa, 0xee, 0x0e, 0x2f, 0x48, 0x38, 0xf9, 0x91, 0xb4, 0x66, 0xe4, 0x57, 0x28, 0x54, 0x10, 0xe9, 0x61, 0x9d, 0xd4, 0x90, 0x75, 0xb1, 0x39, 0x23, 0xb6, 0xfc, 0x82, 0xe0, 0xfa, 0xbb, 0x5c, 0x6e, 0xc3, 0x44, 0x13, 0x00, 0x83, 0x55, 0x9e, 0x8e, 0x10, 0x61, 0x81, 0x91, 0x04,
/* (2^347)P */ 0x5f, 0x2a, 0xd7, 0x81, 0xd9, 0x9c, 0xbb, 0x79, 0xbc, 0x62, 0x56, 0x98, 0x03, 0x5a, 0x18, 0x85, 0x2a, 0x9c, 0xd0, 0xfb, 0xd2, 0xb1, 0xaf, 0xef, 0x0d, 0x24, 0xc5, 0xfa, 0x39, 0xbb, 0x6b, 0xed, 0xa4, 0xdf, 0xe4, 0x87, 0xcd, 0x41, 0xd3, 0x72, 0x32, 0xc6, 0x28, 0x21, 0xb1, 0xba, 0x8b, 0xa3, 0x91, 0x79, 0x76, 0x22, 0x25, 0x10, 0x61, 0xd1,
/* (2^348)P */ 0x73, 0xb5, 0x32, 0x97, 0xdd, 0xeb, 0xdd, 0x22, 0x22, 0xf1, 0x33, 0x3c, 0x77, 0x56, 0x7d, 0x6b, 0x48, 0x2b, 0x05, 0x81, 0x03, 0x03, 0x91, 0x9a, 0xe3, 0x5e, 0xd4, 0xee, 0x3f, 0xf8, 0xbb, 0x50, 0x21, 0x32, 0x4c, 0x4a, 0x58, 0x49, 0xde, 0x0c, 0xde, 0x30, 0x82, 0x3d, 0x92, 0xf0, 0x6c, 0xcc, 0x32, 0x3e, 0xd2, 0x78, 0x8a, 0x6e, 0x2c, 0xd0,
/* (2^349)P */ 0xf0, 0xf7, 0xa1, 0x0b, 0xc1, 0x74, 0x85, 0xa8, 0xe9, 0xdd, 0x48, 0xa1, 0xc0, 0x16, 0xd8, 0x2b, 0x61, 0x08, 0xc2, 0x2b, 0x30, 0x26, 0x79, 0xce, 0x9e, 0xfd, 0x39, 0xd7, 0x81, 0xa4, 0x63, 0x8c, 0xd5, 0x74, 0xa0, 0x88, 0xfa, 0x03, 0x30, 0xe9, 0x7f, 0x2b, 0xc6, 0x02, 0xc9, 0x5e, 0xe4, 0xd5, 0x4d, 0x92, 0xd0, 0xf6, 0xf2, 0x5b, 0x79, 0x08,
/* (2^350)P */ 0x34, 0x89, 0x81, 0x43, 0xd1, 0x94, 0x2c, 0x10, 0x54, 0x9b, 0xa0, 0xe5, 0x44, 0xe8, 0xc2, 0x2f, 0x3e, 0x0e, 0x74, 0xae, 0xba, 0xe2, 0xac, 0x85, 0x6b, 0xd3, 0x5c, 0x97, 0xf7, 0x90, 0xf1, 0x12, 0xc0, 0x03, 0xc8, 0x1f, 0x37, 0x72, 0x8c, 0x9b, 0x9c, 0x17, 0x96, 0x9d, 0xc7, 0xbf, 0xa3, 0x3f, 0x44, 0x3d, 0x87, 0x81, 0xbd, 0x81, 0xa6, 0x5f,
/* (2^351)P */ 0xe4, 0xff, 0x78, 0x62, 0x82, 0x5b, 0x76, 0x58, 0xf5, 0x5b, 0xa6, 0xc4, 0x53, 0x11, 0x3b, 0x7b, 0xaa, 0x67, 0xf8, 0xea, 0x3b, 0x5d, 0x9a, 0x2e, 0x04, 0xeb, 0x4a, 0x24, 0xfb, 0x56, 0xf0, 0xa8, 0xd4, 0x14, 0xed, 0x0f, 0xfd, 0xc5, 0x26, 0x17, 0x2a, 0xf0, 0xb9, 0x13, 0x8c, 0xbd, 0x65, 0x14, 0x24, 0x95, 0x27, 0x12, 0x63, 0x2a, 0x09, 0x18,
/* (2^352)P */ 0xe1, 0x5c, 0xe7, 0xe0, 0x00, 0x6a, 0x96, 0xf2, 0x49, 0x6a, 0x39, 0xa5, 0xe0, 0x17, 0x79, 0x4a, 0x63, 0x07, 0x62, 0x09, 0x61, 0x1b, 0x6e, 0xa9, 0xb5, 0x62, 0xb7, 0xde, 0xdf, 0x80, 0x4c, 0x5a, 0x99, 0x73, 0x59, 0x9d, 0xfb, 0xb1, 0x5e, 0xbe, 0xb8, 0xb7, 0x63, 0x93, 0xe8, 0xad, 0x5e, 0x1f, 0xae, 0x59, 0x1c, 0xcd, 0xb4, 0xc2, 0xb3, 0x8a,
/* (2^353)P */ 0x78, 0x53, 0xa1, 0x4c, 0x70, 0x9c, 0x63, 0x7e, 0xb3, 0x12, 0x40, 0x5f, 0xbb, 0x23, 0xa7, 0xf7, 0x77, 0x96, 0x5b, 0x4d, 0x91, 0x10, 0x52, 0x85, 0x9e, 0xa5, 0x38, 0x0b, 0xfd, 0x25, 0x01, 0x4b, 0xfa, 0x4d, 0xd3, 0x3f, 0x78, 0x74, 0x42, 0xff, 0x62, 0x2d, 0x27, 0xdc, 0x9d, 0xd1, 0x29, 0x76, 0x2e, 0x78, 0xb3, 0x35, 0xfa, 0x15, 0xd5, 0x38,
/* (2^354)P */ 0x8b, 0xc7, 0x43, 0xce, 0xf0, 0x5e, 0xf1, 0x0d, 0x02, 0x38, 0xe8, 0x82, 0xc9, 0x25, 0xad, 0x2d, 0x27, 0xa4, 0x54, 0x18, 0xb2, 0x30, 0x73, 0xa4, 0x41, 0x08, 0xe4, 0x86, 0xe6, 0x8c, 0xe9, 0x2a, 0x34, 0xb3, 0xd6, 0x61, 0x8f, 0x66, 0x26, 0x08, 0xb6, 0x06, 0x33, 0xaa, 0x12, 0xac, 0x72, 0xec, 0x2e, 0x52, 0xa3, 0x25, 0x3e, 0xd7, 0x62, 0xe8,
/* (2^355)P */ 0xc4, 0xbb, 0x89, 0xc8, 0x40, 0xcc, 0x84, 0xec, 0x4a, 0xd9, 0xc4, 0x55, 0x78, 0x00, 0xcf, 0xd8, 0xe9, 0x24, 0x59, 0xdc, 0x5e, 0xf0, 0x66, 0xa1, 0x83, 0xae, 0x97, 0x18, 0xc5, 0x54, 0x27, 0xa2, 0x21, 0x52, 0x03, 0x31, 0x5b, 0x11, 0x67, 0xf6, 0x12, 0x00, 0x87, 0x2f, 0xff, 0x59, 0x70, 0x8f, 0x6d, 0x71, 0xab, 0xab, 0x24, 0xb8, 0xba, 0x35,
/* (2^356)P */ 0x69, 0x43, 0xa7, 0x14, 0x06, 0x96, 0xe9, 0xc2, 0xe3, 0x2b, 0x45, 0x22, 0xc0, 0xd0, 0x2f, 0x34, 0xd1, 0x01, 0x99, 0xfc, 0x99, 0x38, 0xa1, 0x25, 0x2e, 0x59, 0x6c, 0x27, 0xc9, 0xeb, 0x7b, 0xdc, 0x4e, 0x26, 0x68, 0xba, 0xfa, 0xec, 0x02, 0x05, 0x64, 0x80, 0x30, 0x20, 0x5c, 0x26, 0x7f, 0xaf, 0x95, 0x17, 0x3d, 0x5c, 0x9e, 0x96, 0x96, 0xaf,
/* (2^357)P */ 0xa6, 0xba, 0x21, 0x29, 0x32, 0xe2, 0x98, 0xde, 0x9b, 0x6d, 0x0b, 0x44, 0x91, 0xa8, 0x3e, 0xd4, 0xb8, 0x04, 0x6c, 0xf6, 0x04, 0x39, 0xbd, 0x52, 0x05, 0x15, 0x27, 0x78, 0x8e, 0x55, 0xac, 0x79, 0xc5, 0xe6, 0x00, 0x7f, 0x90, 0xa2, 0xdd, 0x07, 0x13, 0xe0, 0x24, 0x70, 0x5c, 0x0f, 0x4d, 0xa9, 0xf9, 0xae, 0xcb, 0x34, 0x10, 0x9d, 0x89, 0x9d,
/* (2^358)P */ 0x12, 0xe0, 0xb3, 0x9f, 0xc4, 0x96, 0x1d, 0xcf, 0xed, 0x99, 0x64, 0x28, 0x8d, 0xc7, 0x31, 0x82, 0xee, 0x5e, 0x75, 0x48, 0xff, 0x3a, 0xf2, 0x09, 0x34, 0x03, 0x93, 0x52, 0x19, 0xb2, 0xc5, 0x81, 0x93, 0x45, 0x5e, 0x59, 0x21, 0x2b, 0xec, 0x89, 0xba, 0x36, 0x6e, 0xf9, 0x82, 0x75, 0x7e, 0x82, 0x3f, 0xaa, 0xe2, 0xe3, 0x3b, 0x94, 0xfd, 0x98,
/* (2^359)P */ 0x7c, 0xdb, 0x75, 0x31, 0x61, 0xfb, 0x15, 0x28, 0x94, 0xd7, 0xc3, 0x5a, 0xa9, 0xa1, 0x0a, 0x66, 0x0f, 0x2b, 0x13, 0x3e, 0x42, 0xb5, 0x28, 0x3a, 0xca, 0x83, 0xf3, 0x61, 0x22, 0xf4, 0x40, 0xc5, 0xdf, 0xe7, 0x31, 0x9f, 0x7e, 0x51, 0x75, 0x06, 0x9d, 0x51, 0xc8, 0xe7, 0x9f, 0xc3, 0x71, 0x4f, 0x3d, 0x5b, 0xfb, 0xe9, 0x8e, 0x08, 0x40, 0x8e,
/* (2^360)P */ 0xf7, 0x31, 0xad, 0x50, 0x5d, 0x25, 0x93, 0x73, 0x68, 0xf6, 0x7c, 0x89, 0x5a, 0x3d, 0x9f, 0x9b, 0x05, 0x82, 0xe7, 0x70, 0x4b, 0x19, 0xaa, 0xcf, 0xff, 0xde, 0x50, 0x8f, 0x2f, 0x69, 0xd3, 0xf0, 0x99, 0x51, 0x6b, 0x9d, 0xb6, 0x56, 0x6f, 0xf8, 0x4c, 0x74, 0x8b, 0x4c, 0x91, 0xf9, 0xa9, 0xb1, 0x3e, 0x07, 0xdf, 0x0b, 0x27, 0x8a, 0xb1, 0xed,
/* (2^361)P */ 0xfb, 0x67, 0xd9, 0x48, 0xd2, 0xe4, 0x44, 0x9b, 0x43, 0x15, 0x8a, 0xeb, 0x00, 0x53, 0xad, 0x25, 0xc7, 0x7e, 0x19, 0x30, 0x87, 0xb7, 0xd5, 0x5f, 0x04, 0xf8, 0xaa, 0xdd, 0x57, 0xae, 0x34, 0x75, 0xe2, 0x84, 0x4b, 0x54, 0x60, 0x37, 0x95, 0xe4, 0xd3, 0xec, 0xac, 0xef, 0x47, 0x31, 0xa3, 0xc8, 0x31, 0x22, 0xdb, 0x26, 0xe7, 0x6a, 0xb5, 0xad,
/* (2^362)P */ 0x44, 0x09, 0x5c, 0x95, 0xe4, 0x72, 0x3c, 0x1a, 0xd1, 0xac, 0x42, 0x51, 0x99, 0x6f, 0xfa, 0x1f, 0xf2, 0x22, 0xbe, 0xff, 0x7b, 0x66, 0xf5, 0x6c, 0xb3, 0x66, 0xc7, 0x4d, 0x78, 0x31, 0x83, 0x80, 0xf5, 0x41, 0xe9, 0x7f, 0xbe, 0xf7, 0x23, 0x49, 0x6b, 0x84, 0x4e, 0x7e, 0x47, 0x07, 0x6e, 0x74, 0xdf, 0xe5, 0x9d, 0x9e, 0x56, 0x2a, 0xc0, 0xbc,
/* (2^363)P */ 0xac, 0x10, 0x80, 0x8c, 0x7c, 0xfa, 0x83, 0xdf, 0xb3, 0xd0, 0xc4, 0xbe, 0xfb, 0x9f, 0xac, 0xc9, 0xc3, 0x40, 0x95, 0x0b, 0x09, 0x23, 0xda, 0x63, 0x67, 0xcf, 0xe7, 0x9f, 0x7d, 0x7b, 0x6b, 0xe2, 0xe6, 0x6d, 0xdb, 0x87, 0x9e, 0xa6, 0xff, 0x6d, 0xab, 0xbd, 0xfb, 0x54, 0x84, 0x68, 0xcf, 0x89, 0xf1, 0xd0, 0xe2, 0x85, 0x61, 0xdc, 0x22, 0xd1,
/* (2^364)P */ 0xa8, 0x48, 0xfb, 0x8c, 0x6a, 0x63, 0x01, 0x72, 0x43, 0x43, 0xeb, 0x21, 0xa3, 0x00, 0x8a, 0xc0, 0x87, 0x51, 0x9e, 0x86, 0x75, 0x16, 0x79, 0xf9, 0x6b, 0x11, 0x80, 0x62, 0xc2, 0x9d, 0xb8, 0x8c, 0x30, 0x8e, 0x8d, 0x03, 0x52, 0x7e, 0x31, 0x59, 0x38, 0xf9, 0x25, 0xc7, 0x0f, 0xc7, 0xa8, 0x2b, 0x5c, 0x80, 0xfa, 0x90, 0xa2, 0x63, 0xca, 0xe7,
/* (2^365)P */ 0xf1, 0x5d, 0xb5, 0xd9, 0x20, 0x10, 0x7d, 0x0f, 0xc5, 0x50, 0x46, 0x07, 0xff, 0x02, 0x75, 0x2b, 0x4a, 0xf3, 0x39, 0x91, 0x72, 0xb7, 0xd5, 0xcc, 0x38, 0xb8, 0xe7, 0x36, 0x26, 0x5e, 0x11, 0x97, 0x25, 0xfb, 0x49, 0x68, 0xdc, 0xb4, 0x46, 0x87, 0x5c, 0xc2, 0x7f, 0xaa, 0x7d, 0x36, 0x23, 0xa6, 0xc6, 0x53, 0xec, 0xbc, 0x57, 0x47, 0xc1, 0x2b,
/* (2^366)P */ 0x25, 0x5d, 0x7d, 0x95, 0xda, 0x0b, 0x8f, 0x78, 0x1e, 0x19, 0x09, 0xfa, 0x67, 0xe0, 0xa0, 0x17, 0x24, 0x76, 0x6c, 0x30, 0x1f, 0x62, 0x3d, 0xbe, 0x45, 0x70, 0xcc, 0xb6, 0x1e, 0x68, 0x06, 0x25, 0x68, 0x16, 0x1a, 0x33, 0x3f, 0x90, 0xc7, 0x78, 0x2d, 0x98, 0x3c, 0x2f, 0xb9, 0x2d, 0x94, 0x0b, 0xfb, 0x49, 0x56, 0x30, 0xd7, 0xc1, 0xe6, 0x48,
/* (2^367)P */ 0x7a, 0xd1, 0xe0, 0x8e, 0x67, 0xfc, 0x0b, 0x50, 0x1f, 0x84, 0x98, 0xfa, 0xaf, 0xae, 0x2e, 0x31, 0x27, 0xcf, 0x3f, 0xf2, 0x6e, 0x8d, 0x81, 0x8f, 0xd2, 0x5f, 0xde, 0xd3, 0x5e, 0xe9, 0xe7, 0x13, 0x48, 0x83, 0x5a, 0x4e, 0x84, 0xd1, 0x58, 0xcf, 0x6b, 0x84, 0xdf, 0x13, 0x1d, 0x91, 0x85, 0xe8, 0xcb, 0x29, 0x79, 0xd2, 0xca, 0xac, 0x6a, 0x93,
/* (2^368)P */ 0x53, 0x82, 0xce, 0x61, 0x96, 0x88, 0x6f, 0xe1, 0x4a, 0x4c, 0x1e, 0x30, 0x73, 0xe8, 0x74, 0xde, 0x40, 0x2b, 0xe0, 0xc4, 0xb5, 0xd8, 0x7c, 0x15, 0xe7, 0xe1, 0xb1, 0xe0, 0xd6, 0x88, 0xb1, 0x6a, 0x57, 0x19, 0x6a, 0x22, 0x66, 0x57, 0xf6, 0x8d, 0xfd, 0xc0, 0xf2, 0xa3, 0x03, 0x56, 0xfb, 0x2e, 0x75, 0x5e, 0xc7, 0x8e, 0x22, 0x96, 0x5c, 0x06,
/* (2^369)P */ 0x98, 0x7e, 0xbf, 0x3e, 0xbf, 0x24, 0x9d, 0x15, 0xd3, 0xf6, 0xd3, 0xd2, 0xf0, 0x11, 0xf2, 0xdb, 0x36, 0x23, 0x38, 0xf7, 0x1d, 0x71, 0x20, 0xd2, 0x54, 0x7f, 0x1e, 0x24, 0x8f, 0xe2, 0xaa, 0xf7, 0x3f, 0x6b, 0x41, 0x4e, 0xdc, 0x0e, 0xec, 0xe8, 0x35, 0x0a, 0x08, 0x6d, 0x89, 0x5b, 0x32, 0x91, 0x01, 0xb6, 0xe0, 0x2c, 0xc6, 0xa1, 0xbe, 0xb4,
/* (2^370)P */ 0x29, 0xf2, 0x1e, 0x1c, 0xdc, 0x68, 0x8a, 0x43, 0x87, 0x2c, 0x48, 0xb3, 0x9e, 0xed, 0xd2, 0x82, 0x46, 0xac, 0x2f, 0xef, 0x93, 0x34, 0x37, 0xca, 0x64, 0x8d, 0xc9, 0x06, 0x90, 0xbb, 0x78, 0x0a, 0x3c, 0x4c, 0xcf, 0x35, 0x7a, 0x0f, 0xf7, 0xa7, 0xf4, 0x2f, 0x45, 0x69, 0x3f, 0xa9, 0x5d, 0xce, 0x7b, 0x8a, 0x84, 0xc3, 0xae, 0xf4, 0xda, 0xd5,
/* (2^371)P */ 0xca, 0xba, 0x95, 0x43, 0x05, 0x7b, 0x06, 0xd9, 0x5c, 0x0a, 0x18, 0x5f, 0x6a, 0x6a, 0xce, 0xc0, 0x3d, 0x95, 0x51, 0x0e, 0x1a, 0xbe, 0x85, 0x7a, 0xf2, 0x69, 0xec, 0xc0, 0x8c, 0xca, 0xa3, 0x32, 0x0a, 0x76, 0x50, 0xc6, 0x76, 0x61, 0x00, 0x89, 0xbf, 0x6e, 0x0f, 0x48, 0x90, 0x31, 0x93, 0xec, 0x34, 0x70, 0xf0, 0xc3, 0x8d, 0xf0, 0x0f, 0xb5,
/* (2^372)P */ 0xbe, 0x23, 0xe2, 0x18, 0x99, 0xf1, 0xed, 0x8a, 0xf6, 0xc9, 0xac, 0xb8, 0x1e, 0x9a, 0x3c, 0x15, 0xae, 0xd7, 0x6d, 0xb3, 0x04, 0xee, 0x5b, 0x0d, 0x1e, 0x79, 0xb7, 0xf9, 0xf9, 0x8d, 0xad, 0xf9, 0x8f, 0x5a, 0x6a, 0x7b, 0xd7, 0x9b, 0xca, 0x62, 0xfe, 0x9c, 0xc0, 0x6f, 0x6d, 0x9d, 0x76, 0xa3, 0x69, 0xb9, 0x4c, 0xa1, 0xc4, 0x0c, 0x76, 0xaa,
/* (2^373)P */ 0x1c, 0x06, 0xfe, 0x3f, 0x45, 0x70, 0xcd, 0x97, 0xa9, 0xa2, 0xb1, 0xd3, 0xf2, 0xa5, 0x0c, 0x49, 0x2c, 0x75, 0x73, 0x1f, 0xcf, 0x00, 0xaf, 0xd5, 0x2e, 0xde, 0x0d, 0x8f, 0x8f, 0x7c, 0xc4, 0x58, 0xce, 0xd4, 0xf6, 0x24, 0x19, 0x2e, 0xd8, 0xc5, 0x1d, 0x1a, 0x3f, 0xb8, 0x4f, 0xbc, 0x7d, 0xbd, 0x68, 0xe3, 0x81, 0x98, 0x1b, 0xa8, 0xc9, 0xd9,
/* (2^374)P */ 0x39, 0x95, 0x78, 0x24, 0x6c, 0x38, 0xe4, 0xe7, 0xd0, 0x8d, 0xb9, 0x38, 0x71, 0x5e, 0xc1, 0x62, 0x80, 0xcc, 0xcb, 0x8c, 0x97, 0xca, 0xf8, 0xb9, 0xd9, 0x9c, 0xce, 0x72, 0x7b, 0x70, 0xee, 0x5f, 0xea, 0xa2, 0xdf, 0xa9, 0x14, 0x10, 0xf9, 0x6e, 0x59, 0x9f, 0x9c, 0xe0, 0x0c, 0xb2, 0x07, 0x97, 0xcd, 0xd2, 0x89, 0x16, 0xfd, 0x9c, 0xa8, 0xa5,
/* (2^375)P */ 0x5a, 0x61, 0xf1, 0x59, 0x7c, 0x38, 0xda, 0xe2, 0x85, 0x99, 0x68, 0xe9, 0xc9, 0xf7, 0x32, 0x7e, 0xc4, 0xca, 0xb7, 0x11, 0x08, 0x69, 0x2b, 0x66, 0x02, 0xf7, 0x2e, 0x18, 0xc3, 0x8e, 0xe1, 0xf9, 0xc5, 0x19, 0x9a, 0x0a, 0x9c, 0x07, 0xba, 0xc7, 0x9c, 0x03, 0x34, 0x89, 0x99, 0x67, 0x0b, 0x16, 0x4b, 0x07, 0x36, 0x16, 0x36, 0x2c, 0xe2, 0xa1,
/* (2^376)P */ 0x70, 0x10, 0x91, 0x27, 0xa8, 0x24, 0x8e, 0x29, 0x04, 0x6f, 0x79, 0x1f, 0xd3, 0xa5, 0x68, 0xd3, 0x0b, 0x7d, 0x56, 0x4d, 0x14, 0x57, 0x7b, 0x2e, 0x00, 0x9f, 0x9a, 0xfd, 0x6c, 0x63, 0x18, 0x81, 0xdb, 0x9d, 0xb7, 0xd7, 0xa4, 0x1e, 0xe8, 0x40, 0xf1, 0x4c, 0xa3, 0x01, 0xd5, 0x4b, 0x75, 0xea, 0xdd, 0x97, 0xfd, 0x5b, 0xb2, 0x66, 0x6a, 0x24,
/* (2^377)P */ 0x72, 0x11, 0xfe, 0x73, 0x1b, 0xd3, 0xea, 0x7f, 0x93, 0x15, 0x15, 0x05, 0xfe, 0x40, 0xe8, 0x28, 0xd8, 0x50, 0x47, 0x66, 0xfa, 0xb7, 0xb5, 0x04, 0xba, 0x35, 0x1e, 0x32, 0x9f, 0x5f, 0x32, 0xba, 0x3d, 0xd1, 0xed, 0x9a, 0x76, 0xca, 0xa3, 0x3e, 0x77, 0xd8, 0xd8, 0x7c, 0x5f, 0x68, 0x42, 0xb5, 0x86, 0x7f, 0x3b, 0xc9, 0xc1, 0x89, 0x64, 0xda,
/* (2^378)P */ 0xd5, 0xd4, 0x17, 0x31, 0xfc, 0x6a, 0xfd, 0xb8, 0xe8, 0xe5, 0x3e, 0x39, 0x06, 0xe4, 0xd1, 0x90, 0x2a, 0xca, 0xf6, 0x54, 0x6c, 0x1b, 0x2f, 0x49, 0x97, 0xb1, 0x2a, 0x82, 0x43, 0x3d, 0x1f, 0x8b, 0xe2, 0x47, 0xc5, 0x24, 0xa8, 0xd5, 0x53, 0x29, 0x7d, 0xc6, 0x87, 0xa6, 0x25, 0x3a, 0x64, 0xdd, 0x71, 0x08, 0x9e, 0xcd, 0xe9, 0x45, 0xc7, 0xba,
/* (2^379)P */ 0x37, 0x72, 0x6d, 0x13, 0x7a, 0x8d, 0x04, 0x31, 0xe6, 0xe3, 0x9e, 0x36, 0x71, 0x3e, 0xc0, 0x1e, 0xe3, 0x71, 0xd3, 0x49, 0x4e, 0x4a, 0x36, 0x42, 0x68, 0x68, 0x61, 0xc7, 0x3c, 0xdb, 0x81, 0x49, 0xf7, 0x91, 0x4d, 0xea, 0x4c, 0x4f, 0x98, 0xc6, 0x7e, 0x60, 0x84, 0x4b, 0x6a, 0x37, 0xbb, 0x52, 0xf7, 0xce, 0x02, 0xe4, 0xad, 0xd1, 0x3c, 0xa7,
/* (2^380)P */ 0x51, 0x06, 0x2d, 0xf8, 0x08, 0xe8, 0xf1, 0x0c, 0xe5, 0xa9, 0xac, 0x29, 0x73, 0x3b, 0xed, 0x98, 0x5f, 0x55, 0x08, 0x38, 0x51, 0x44, 0x36, 0x5d, 0xea, 0xc3, 0xb8, 0x0e, 0xa0, 0x4f, 0xd2, 0x79, 0xe9, 0x98, 0xc3, 0xf5, 0x00, 0xb9, 0x26, 0x27, 0x42, 0xa8, 0x07, 0xc1, 0x12, 0x31, 0xc1, 0xc3, 0x3c, 0x3b, 0x7a, 0x72, 0x97, 0xc2, 0x70, 0x3a,
/* (2^381)P */ 0xf4, 0xb2, 0xba, 0x32, 0xbc, 0xa9, 0x2f, 0x87, 0xc7, 0x3c, 0x45, 0xcd, 0xae, 0xe2, 0x13, 0x6d, 0x3a, 0xf2, 0xf5, 0x66, 0x97, 0x29, 0xaf, 0x53, 0x9f, 0xda, 0xea, 0x14, 0xdf, 0x04, 0x98, 0x19, 0x95, 0x9e, 0x2a, 0x00, 0x5c, 0x9d, 0x1d, 0xf0, 0x39, 0x23, 0xff, 0xfc, 0xca, 0x36, 0xb7, 0xde, 0xdf, 0x37, 0x78, 0x52, 0x21, 0xfa, 0x19, 0x10,
/* (2^382)P */ 0x50, 0x20, 0x73, 0x74, 0x62, 0x21, 0xf2, 0xf7, 0x9b, 0x66, 0x85, 0x34, 0x74, 0xd4, 0x9d, 0x60, 0xd7, 0xbc, 0xc8, 0x46, 0x3b, 0xb8, 0x80, 0x42, 0x15, 0x0a, 0x6c, 0x35, 0x1a, 0x69, 0xf0, 0x1d, 0x4b, 0x29, 0x54, 0x5a, 0x9a, 0x48, 0xec, 0x9f, 0x37, 0x74, 0x91, 0xd0, 0xd1, 0x9e, 0x00, 0xc2, 0x76, 0x56, 0xd6, 0xa0, 0x15, 0x14, 0x83, 0x59,
/* (2^383)P */ 0xc2, 0xf8, 0x22, 0x20, 0x23, 0x07, 0xbd, 0x1d, 0x6f, 0x1e, 0x8c, 0x56, 0x06, 0x6a, 0x4b, 0x9f, 0xe2, 0xa9, 0x92, 0x46, 0x4b, 0x46, 0x59, 0xd7, 0xe1, 0xda, 0x14, 0x98, 0x07, 0x65, 0x7e, 0x28, 0x20, 0xf2, 0x9d, 0x4f, 0x36, 0x5c, 0x92, 0xe0, 0x9d, 0xfe, 0x3e, 0xda, 0xe4, 0x47, 0x19, 0x3c, 0x00, 0x7f, 0x22, 0xf2, 0x9e, 0x51, 0xae, 0x4d,
/* (2^384)P */ 0xbe, 0x8c, 0x1b, 0x10, 0xb6, 0xad, 0xcc, 0xcc, 0xd8, 0x5e, 0x21, 0xa6, 0xfb, 0xf1, 0xf6, 0xbd, 0x0a, 0x24, 0x67, 0xb4, 0x57, 0x7a, 0xbc, 0xe8, 0xe9, 0xff, 0xee, 0x0a, 0x1f, 0xee, 0xbd, 0xc8, 0x44, 0xed, 0x2b, 0xbb, 0x55, 0x1f, 0xdd, 0x7c, 0xb3, 0xeb, 0x3f, 0x63, 0xa1, 0x28, 0x91, 0x21, 0xab, 0x71, 0xc6, 0x4c, 0xd0, 0xe9, 0xb0, 0x21,
/* (2^385)P */ 0xad, 0xc9, 0x77, 0x2b, 0xee, 0x89, 0xa4, 0x7b, 0xfd, 0xf9, 0xf6, 0x14, 0xe4, 0xed, 0x1a, 0x16, 0x9b, 0x78, 0x41, 0x43, 0xa8, 0x83, 0x72, 0x06, 0x2e, 0x7c, 0xdf, 0xeb, 0x7e, 0xdd, 0xd7, 0x8b, 0xea, 0x9a, 0x2b, 0x03, 0xba, 0x57, 0xf3, 0xf1, 0xd9, 0xe5, 0x09, 0xc5, 0x98, 0x61, 0x1c, 0x51, 0x6d, 0x5d, 0x6e, 0xfb, 0x5e, 0x95, 0x9f, 0xb5,
/* (2^386)P */ 0x23, 0xe2, 0x1e, 0x95, 0xa3, 0x5e, 0x42, 0x10, 0xc7, 0xc3, 0x70, 0xbf, 0x4b, 0x6b, 0x83, 0x36, 0x93, 0xb7, 0x68, 0x47, 0x88, 0x3a, 0x10, 0x88, 0x48, 0x7f, 0x8c, 0xae, 0x54, 0x10, 0x02, 0xa4, 0x52, 0x8f, 0x8d, 0xf7, 0x26, 0x4f, 0x50, 0xc3, 0x6a, 0xe2, 0x4e, 0x3b, 0x4c, 0xb9, 0x8a, 0x14, 0x15, 0x6d, 0x21, 0x29, 0xb3, 0x6e, 0x4e, 0xd0,
/* (2^387)P */ 0x4c, 0x8a, 0x18, 0x3f, 0xb7, 0x20, 0xfd, 0x3e, 0x54, 0xca, 0x68, 0x3c, 0xea, 0x6f, 0xf4, 0x6b, 0xa2, 0xbd, 0x01, 0xbd, 0xfe, 0x08, 0xa8, 0xd8, 0xc2, 0x20, 0x36, 0x05, 0xcd, 0xe9, 0xf3, 0x9e, 0xfa, 0x85, 0x66, 0x8f, 0x4b, 0x1d, 0x8c, 0x64, 0x4f, 0xb8, 0xc6, 0x0f, 0x5b, 0x57, 0xd8, 0x24, 0x19, 0x5a, 0x14, 0x4b, 0x92, 0xd3, 0x96, 0xbc,
/* (2^388)P */ 0xa9, 0x3f, 0xc9, 0x6c, 0xca, 0x64, 0x1e, 0x6f, 0xdf, 0x65, 0x7f, 0x9a, 0x47, 0x6b, 0x8a, 0x60, 0x31, 0xa6, 0x06, 0xac, 0x69, 0x30, 0xe6, 0xea, 0x63, 0x42, 0x26, 0x5f, 0xdb, 0xd0, 0xf2, 0x8e, 0x34, 0x0a, 0x3a, 0xeb, 0xf3, 0x79, 0xc8, 0xb7, 0x60, 0x56, 0x5c, 0x37, 0x95, 0x71, 0xf8, 0x7f, 0x49, 0x3e, 0x9e, 0x01, 0x26, 0x1e, 0x80, 0x9f,
/* (2^389)P */ 0xf8, 0x16, 0x9a, 0xaa, 0xb0, 0x28, 0xb5, 0x8e, 0xd0, 0x60, 0xe5, 0x26, 0xa9, 0x47, 0xc4, 0x5c, 0xa9, 0x39, 0xfe, 0x0a, 0xd8, 0x07, 0x2b, 0xb3, 0xce, 0xf1, 0xea, 0x1a, 0xf4, 0x7b, 0x98, 0x31, 0x3d, 0x13, 0x29, 0x80, 0xe8, 0x0d, 0xcf, 0x56, 0x39, 0x86, 0x50, 0x0c, 0xb3, 0x18, 0xf4, 0xc5, 0xca, 0xf2, 0x6f, 0xcd, 0x8d, 0xd5, 0x02, 0xb0,
/* (2^390)P */ 0xbf, 0x39, 0x3f, 0xac, 0x6d, 0x1a, 0x6a, 0xe4, 0x42, 0x24, 0xd6, 0x41, 0x9d, 0xb9, 0x5b, 0x46, 0x73, 0x93, 0x76, 0xaa, 0xb7, 0x37, 0x36, 0xa6, 0x09, 0xe5, 0x04, 0x3b, 0x66, 0xc4, 0x29, 0x3e, 0x41, 0xc2, 0xcb, 0xe5, 0x17, 0xd7, 0x34, 0x67, 0x1d, 0x2c, 0x12, 0xec, 0x24, 0x7a, 0x40, 0xa2, 0x45, 0x41, 0xf0, 0x75, 0xed, 0x43, 0x30, 0xc9,
/* (2^391)P */ 0x80, 0xf6, 0x47, 0x5b, 0xad, 0x54, 0x02, 0xbc, 0xdd, 0xa4, 0xb2, 0xd7, 0x42, 0x95, 0xf2, 0x0d, 0x1b, 0xef, 0x37, 0xa7, 0xb4, 0x34, 0x04, 0x08, 0x71, 0x1b, 0xd3, 0xdf, 0xa1, 0xf0, 0x2b, 0xfa, 0xc0, 0x1f, 0xf3, 0x44, 0xb5, 0xc6, 0x47, 0x3d, 0x65, 0x67, 0x45, 0x4d, 0x2f, 0xde, 0x52, 0x73, 0xfc, 0x30, 0x01, 0x6b, 0xc1, 0x03, 0xd8, 0xd7,
/* (2^392)P */ 0x1c, 0x67, 0x55, 0x3e, 0x01, 0x17, 0x0f, 0x3e, 0xe5, 0x34, 0x58, 0xfc, 0xcb, 0x71, 0x24, 0x74, 0x5d, 0x36, 0x1e, 0x89, 0x2a, 0x63, 0xf8, 0xf8, 0x9f, 0x50, 0x9f, 0x32, 0x92, 0x29, 0xd8, 0x1a, 0xec, 0x76, 0x57, 0x6c, 0x67, 0x12, 0x6a, 0x6e, 0xef, 0x97, 0x1f, 0xc3, 0x77, 0x60, 0x3c, 0x22, 0xcb, 0xc7, 0x04, 0x1a, 0x89, 0x2d, 0x10, 0xa6,
/* (2^393)P */ 0x12, 0xf5, 0xa9, 0x26, 0x16, 0xd9, 0x3c, 0x65, 0x5d, 0x83, 0xab, 0xd1, 0x70, 0x6b, 0x1c, 0xdb, 0xe7, 0x86, 0x0d, 0xfb, 0xe7, 0xf8, 0x2a, 0x58, 0x6e, 0x7a, 0x66, 0x13, 0x53, 0x3a, 0x6f, 0x8d, 0x43, 0x5f, 0x14, 0x23, 0x14, 0xff, 0x3d, 0x52, 0x7f, 0xee, 0xbd, 0x7a, 0x34, 0x8b, 0x35, 0x24, 0xc3, 0x7a, 0xdb, 0xcf, 0x22, 0x74, 0x9a, 0x8f,
/* (2^394)P */ 0xdb, 0x20, 0xfc, 0xe5, 0x39, 0x4e, 0x7d, 0x78, 0xee, 0x0b, 0xbf, 0x1d, 0x80, 0xd4, 0x05, 0x4f, 0xb9, 0xd7, 0x4e, 0x94, 0x88, 0x9a, 0x50, 0x78, 0x1a, 0x70, 0x8c, 0xcc, 0x25, 0xb6, 0x61, 0x09, 0xdc, 0x7b, 0xea, 0x3f, 0x7f, 0xea, 0x2a, 0x0d, 0x47, 0x1c, 0x8e, 0xa6, 0x5b, 0xd2, 0xa3, 0x61, 0x93, 0x3c, 0x68, 0x9f, 0x8b, 0xea, 0xb0, 0xcb,
/* (2^395)P */ 0xff, 0x54, 0x02, 0x19, 0xae, 0x8b, 0x4c, 0x2c, 0x3a, 0xe0, 0xe4, 0xac, 0x87, 0xf7, 0x51, 0x45, 0x41, 0x43, 0xdc, 0xaa, 0xcd, 0xcb, 0xdc, 0x40, 0xe3, 0x44, 0x3b, 0x1d, 0x9e, 0x3d, 0xb9, 0x82, 0xcc, 0x7a, 0xc5, 0x12, 0xf8, 0x1e, 0xdd, 0xdb, 0x8d, 0xb0, 0x2a, 0xe8, 0xe6, 0x6c, 0x94, 0x3b, 0xb7, 0x2d, 0xba, 0x79, 0x3b, 0xb5, 0x86, 0xfb,
/* (2^396)P */ 0x82, 0x88, 0x13, 0xdd, 0x6c, 0xcd, 0x85, 0x2b, 0x90, 0x86, 0xb7, 0xac, 0x16, 0xa6, 0x6e, 0x6a, 0x94, 0xd8, 0x1e, 0x4e, 0x41, 0x0f, 0xce, 0x81, 0x6a, 0xa8, 0x26, 0x56, 0x43, 0x52, 0x52, 0xe6, 0xff, 0x88, 0xcf, 0x47, 0x05, 0x1d, 0xff, 0xf3, 0xa0, 0x10, 0xb2, 0x97, 0x87, 0xeb, 0x47, 0xbb, 0xfa, 0x1f, 0xe8, 0x4c, 0xce, 0xc4, 0xcd, 0x93,
/* (2^397)P */ 0xf4, 0x11, 0xf5, 0x8d, 0x89, 0x29, 0x79, 0xb3, 0x59, 0x0b, 0x29, 0x7d, 0x9c, 0x12, 0x4a, 0x65, 0x72, 0x3a, 0xf9, 0xec, 0x37, 0x18, 0x86, 0xef, 0x44, 0x07, 0x25, 0x74, 0x76, 0x53, 0xed, 0x51, 0x01, 0xc6, 0x28, 0xc5, 0xc3, 0x4a, 0x0f, 0x99, 0xec, 0xc8, 0x40, 0x5a, 0x83, 0x30, 0x79, 0xa2, 0x3e, 0x63, 0x09, 0x2d, 0x6f, 0x23, 0x54, 0x1c,
/* (2^398)P */ 0x5c, 0x6f, 0x3b, 0x1c, 0x30, 0x77, 0x7e, 0x87, 0x66, 0x83, 0x2e, 0x7e, 0x85, 0x50, 0xfd, 0xa0, 0x7a, 0xc2, 0xf5, 0x0f, 0xc1, 0x64, 0xe7, 0x0b, 0xbd, 0x59, 0xa7, 0xe7, 0x65, 0x53, 0xc3, 0xf5, 0x55, 0x5b, 0xe1, 0x82, 0x30, 0x5a, 0x61, 0xcd, 0xa0, 0x89, 0x32, 0xdb, 0x87, 0xfc, 0x21, 0x8a, 0xab, 0x6d, 0x82, 0xa8, 0x42, 0x81, 0x4f, 0xf2,
/* (2^399)P */ 0xb3, 0xeb, 0x88, 0x18, 0xf6, 0x56, 0x96, 0xbf, 0xba, 0x5d, 0x71, 0xa1, 0x5a, 0xd1, 0x04, 0x7b, 0xd5, 0x46, 0x01, 0x74, 0xfe, 0x15, 0x25, 0xb7, 0xff, 0x0c, 0x24, 0x47, 0xac, 0xfd, 0xab, 0x47, 0x32, 0xe1, 0x6a, 0x4e, 0xca, 0xcf, 0x7f, 0xdd, 0xf8, 0xd2, 0x4b, 0x3b, 0xf5, 0x17, 0xba, 0xba, 0x8b, 0xa1, 0xec, 0x28, 0x3f, 0x97, 0xab, 0x2a,
/* (2^400)P */ 0x51, 0x38, 0xc9, 0x5e, 0xc6, 0xb3, 0x64, 0xf2, 0x24, 0x4d, 0x04, 0x7d, 0xc8, 0x39, 0x0c, 0x4a, 0xc9, 0x73, 0x74, 0x1b, 0x5c, 0xb2, 0xc5, 0x41, 0x62, 0xa0, 0x4c, 0x6d, 0x8d, 0x91, 0x9a, 0x7b, 0x88, 0xab, 0x9c, 0x7e, 0x23, 0xdb, 0x6f, 0xb5, 0x72, 0xd6, 0x47, 0x40, 0xef, 0x22, 0x58, 0x62, 0x19, 0x6c, 0x38, 0xba, 0x5b, 0x00, 0x30, 0x9f,
/* (2^401)P */ 0x65, 0xbb, 0x3b, 0x9b, 0xe9, 0xae, 0xbf, 0xbe, 0xe4, 0x13, 0x95, 0xf3, 0xe3, 0x77, 0xcb, 0xe4, 0x9a, 0x22, 0xb5, 0x4a, 0x08, 0x9d, 0xb3, 0x9e, 0x27, 0xe0, 0x15, 0x6c, 0x9f, 0x7e, 0x9a, 0x5e, 0x15, 0x45, 0x25, 0x8d, 0x01, 0x0a, 0xd2, 0x2b, 0xbd, 0x48, 0x06, 0x0d, 0x18, 0x97, 0x4b, 0xdc, 0xbc, 0xf0, 0xcd, 0xb2, 0x52, 0x3c, 0xac, 0xf5,
/* (2^402)P */ 0x3e, 0xed, 0x47, 0x6b, 0x5c, 0xf6, 0x76, 0xd0, 0xe9, 0x15, 0xa3, 0xcb, 0x36, 0x00, 0x21, 0xa3, 0x79, 0x20, 0xa5, 0x3e, 0x88, 0x03, 0xcb, 0x7e, 0x63, 0xbb, 0xed, 0xa9, 0x13, 0x35, 0x16, 0xaf, 0x2e, 0xb4, 0x70, 0x14, 0x93, 0xfb, 0xc4, 0x9b, 0xd8, 0xb1, 0xbe, 0x43, 0xd1, 0x85, 0xb8, 0x97, 0xef, 0xea, 0x88, 0xa1, 0x25, 0x52, 0x62, 0x75,
/* (2^403)P */ 0x8e, 0x4f, 0xaa, 0x23, 0x62, 0x7e, 0x2b, 0x37, 0x89, 0x00, 0x11, 0x30, 0xc5, 0x33, 0x4a, 0x89, 0x8a, 0xe2, 0xfc, 0x5c, 0x6a, 0x75, 0xe5, 0xf7, 0x02, 0x4a, 0x9b, 0xf7, 0xb5, 0x6a, 0x85, 0x31, 0xd3, 0x5a, 0xcf, 0xc3, 0xf8, 0xde, 0x2f, 0xcf, 0xb5, 0x24, 0xf4, 0xe3, 0xa1, 0xad, 0x42, 0xae, 0x09, 0xb9, 0x2e, 0x04, 0x2d, 0x01, 0x22, 0x3f,
/* (2^404)P */ 0x41, 0x16, 0xfb, 0x7d, 0x50, 0xfd, 0xb5, 0xba, 0x88, 0x24, 0xba, 0xfd, 0x3d, 0xb2, 0x90, 0x15, 0xb7, 0xfa, 0xa2, 0xe1, 0x4c, 0x7d, 0xb9, 0xc6, 0xff, 0x81, 0x57, 0xb6, 0xc2, 0x9e, 0xcb, 0xc4, 0x35, 0xbd, 0x01, 0xb7, 0xaa, 0xce, 0xd0, 0xe9, 0xb5, 0xd6, 0x72, 0xbf, 0xd2, 0xee, 0xc7, 0xac, 0x94, 0xff, 0x29, 0x57, 0x02, 0x49, 0x09, 0xad,
/* (2^405)P */ 0x27, 0xa5, 0x78, 0x1b, 0xbf, 0x6b, 0xaf, 0x0b, 0x8c, 0xd9, 0xa8, 0x37, 0xb0, 0x67, 0x18, 0xb6, 0xc7, 0x05, 0x8a, 0x67, 0x03, 0x30, 0x62, 0x6e, 0x56, 0x82, 0xa9, 0x54, 0x3e, 0x0c, 0x4e, 0x07, 0xe1, 0x5a, 0x38, 0xed, 0xfa, 0xc8, 0x55, 0x6b, 0x08, 0xa3, 0x6b, 0x64, 0x2a, 0x15, 0xd6, 0x39, 0x6f, 0x47, 0x99, 0x42, 0x3f, 0x33, 0x84, 0x8f,
/* (2^406)P */ 0xbc, 0x45, 0x29, 0x81, 0x0e, 0xa4, 0xc5, 0x72, 0x3a, 0x10, 0xe1, 0xc4, 0x1e, 0xda, 0xc3, 0xfe, 0xb0, 0xce, 0xd2, 0x13, 0x34, 0x67, 0x21, 0xc6, 0x7e, 0xf9, 0x8c, 0xff, 0x39, 0x50, 0xae, 0x92, 0x60, 0x35, 0x2f, 0x8b, 0x6e, 0xc9, 0xc1, 0x27, 0x3a, 0x94, 0x66, 0x3e, 0x26, 0x84, 0x93, 0xc8, 0x6c, 0xcf, 0xd2, 0x03, 0xa1, 0x10, 0xcf, 0xb7,
/* (2^407)P */ 0x64, 0xda, 0x19, 0xf6, 0xc5, 0x73, 0x17, 0x44, 0x88, 0x81, 0x07, 0x0d, 0x34, 0xb2, 0x75, 0xf9, 0xd9, 0xe2, 0xe0, 0x8b, 0x71, 0xcf, 0x72, 0x34, 0x83, 0xb4, 0xce, 0xfc, 0xd7, 0x29, 0x09, 0x5a, 0x98, 0xbf, 0x14, 0xac, 0x77, 0x55, 0x38, 0x47, 0x5b, 0x0f, 0x40, 0x24, 0xe5, 0xa5, 0xa6, 0xac, 0x2d, 0xa6, 0xff, 0x9c, 0x73, 0xfe, 0x5c, 0x7e,
/* (2^408)P */ 0x1e, 0x33, 0xcc, 0x68, 0xb2, 0xbc, 0x8c, 0x93, 0xaf, 0xcc, 0x38, 0xf8, 0xd9, 0x16, 0x72, 0x50, 0xac, 0xd9, 0xb5, 0x0b, 0x9a, 0xbe, 0x46, 0x7a, 0xf1, 0xee, 0xf1, 0xad, 0xec, 0x5b, 0x59, 0x27, 0x9c, 0x05, 0xa3, 0x87, 0xe0, 0x37, 0x2c, 0x83, 0xce, 0xb3, 0x65, 0x09, 0x8e, 0xc3, 0x9c, 0xbf, 0x6a, 0xa2, 0x00, 0xcc, 0x12, 0x36, 0xc5, 0x95,
/* (2^409)P */ 0x36, 0x11, 0x02, 0x14, 0x9c, 0x3c, 0xeb, 0x2f, 0x23, 0x5b, 0x6b, 0x2b, 0x08, 0x54, 0x53, 0xac, 0xb2, 0xa3, 0xe0, 0x26, 0x62, 0x3c, 0xe4, 0xe1, 0x81, 0xee, 0x13, 0x3e, 0xa4, 0x97, 0xef, 0xf9, 0x92, 0x27, 0x01, 0xce, 0x54, 0x8b, 0x3e, 0x31, 0xbe, 0xa7, 0x88, 0xcf, 0x47, 0x99, 0x3c, 0x10, 0x6f, 0x60, 0xb3, 0x06, 0x4e, 0xee, 0x1b, 0xf0,
/* (2^410)P */ 0x59, 0x49, 0x66, 0xcf, 0x22, 0xe6, 0xf6, 0x73, 0xfe, 0xa3, 0x1c, 0x09, 0xfa, 0x5f, 0x65, 0xa8, 0xf0, 0x82, 0xc2, 0xef, 0x16, 0x63, 0x6e, 0x79, 0x69, 0x51, 0x39, 0x07, 0x65, 0xc4, 0x81, 0xec, 0x73, 0x0f, 0x15, 0x93, 0xe1, 0x30, 0x33, 0xe9, 0x37, 0x86, 0x42, 0x4c, 0x1f, 0x9b, 0xad, 0xee, 0x3f, 0xf1, 0x2a, 0x8e, 0x6a, 0xa3, 0xc8, 0x35,
/* (2^411)P */ 0x1e, 0x49, 0xf1, 0xdd, 0xd2, 0x9c, 0x8e, 0x78, 0xb2, 0x06, 0xe4, 0x6a, 0xab, 0x3a, 0xdc, 0xcd, 0xf4, 0xeb, 0xe1, 0xe7, 0x2f, 0xaa, 0xeb, 0x40, 0x31, 0x9f, 0xb9, 0xab, 0x13, 0xa9, 0x78, 0xbf, 0x38, 0x89, 0x0e, 0x85, 0x14, 0x8b, 0x46, 0x76, 0x14, 0xda, 0xcf, 0x33, 0xc8, 0x79, 0xd3, 0xd5, 0xa3, 0x6a, 0x69, 0x45, 0x70, 0x34, 0xc3, 0xe9,
/* (2^412)P */ 0x5e, 0xe7, 0x78, 0xe9, 0x24, 0xcc, 0xe9, 0xf4, 0xc8, 0x6b, 0xe0, 0xfb, 0x3a, 0xbe, 0xcc, 0x42, 0x4a, 0x00, 0x22, 0xf8, 0xe6, 0x32, 0xbe, 0x6d, 0x18, 0x55, 0x60, 0xe9, 0x72, 0x69, 0x50, 0x56, 0xca, 0x04, 0x18, 0x38, 0xa1, 0xee, 0xd8, 0x38, 0x3c, 0xa7, 0x70, 0xe2, 0xb9, 0x4c, 0xa0, 0xc8, 0x89, 0x72, 0xcf, 0x49, 0x7f, 0xdf, 0xbc, 0x67,
/* (2^413)P */ 0x1d, 0x17, 0xcb, 0x0b, 0xbd, 0xb2, 0x36, 0xe3, 0xa8, 0x99, 0x31, 0xb6, 0x26, 0x9c, 0x0c, 0x74, 0xaf, 0x4d, 0x24, 0x61, 0xcf, 0x31, 0x7b, 0xed, 0xdd, 0xc3, 0xf6, 0x32, 0x70, 0xfe, 0x17, 0xf6, 0x51, 0x37, 0x65, 0xce, 0x5d, 0xaf, 0xa5, 0x2f, 0x2a, 0xfe, 0x00, 0x71, 0x7c, 0x50, 0xbe, 0x21, 0xc7, 0xed, 0xc6, 0xfc, 0x67, 0xcf, 0x9c, 0xdd,
/* (2^414)P */ 0x26, 0x3e, 0xf8, 0xbb, 0xd0, 0xb1, 0x01, 0xd8, 0xeb, 0x0b, 0x62, 0x87, 0x35, 0x4c, 0xde, 0xca, 0x99, 0x9c, 0x6d, 0xf7, 0xb6, 0xf0, 0x57, 0x0a, 0x52, 0x29, 0x6a, 0x3f, 0x26, 0x31, 0x04, 0x07, 0x2a, 0xc9, 0xfa, 0x9b, 0x0e, 0x62, 0x8e, 0x72, 0xf2, 0xad, 0xce, 0xb6, 0x35, 0x7a, 0xc1, 0xae, 0x35, 0xc7, 0xa3, 0x14, 0xcf, 0x0c, 0x28, 0xb7,
/* (2^415)P */ 0xa6, 0xf1, 0x32, 0x3a, 0x20, 0xd2, 0x24, 0x97, 0xcf, 0x5d, 0x37, 0x99, 0xaf, 0x33, 0x7a, 0x5b, 0x7a, 0xcc, 0x4e, 0x41, 0x38, 0xb1, 0x4e, 0xad, 0xc9, 0xd9, 0x71, 0x7e, 0xb2, 0xf5, 0xd5, 0x01, 0x6c, 0x4d, 0xfd, 0xa1, 0xda, 0x03, 0x38, 0x9b, 0x3d, 0x92, 0x92, 0xf2, 0xca, 0xbf, 0x1f, 0x24, 0xa4, 0xbb, 0x30, 0x6a, 0x74, 0x56, 0xc8, 0xce,
/* (2^416)P */ 0x27, 0xf4, 0xed, 0xc9, 0xc3, 0xb1, 0x79, 0x85, 0xbe, 0xf6, 0xeb, 0xf3, 0x55, 0xc7, 0xaa, 0xa6, 0xe9, 0x07, 0x5d, 0xf4, 0xeb, 0xa6, 0x81, 0xe3, 0x0e, 0xcf, 0xa3, 0xc1, 0xef, 0xe7, 0x34, 0xb2, 0x03, 0x73, 0x8a, 0x91, 0xf1, 0xad, 0x05, 0xc7, 0x0b, 0x43, 0x99, 0x12, 0x31, 0xc8, 0xc7, 0xc5, 0xa4, 0x3d, 0xcd, 0xe5, 0x4e, 0x6d, 0x24, 0xdd,
/* (2^417)P */ 0x61, 0x54, 0xd0, 0x95, 0x2c, 0x45, 0x75, 0xac, 0xb5, 0x1a, 0x9d, 0x11, 0xeb, 0xed, 0x6b, 0x57, 0xa3, 0xe6, 0xcd, 0x77, 0xd4, 0x83, 0x8e, 0x39, 0xf1, 0x0f, 0x98, 0xcb, 0x40, 0x02, 0x6e, 0x10, 0x82, 0x9e, 0xb4, 0x93, 0x76, 0xd7, 0x97, 0xa3, 0x53, 0x12, 0x86, 0xc6, 0x15, 0x78, 0x73, 0x93, 0xe7, 0x7f, 0xcf, 0x1f, 0xbf, 0xcd, 0xd2, 0x7a,
/* (2^418)P */ 0xc2, 0x21, 0xdc, 0xd5, 0x69, 0xff, 0xca, 0x49, 0x3a, 0xe1, 0xc3, 0x69, 0x41, 0x56, 0xc1, 0x76, 0x63, 0x24, 0xbd, 0x64, 0x1b, 0x3d, 0x92, 0xf9, 0x13, 0x04, 0x25, 0xeb, 0x27, 0xa6, 0xef, 0x39, 0x3a, 0x80, 0xe0, 0xf8, 0x27, 0xee, 0xc9, 0x49, 0x77, 0xef, 0x3f, 0x29, 0x3d, 0x5e, 0xe6, 0x66, 0x83, 0xd1, 0xf6, 0xfe, 0x9d, 0xbc, 0xf1, 0x96,
/* (2^419)P */ 0x6b, 0xc6, 0x99, 0x26, 0x3c, 0xf3, 0x63, 0xf9, 0xc7, 0x29, 0x8c, 0x52, 0x62, 0x2d, 0xdc, 0x8a, 0x66, 0xce, 0x2c, 0xa7, 0xe4, 0xf0, 0xd7, 0x37, 0x17, 0x1e, 0xe4, 0xa3, 0x53, 0x7b, 0x29, 0x8e, 0x60, 0x99, 0xf9, 0x0c, 0x7c, 0x6f, 0xa2, 0xcc, 0x9f, 0x80, 0xdd, 0x5e, 0x46, 0xaa, 0x0d, 0x6c, 0xc9, 0x6c, 0xf7, 0x78, 0x5b, 0x38, 0xe3, 0x24,
/* (2^420)P */ 0x4b, 0x75, 0x6a, 0x2f, 0x08, 0xe1, 0x72, 0x76, 0xab, 0x82, 0x96, 0xdf, 0x3b, 0x1f, 0x9b, 0xd8, 0xed, 0xdb, 0xcd, 0x15, 0x09, 0x5a, 0x1e, 0xb7, 0xc5, 0x26, 0x72, 0x07, 0x0c, 0x50, 0xcd, 0x3b, 0x4d, 0x3f, 0xa2, 0x67, 0xc2, 0x02, 0x61, 0x2e, 0x68, 0xe9, 0x6f, 0xf0, 0x21, 0x2a, 0xa7, 0x3b, 0x88, 0x04, 0x11, 0x64, 0x49, 0x0d, 0xb4, 0x46,
/* (2^421)P */ 0x63, 0x85, 0xf3, 0xc5, 0x2b, 0x5a, 0x9f, 0xf0, 0x17, 0xcb, 0x45, 0x0a, 0xf3, 0x6e, 0x7e, 0xb0, 0x7c, 0xbc, 0xf0, 0x4f, 0x3a, 0xb0, 0xbc, 0x36, 0x36, 0x52, 0x51, 0xcb, 0xfe, 0x9a, 0xcb, 0xe8, 0x7e, 0x4b, 0x06, 0x7f, 0xaa, 0x35, 0xc8, 0x0e, 0x7a, 0x30, 0xa3, 0xb1, 0x09, 0xbb, 0x86, 0x4c, 0xbe, 0xb8, 0xbd, 0xe0, 0x32, 0xa5, 0xd4, 0xf7,
/* (2^422)P */ 0x7d, 0x50, 0x37, 0x68, 0x4e, 0x22, 0xb2, 0x2c, 0xd5, 0x0f, 0x2b, 0x6d, 0xb1, 0x51, 0xf2, 0x82, 0xe9, 0x98, 0x7c, 0x50, 0xc7, 0x96, 0x7e, 0x0e, 0xdc, 0xb1, 0x0e, 0xb2, 0x63, 0x8c, 0x30, 0x37, 0x72, 0x21, 0x9c, 0x61, 0xc2, 0xa7, 0x33, 0xd9, 0xb2, 0x63, 0x93, 0xd1, 0x6b, 0x6a, 0x73, 0xa5, 0x58, 0x80, 0xff, 0x04, 0xc7, 0x83, 0x21, 0x29,
/* (2^423)P */ 0x29, 0x04, 0xbc, 0x99, 0x39, 0xc9, 0x58, 0xc9, 0x6b, 0x17, 0xe8, 0x90, 0xb3, 0xe6, 0xa9, 0xb6, 0x28, 0x9b, 0xcb, 0x3b, 0x28, 0x90, 0x68, 0x71, 0xff, 0xcf, 0x08, 0x78, 0xc9, 0x8d, 0xa8, 0x4e, 0x43, 0xd1, 0x1c, 0x9e, 0xa4, 0xe3, 0xdf, 0xbf, 0x92, 0xf4, 0xf9, 0x41, 0xba, 0x4d, 0x1c, 0xf9, 0xdd, 0x74, 0x76, 0x1c, 0x6e, 0x3e, 0x94, 0x87,
/* (2^424)P */ 0xe4, 0xda, 0xc5, 0xd7, 0xfb, 0x87, 0xc5, 0x4d, 0x6b, 0x19, 0xaa, 0xb9, 0xbc, 0x8c, 0xf2, 0x8a, 0xd8, 0x5d, 0xdb, 0x4d, 0xef, 0xa6, 0xf2, 0x65, 0xf1, 0x22, 0x9c, 0xf1, 0x46, 0x30, 0x71, 0x7c, 0xe4, 0x53, 0x8e, 0x55, 0x2e, 0x9c, 0x9a, 0x31, 0x2a, 0xc3, 0xab, 0x0f, 0xde, 0xe4, 0xbe, 0xd8, 0x96, 0x50, 0x6e, 0x0c, 0x54, 0x49, 0xe6, 0xec,
/* (2^425)P */ 0x3c, 0x1d, 0x5a, 0xa5, 0xda, 0xad, 0xdd, 0xc2, 0xae, 0xac, 0x6f, 0x86, 0x75, 0x31, 0x91, 0x64, 0x45, 0x9d, 0xa4, 0xf0, 0x81, 0xf1, 0x0e, 0xba, 0x74, 0xaf, 0x7b, 0xcd, 0x6f, 0xfe, 0xac, 0x4e, 0xdb, 0x4e, 0x45, 0x35, 0x36, 0xc5, 0xc0, 0x6c, 0x3d, 0x64, 0xf4, 0xd8, 0x07, 0x62, 0xd1, 0xec, 0xf3, 0xfc, 0x93, 0xc9, 0x28, 0x0c, 0x2c, 0xf3,
/* (2^426)P */ 0x0c, 0x69, 0x2b, 0x5c, 0xb6, 0x41, 0x69, 0xf1, 0xa4, 0xf1, 0x5b, 0x75, 0x4c, 0x42, 0x8b, 0x47, 0xeb, 0x69, 0xfb, 0xa8, 0xe6, 0xf9, 0x7b, 0x48, 0x50, 0xaf, 0xd3, 0xda, 0xb2, 0x35, 0x10, 0xb5, 0x5b, 0x40, 0x90, 0x39, 0xc9, 0x07, 0x06, 0x73, 0x26, 0x20, 0x95, 0x01, 0xa4, 0x2d, 0xf0, 0xe7, 0x2e, 0x00, 0x7d, 0x41, 0x09, 0x68, 0x13, 0xc4,
/* (2^427)P */ 0xbe, 0x38, 0x78, 0xcf, 0xc9, 0x4f, 0x36, 0xca, 0x09, 0x61, 0x31, 0x3c, 0x57, 0x2e, 0xec, 0x17, 0xa4, 0x7d, 0x19, 0x2b, 0x9b, 0x5b, 0xbe, 0x8f, 0xd6, 0xc5, 0x2f, 0x86, 0xf2, 0x64, 0x76, 0x17, 0x00, 0x6e, 0x1a, 0x8c, 0x67, 0x1b, 0x68, 0xeb, 0x15, 0xa2, 0xd6, 0x09, 0x91, 0xdd, 0x23, 0x0d, 0x98, 0xb2, 0x10, 0x19, 0x55, 0x9b, 0x63, 0xf2,
/* (2^428)P */ 0x51, 0x1f, 0x93, 0xea, 0x2a, 0x3a, 0xfa, 0x41, 0xc0, 0x57, 0xfb, 0x74, 0xa6, 0x65, 0x09, 0x56, 0x14, 0xb6, 0x12, 0xaa, 0xb3, 0x1a, 0x8d, 0x3b, 0x76, 0x91, 0x7a, 0x23, 0x56, 0x9c, 0x6a, 0xc0, 0xe0, 0x3c, 0x3f, 0xb5, 0x1a, 0xf4, 0x57, 0x71, 0x93, 0x2b, 0xb1, 0xa7, 0x70, 0x57, 0x22, 0x80, 0xf5, 0xb8, 0x07, 0x77, 0x87, 0x0c, 0xbe, 0x83,
/* (2^429)P */ 0x07, 0x9b, 0x0e, 0x52, 0x38, 0x63, 0x13, 0x86, 0x6a, 0xa6, 0xb4, 0xd2, 0x60, 0x68, 0x9a, 0x99, 0x82, 0x0a, 0x04, 0x5f, 0x89, 0x7a, 0x1a, 0x2a, 0xae, 0x2d, 0x35, 0x0c, 0x1e, 0xad, 0xef, 0x4f, 0x9a, 0xfc, 0xc8, 0xd9, 0xcf, 0x9d, 0x48, 0x71, 0xa5, 0x55, 0x79, 0x73, 0x39, 0x1b, 0xd8, 0x73, 0xec, 0x9b, 0x03, 0x16, 0xd8, 0x82, 0xf7, 0x67,
/* (2^430)P */ 0x52, 0x67, 0x42, 0x21, 0xc9, 0x40, 0x78, 0x82, 0x2b, 0x95, 0x2d, 0x20, 0x92, 0xd1, 0xe2, 0x61, 0x25, 0xb0, 0xc6, 0x9c, 0x20, 0x59, 0x8e, 0x28, 0x6f, 0xf3, 0xfd, 0xd3, 0xc1, 0x32, 0x43, 0xc9, 0xa6, 0x08, 0x7a, 0x77, 0x9c, 0x4c, 0x8c, 0x33, 0x71, 0x13, 0x69, 0xe3, 0x52, 0x30, 0xa7, 0xf5, 0x07, 0x67, 0xac, 0xad, 0x46, 0x8a, 0x26, 0x25,
/* (2^431)P */ 0xda, 0x86, 0xc4, 0xa2, 0x71, 0x56, 0xdd, 0xd2, 0x48, 0xd3, 0xde, 0x42, 0x63, 0x01, 0xa7, 0x2c, 0x92, 0x83, 0x6f, 0x2e, 0xd8, 0x1e, 0x3f, 0xc1, 0xc5, 0x42, 0x4e, 0x34, 0x19, 0x54, 0x6e, 0x35, 0x2c, 0x51, 0x2e, 0xfd, 0x0f, 0x9a, 0x45, 0x66, 0x5e, 0x4a, 0x83, 0xda, 0x0a, 0x53, 0x68, 0x63, 0xfa, 0xce, 0x47, 0x20, 0xd3, 0x34, 0xba, 0x0d,
/* (2^432)P */ 0xd0, 0xe9, 0x64, 0xa4, 0x61, 0x4b, 0x86, 0xe5, 0x93, 0x6f, 0xda, 0x0e, 0x31, 0x7e, 0x6e, 0xe3, 0xc6, 0x73, 0xd8, 0xa3, 0x08, 0x57, 0x52, 0xcd, 0x51, 0x63, 0x1d, 0x9f, 0x93, 0x00, 0x62, 0x91, 0x26, 0x21, 0xa7, 0xdd, 0x25, 0x0f, 0x09, 0x0d, 0x35, 0xad, 0xcf, 0x11, 0x8e, 0x6e, 0xe8, 0xae, 0x1d, 0x95, 0xcb, 0x88, 0xf8, 0x70, 0x7b, 0x91,
/* (2^433)P */ 0x0c, 0x19, 0x5c, 0xd9, 0x8d, 0xda, 0x9d, 0x2c, 0x90, 0x54, 0x65, 0xe8, 0xb6, 0x35, 0x50, 0xae, 0xea, 0xae, 0x43, 0xb7, 0x1e, 0x99, 0x8b, 0x4c, 0x36, 0x4e, 0xe4, 0x1e, 0xc4, 0x64, 0x43, 0xb6, 0xeb, 0xd4, 0xe9, 0x60, 0x22, 0xee, 0xcf, 0xb8, 0x52, 0x1b, 0xf0, 0x04, 0xce, 0xbc, 0x2b, 0xf0, 0xbe, 0xcd, 0x44, 0x74, 0x1e, 0x1f, 0x63, 0xf9,
/* (2^434)P */ 0xe1, 0x3f, 0x95, 0x94, 0xb2, 0xb6, 0x31, 0xa9, 0x1b, 0xdb, 0xfd, 0x0e, 0xdb, 0xdd, 0x1a, 0x22, 0x78, 0x60, 0x9f, 0x75, 0x5f, 0x93, 0x06, 0x0c, 0xd8, 0xbb, 0xa2, 0x85, 0x2b, 0x5e, 0xc0, 0x9b, 0xa8, 0x5d, 0xaf, 0x93, 0x91, 0x91, 0x47, 0x41, 0x1a, 0xfc, 0xb4, 0x51, 0x85, 0xad, 0x69, 0x4d, 0x73, 0x69, 0xd5, 0x4e, 0x82, 0xfb, 0x66, 0xcb,
/* (2^435)P */ 0x7c, 0xbe, 0xc7, 0x51, 0xc4, 0x74, 0x6e, 0xab, 0xfd, 0x41, 0x4f, 0x76, 0x4f, 0x24, 0x03, 0xd6, 0x2a, 0xb7, 0x42, 0xb4, 0xda, 0x41, 0x2c, 0x82, 0x48, 0x4c, 0x7f, 0x6f, 0x25, 0x5d, 0x36, 0xd4, 0x69, 0xf5, 0xef, 0x02, 0x81, 0xea, 0x6f, 0x19, 0x69, 0xe8, 0x6f, 0x5b, 0x2f, 0x14, 0x0e, 0x6f, 0x89, 0xb4, 0xb5, 0xd8, 0xae, 0xef, 0x7b, 0x87,
/* (2^436)P */ 0xe9, 0x91, 0xa0, 0x8b, 0xc9, 0xe0, 0x01, 0x90, 0x37, 0xc1, 0x6f, 0xdc, 0x5e, 0xf7, 0xbf, 0x43, 0x00, 0xaa, 0x10, 0x76, 0x76, 0x18, 0x6e, 0x19, 0x1e, 0x94, 0x50, 0x11, 0x0a, 0xd1, 0xe2, 0xdb, 0x08, 0x21, 0xa0, 0x1f, 0xdb, 0x54, 0xfe, 0xea, 0x6e, 0xa3, 0x68, 0x56, 0x87, 0x0b, 0x22, 0x4e, 0x66, 0xf3, 0x82, 0x82, 0x00, 0xcd, 0xd4, 0x12,
/* (2^437)P */ 0x25, 0x8e, 0x24, 0x77, 0x64, 0x4c, 0xe0, 0xf8, 0x18, 0xc0, 0xdc, 0xc7, 0x1b, 0x35, 0x65, 0xde, 0x67, 0x41, 0x5e, 0x6f, 0x90, 0x82, 0xa7, 0x2e, 0x6d, 0xf1, 0x47, 0xb4, 0x92, 0x9c, 0xfd, 0x6a, 0x9a, 0x41, 0x36, 0x20, 0x24, 0x58, 0xc3, 0x59, 0x07, 0x9a, 0xfa, 0x9f, 0x03, 0xcb, 0xc7, 0x69, 0x37, 0x60, 0xe1, 0xab, 0x13, 0x72, 0xee, 0xa2,
/* (2^438)P */ 0x74, 0x78, 0xfb, 0x13, 0xcb, 0x8e, 0x37, 0x1a, 0xf6, 0x1d, 0x17, 0x83, 0x06, 0xd4, 0x27, 0x06, 0x21, 0xe8, 0xda, 0xdf, 0x6b, 0xf3, 0x83, 0x6b, 0x34, 0x8a, 0x8c, 0xee, 0x01, 0x05, 0x5b, 0xed, 0xd3, 0x1b, 0xc9, 0x64, 0x83, 0xc9, 0x49, 0xc2, 0x57, 0x1b, 0xdd, 0xcf, 0xf1, 0x9d, 0x63, 0xee, 0x1c, 0x0d, 0xa0, 0x0a, 0x73, 0x1f, 0x5b, 0x32,
/* (2^439)P */ 0x29, 0xce, 0x1e, 0xc0, 0x6a, 0xf5, 0xeb, 0x99, 0x5a, 0x39, 0x23, 0xe9, 0xdd, 0xac, 0x44, 0x88, 0xbc, 0x80, 0x22, 0xde, 0x2c, 0xcb, 0xa8, 0x3b, 0xff, 0xf7, 0x6f, 0xc7, 0x71, 0x72, 0xa8, 0xa3, 0xf6, 0x4d, 0xc6, 0x75, 0xda, 0x80, 0xdc, 0xd9, 0x30, 0xd9, 0x07, 0x50, 0x5a, 0x54, 0x7d, 0xda, 0x39, 0x6f, 0x78, 0x94, 0xbf, 0x25, 0x98, 0xdc,
/* (2^440)P */ 0x01, 0x26, 0x62, 0x44, 0xfb, 0x0f, 0x11, 0x72, 0x73, 0x0a, 0x16, 0xc7, 0x16, 0x9c, 0x9b, 0x37, 0xd8, 0xff, 0x4f, 0xfe, 0x57, 0xdb, 0xae, 0xef, 0x7d, 0x94, 0x30, 0x04, 0x70, 0x83, 0xde, 0x3c, 0xd4, 0xb5, 0x70, 0xda, 0xa7, 0x55, 0xc8, 0x19, 0xe1, 0x36, 0x15, 0x61, 0xe7, 0x3b, 0x7d, 0x85, 0xbb, 0xf3, 0x42, 0x5a, 0x94, 0xf4, 0x53, 0x2a,
/* (2^441)P */ 0x14, 0x60, 0xa6, 0x0b, 0x83, 0xe1, 0x23, 0x77, 0xc0, 0xce, 0x50, 0xed, 0x35, 0x8d, 0x98, 0x99, 0x7d, 0xf5, 0x8d, 0xce, 0x94, 0x25, 0xc8, 0x0f, 0x6d, 0xfa, 0x4a, 0xa4, 0x3a, 0x1f, 0x66, 0xfb, 0x5a, 0x64, 0xaf, 0x8b, 0x54, 0x54, 0x44, 0x3f, 0x5b, 0x88, 0x61, 0xe4, 0x48, 0x45, 0x26, 0x20, 0xbe, 0x0d, 0x06, 0xbb, 0x65, 0x59, 0xe1, 0x36,
/* (2^442)P */ 0xb7, 0x98, 0xce, 0xa3, 0xe3, 0xee, 0x11, 0x1b, 0x9e, 0x24, 0x59, 0x75, 0x31, 0x37, 0x44, 0x6f, 0x6b, 0x9e, 0xec, 0xb7, 0x44, 0x01, 0x7e, 0xab, 0xbb, 0x69, 0x5d, 0x11, 0xb0, 0x30, 0x64, 0xea, 0x91, 0xb4, 0x7a, 0x8c, 0x02, 0x4c, 0xb9, 0x10, 0xa7, 0xc7, 0x79, 0xe6, 0xdc, 0x77, 0xe3, 0xc8, 0xef, 0x3e, 0xf9, 0x38, 0x81, 0xce, 0x9a, 0xb2,
/* (2^443)P */ 0x91, 0x12, 0x76, 0xd0, 0x10, 0xb4, 0xaf, 0xe1, 0x89, 0x3a, 0x93, 0x6b, 0x5c, 0x19, 0x5f, 0x24, 0xed, 0x04, 0x92, 0xc7, 0xf0, 0x00, 0x08, 0xc1, 0x92, 0xff, 0x90, 0xdb, 0xb2, 0xbf, 0xdf, 0x49, 0xcd, 0xbd, 0x5c, 0x6e, 0xbf, 0x16, 0xbb, 0x61, 0xf9, 0x20, 0x33, 0x35, 0x93, 0x11, 0xbc, 0x59, 0x69, 0xce, 0x18, 0x9f, 0xf8, 0x7b, 0xa1, 0x6e,
/* (2^444)P */ 0xa1, 0xf4, 0xaf, 0xad, 0xf8, 0xe6, 0x99, 0xd2, 0xa1, 0x4d, 0xde, 0x56, 0xc9, 0x7b, 0x0b, 0x11, 0x3e, 0xbf, 0x89, 0x1a, 0x9a, 0x90, 0xe5, 0xe2, 0xa6, 0x37, 0x88, 0xa1, 0x68, 0x59, 0xae, 0x8c, 0xec, 0x02, 0x14, 0x8d, 0xb7, 0x2e, 0x25, 0x75, 0x7f, 0x76, 0x1a, 0xd3, 0x4d, 0xad, 0x8a, 0x00, 0x6c, 0x96, 0x49, 0xa4, 0xc3, 0x2e, 0x5c, 0x7b,
/* (2^445)P */ 0x26, 0x53, 0xf7, 0xda, 0xa8, 0x01, 0x14, 0xb1, 0x63, 0xe3, 0xc3, 0x89, 0x88, 0xb0, 0x85, 0x40, 0x2b, 0x26, 0x9a, 0x10, 0x1a, 0x70, 0x33, 0xf4, 0x50, 0x9d, 0x4d, 0xd8, 0x64, 0xc6, 0x0f, 0xe1, 0x17, 0xc8, 0x10, 0x4b, 0xfc, 0xa0, 0xc9, 0xba, 0x2c, 0x98, 0x09, 0xf5, 0x84, 0xb6, 0x7c, 0x4e, 0xa3, 0xe3, 0x81, 0x1b, 0x32, 0x60, 0x02, 0xdd,
/* (2^446)P */ 0xa3, 0xe5, 0x86, 0xd4, 0x43, 0xa8, 0xd1, 0x98, 0x9d, 0x9d, 0xdb, 0x04, 0xcf, 0x6e, 0x35, 0x05, 0x30, 0x53, 0x3b, 0xbc, 0x90, 0x00, 0x4a, 0xc5, 0x40, 0x2a, 0x0f, 0xde, 0x1a, 0xd7, 0x36, 0x27, 0x44, 0x62, 0xa6, 0xac, 0x9d, 0xd2, 0x70, 0x69, 0x14, 0x39, 0x9b, 0xd1, 0xc3, 0x0a, 0x3a, 0x82, 0x0e, 0xf1, 0x94, 0xd7, 0x42, 0x94, 0xd5, 0x7d,
/* (2^447)P */ 0x04, 0xc0, 0x6e, 0x12, 0x90, 0x70, 0xf9, 0xdf, 0xf7, 0xc9, 0x86, 0xc0, 0xe6, 0x92, 0x8b, 0x0a, 0xa1, 0xc1, 0x3b, 0xcc, 0x33, 0xb7, 0xf0, 0xeb, 0x51, 0x50, 0x80, 0x20, 0x69, 0x1c, 0x4f, 0x89, 0x05, 0x1e, 0xe4, 0x7a, 0x0a, 0xc2, 0xf0, 0xf5, 0x78, 0x91, 0x76, 0x34, 0x45, 0xdc, 0x24, 0x53, 0x24, 0x98, 0xe2, 0x73, 0x6f, 0xe6, 0x46, 0x67,
}

View File

@ -0,0 +1,71 @@
package goldilocks
import fp "github.com/cloudflare/circl/math/fp448"
var (
// genX is the x-coordinate of the generator of Goldilocks curve.
genX = fp.Elt{
0x5e, 0xc0, 0x0c, 0xc7, 0x2b, 0xa8, 0x26, 0x26,
0x8e, 0x93, 0x00, 0x8b, 0xe1, 0x80, 0x3b, 0x43,
0x11, 0x65, 0xb6, 0x2a, 0xf7, 0x1a, 0xae, 0x12,
0x64, 0xa4, 0xd3, 0xa3, 0x24, 0xe3, 0x6d, 0xea,
0x67, 0x17, 0x0f, 0x47, 0x70, 0x65, 0x14, 0x9e,
0xda, 0x36, 0xbf, 0x22, 0xa6, 0x15, 0x1d, 0x22,
0xed, 0x0d, 0xed, 0x6b, 0xc6, 0x70, 0x19, 0x4f,
}
// genY is the y-coordinate of the generator of Goldilocks curve.
genY = fp.Elt{
0x14, 0xfa, 0x30, 0xf2, 0x5b, 0x79, 0x08, 0x98,
0xad, 0xc8, 0xd7, 0x4e, 0x2c, 0x13, 0xbd, 0xfd,
0xc4, 0x39, 0x7c, 0xe6, 0x1c, 0xff, 0xd3, 0x3a,
0xd7, 0xc2, 0xa0, 0x05, 0x1e, 0x9c, 0x78, 0x87,
0x40, 0x98, 0xa3, 0x6c, 0x73, 0x73, 0xea, 0x4b,
0x62, 0xc7, 0xc9, 0x56, 0x37, 0x20, 0x76, 0x88,
0x24, 0xbc, 0xb6, 0x6e, 0x71, 0x46, 0x3f, 0x69,
}
// paramD is -39081 in Fp.
paramD = fp.Elt{
0x56, 0x67, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
}
// order is 2^446-0x8335dc163bb124b65129c96fde933d8d723a70aadc873d6d54a7bb0d,
// which is the number of points in the prime subgroup.
order = Scalar{
0xf3, 0x44, 0x58, 0xab, 0x92, 0xc2, 0x78, 0x23,
0x55, 0x8f, 0xc5, 0x8d, 0x72, 0xc2, 0x6c, 0x21,
0x90, 0x36, 0xd6, 0xae, 0x49, 0xdb, 0x4e, 0xc4,
0xe9, 0x23, 0xca, 0x7c, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x3f,
}
// residue448 is 2^448 mod order.
residue448 = [4]uint64{
0x721cf5b5529eec34, 0x7a4cf635c8e9c2ab, 0xeec492d944a725bf, 0x20cd77058,
}
// invFour is 1/4 mod order.
invFour = Scalar{
0x3d, 0x11, 0xd6, 0xaa, 0xa4, 0x30, 0xde, 0x48,
0xd5, 0x63, 0x71, 0xa3, 0x9c, 0x30, 0x5b, 0x08,
0xa4, 0x8d, 0xb5, 0x6b, 0xd2, 0xb6, 0x13, 0x71,
0xfa, 0x88, 0x32, 0xdf, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x0f,
}
// paramDTwist is -39082 in Fp. The D parameter of the twist curve.
paramDTwist = fp.Elt{
0x55, 0x67, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
}
)

View File

@ -0,0 +1,80 @@
// Package goldilocks provides elliptic curve operations over the goldilocks curve.
package goldilocks
import fp "github.com/cloudflare/circl/math/fp448"
// Curve is the Goldilocks curve x^2+y^2=z^2-39081x^2y^2.
type Curve struct{}
// Identity returns the identity point.
func (Curve) Identity() *Point {
return &Point{
y: fp.One(),
z: fp.One(),
}
}
// IsOnCurve returns true if the point lies on the curve.
func (Curve) IsOnCurve(P *Point) bool {
x2, y2, t, t2, z2 := &fp.Elt{}, &fp.Elt{}, &fp.Elt{}, &fp.Elt{}, &fp.Elt{}
rhs, lhs := &fp.Elt{}, &fp.Elt{}
fp.Mul(t, &P.ta, &P.tb) // t = ta*tb
fp.Sqr(x2, &P.x) // x^2
fp.Sqr(y2, &P.y) // y^2
fp.Sqr(z2, &P.z) // z^2
fp.Sqr(t2, t) // t^2
fp.Add(lhs, x2, y2) // x^2 + y^2
fp.Mul(rhs, t2, &paramD) // dt^2
fp.Add(rhs, rhs, z2) // z^2 + dt^2
fp.Sub(lhs, lhs, rhs) // x^2 + y^2 - (z^2 + dt^2)
eq0 := fp.IsZero(lhs)
fp.Mul(lhs, &P.x, &P.y) // xy
fp.Mul(rhs, t, &P.z) // tz
fp.Sub(lhs, lhs, rhs) // xy - tz
eq1 := fp.IsZero(lhs)
return eq0 && eq1
}
// Generator returns the generator point.
func (Curve) Generator() *Point {
return &Point{
x: genX,
y: genY,
z: fp.One(),
ta: genX,
tb: genY,
}
}
// Order returns the number of points in the prime subgroup.
func (Curve) Order() Scalar { return order }
// Double returns 2P.
func (Curve) Double(P *Point) *Point { R := *P; R.Double(); return &R }
// Add returns P+Q.
func (Curve) Add(P, Q *Point) *Point { R := *P; R.Add(Q); return &R }
// ScalarMult returns kP. This function runs in constant time.
func (e Curve) ScalarMult(k *Scalar, P *Point) *Point {
k4 := &Scalar{}
k4.divBy4(k)
return e.pull(twistCurve{}.ScalarMult(k4, e.push(P)))
}
// ScalarBaseMult returns kG where G is the generator point. This function runs in constant time.
func (e Curve) ScalarBaseMult(k *Scalar) *Point {
k4 := &Scalar{}
k4.divBy4(k)
return e.pull(twistCurve{}.ScalarBaseMult(k4))
}
// CombinedMult returns mG+nP, where G is the generator point. This function is non-constant time.
func (e Curve) CombinedMult(m, n *Scalar, P *Point) *Point {
m4 := &Scalar{}
n4 := &Scalar{}
m4.divBy4(m)
n4.divBy4(n)
return e.pull(twistCurve{}.CombinedMult(m4, n4, twistCurve{}.pull(P)))
}

View File

@ -0,0 +1,52 @@
package goldilocks
import fp "github.com/cloudflare/circl/math/fp448"
func (Curve) pull(P *twistPoint) *Point { return twistCurve{}.push(P) }
func (twistCurve) pull(P *Point) *twistPoint { return Curve{}.push(P) }
// push sends a point on the Goldilocks curve to a point on the twist curve.
func (Curve) push(P *Point) *twistPoint {
Q := &twistPoint{}
Px, Py, Pz := &P.x, &P.y, &P.z
a, b, c, d, e, f, g, h := &Q.x, &Q.y, &Q.z, &fp.Elt{}, &Q.ta, &Q.x, &Q.y, &Q.tb
fp.Add(e, Px, Py) // x+y
fp.Sqr(a, Px) // A = x^2
fp.Sqr(b, Py) // B = y^2
fp.Sqr(c, Pz) // z^2
fp.Add(c, c, c) // C = 2*z^2
*d = *a // D = A
fp.Sqr(e, e) // (x+y)^2
fp.Sub(e, e, a) // (x+y)^2-A
fp.Sub(e, e, b) // E = (x+y)^2-A-B
fp.Add(h, b, d) // H = B+D
fp.Sub(g, b, d) // G = B-D
fp.Sub(f, c, h) // F = C-H
fp.Mul(&Q.z, f, g) // Z = F * G
fp.Mul(&Q.x, e, f) // X = E * F
fp.Mul(&Q.y, g, h) // Y = G * H, // T = E * H
return Q
}
// push sends a point on the twist curve to a point on the Goldilocks curve.
func (twistCurve) push(P *twistPoint) *Point {
Q := &Point{}
Px, Py, Pz := &P.x, &P.y, &P.z
a, b, c, d, e, f, g, h := &Q.x, &Q.y, &Q.z, &fp.Elt{}, &Q.ta, &Q.x, &Q.y, &Q.tb
fp.Add(e, Px, Py) // x+y
fp.Sqr(a, Px) // A = x^2
fp.Sqr(b, Py) // B = y^2
fp.Sqr(c, Pz) // z^2
fp.Add(c, c, c) // C = 2*z^2
fp.Neg(d, a) // D = -A
fp.Sqr(e, e) // (x+y)^2
fp.Sub(e, e, a) // (x+y)^2-A
fp.Sub(e, e, b) // E = (x+y)^2-A-B
fp.Add(h, b, d) // H = B+D
fp.Sub(g, b, d) // G = B-D
fp.Sub(f, c, h) // F = C-H
fp.Mul(&Q.z, f, g) // Z = F * G
fp.Mul(&Q.x, e, f) // X = E * F
fp.Mul(&Q.y, g, h) // Y = G * H, // T = E * H
return Q
}

View File

@ -0,0 +1,171 @@
package goldilocks
import (
"errors"
"fmt"
fp "github.com/cloudflare/circl/math/fp448"
)
// Point is a point on the Goldilocks Curve.
type Point struct{ x, y, z, ta, tb fp.Elt }
func (P Point) String() string {
return fmt.Sprintf("x: %v\ny: %v\nz: %v\nta: %v\ntb: %v", P.x, P.y, P.z, P.ta, P.tb)
}
// FromAffine creates a point from affine coordinates.
func FromAffine(x, y *fp.Elt) (*Point, error) {
P := &Point{
x: *x,
y: *y,
z: fp.One(),
ta: *x,
tb: *y,
}
if !(Curve{}).IsOnCurve(P) {
return P, errors.New("point not on curve")
}
return P, nil
}
// isLessThan returns true if 0 <= x < y, and assumes that slices are of the
// same length and are interpreted in little-endian order.
func isLessThan(x, y []byte) bool {
i := len(x) - 1
for i > 0 && x[i] == y[i] {
i--
}
return x[i] < y[i]
}
// FromBytes returns a point from the input buffer.
func FromBytes(in []byte) (*Point, error) {
if len(in) < fp.Size+1 {
return nil, errors.New("wrong input length")
}
err := errors.New("invalid decoding")
P := &Point{}
signX := in[fp.Size] >> 7
copy(P.y[:], in[:fp.Size])
p := fp.P()
if !isLessThan(P.y[:], p[:]) {
return nil, err
}
u, v := &fp.Elt{}, &fp.Elt{}
one := fp.One()
fp.Sqr(u, &P.y) // u = y^2
fp.Mul(v, u, &paramD) // v = dy^2
fp.Sub(u, u, &one) // u = y^2-1
fp.Sub(v, v, &one) // v = dy^2-1
isQR := fp.InvSqrt(&P.x, u, v) // x = sqrt(u/v)
if !isQR {
return nil, err
}
fp.Modp(&P.x) // x = x mod p
if fp.IsZero(&P.x) && signX == 1 {
return nil, err
}
if signX != (P.x[0] & 1) {
fp.Neg(&P.x, &P.x)
}
P.ta = P.x
P.tb = P.y
P.z = fp.One()
return P, nil
}
// IsIdentity returns true is P is the identity Point.
func (P *Point) IsIdentity() bool {
return fp.IsZero(&P.x) && !fp.IsZero(&P.y) && !fp.IsZero(&P.z) && P.y == P.z
}
// IsEqual returns true if P is equivalent to Q.
func (P *Point) IsEqual(Q *Point) bool {
l, r := &fp.Elt{}, &fp.Elt{}
fp.Mul(l, &P.x, &Q.z)
fp.Mul(r, &Q.x, &P.z)
fp.Sub(l, l, r)
b := fp.IsZero(l)
fp.Mul(l, &P.y, &Q.z)
fp.Mul(r, &Q.y, &P.z)
fp.Sub(l, l, r)
b = b && fp.IsZero(l)
fp.Mul(l, &P.ta, &P.tb)
fp.Mul(l, l, &Q.z)
fp.Mul(r, &Q.ta, &Q.tb)
fp.Mul(r, r, &P.z)
fp.Sub(l, l, r)
b = b && fp.IsZero(l)
return b
}
// Neg obtains the inverse of the Point.
func (P *Point) Neg() { fp.Neg(&P.x, &P.x); fp.Neg(&P.ta, &P.ta) }
// ToAffine returns the x,y affine coordinates of P.
func (P *Point) ToAffine() (x, y fp.Elt) {
fp.Inv(&P.z, &P.z) // 1/z
fp.Mul(&P.x, &P.x, &P.z) // x/z
fp.Mul(&P.y, &P.y, &P.z) // y/z
fp.Modp(&P.x)
fp.Modp(&P.y)
fp.SetOne(&P.z)
P.ta = P.x
P.tb = P.y
return P.x, P.y
}
// ToBytes stores P into a slice of bytes.
func (P *Point) ToBytes(out []byte) error {
if len(out) < fp.Size+1 {
return errors.New("invalid decoding")
}
x, y := P.ToAffine()
out[fp.Size] = (x[0] & 1) << 7
return fp.ToBytes(out[:fp.Size], &y)
}
// MarshalBinary encodes the receiver into a binary form and returns the result.
func (P *Point) MarshalBinary() (data []byte, err error) {
data = make([]byte, fp.Size+1)
err = P.ToBytes(data[:fp.Size+1])
return data, err
}
// UnmarshalBinary must be able to decode the form generated by MarshalBinary.
func (P *Point) UnmarshalBinary(data []byte) error { Q, err := FromBytes(data); *P = *Q; return err }
// Double sets P = 2Q.
func (P *Point) Double() { P.Add(P) }
// Add sets P =P+Q..
func (P *Point) Add(Q *Point) {
// This is formula (5) from "Twisted Edwards Curves Revisited" by
// Hisil H., Wong K.KH., Carter G., Dawson E. (2008)
// https://doi.org/10.1007/978-3-540-89255-7_20
x1, y1, z1, ta1, tb1 := &P.x, &P.y, &P.z, &P.ta, &P.tb
x2, y2, z2, ta2, tb2 := &Q.x, &Q.y, &Q.z, &Q.ta, &Q.tb
x3, y3, z3, E, H := &P.x, &P.y, &P.z, &P.ta, &P.tb
A, B, C, D := &fp.Elt{}, &fp.Elt{}, &fp.Elt{}, &fp.Elt{}
t1, t2, F, G := C, D, &fp.Elt{}, &fp.Elt{}
fp.Mul(t1, ta1, tb1) // t1 = ta1*tb1
fp.Mul(t2, ta2, tb2) // t2 = ta2*tb2
fp.Mul(A, x1, x2) // A = x1*x2
fp.Mul(B, y1, y2) // B = y1*y2
fp.Mul(C, t1, t2) // t1*t2
fp.Mul(C, C, &paramD) // C = d*t1*t2
fp.Mul(D, z1, z2) // D = z1*z2
fp.Add(F, x1, y1) // x1+y1
fp.Add(E, x2, y2) // x2+y2
fp.Mul(E, E, F) // (x1+y1)*(x2+y2)
fp.Sub(E, E, A) // (x1+y1)*(x2+y2)-A
fp.Sub(E, E, B) // E = (x1+y1)*(x2+y2)-A-B
fp.Sub(F, D, C) // F = D-C
fp.Add(G, D, C) // G = D+C
fp.Sub(H, B, A) // H = B-A
fp.Mul(z3, F, G) // Z = F * G
fp.Mul(x3, E, F) // X = E * F
fp.Mul(y3, G, H) // Y = G * H, T = E * H
}

View File

@ -0,0 +1,203 @@
package goldilocks
import (
"encoding/binary"
"math/bits"
)
// ScalarSize is the size (in bytes) of scalars.
const ScalarSize = 56 // 448 / 8
// _N is the number of 64-bit words to store scalars.
const _N = 7 // 448 / 64
// Scalar represents a positive integer stored in little-endian order.
type Scalar [ScalarSize]byte
type scalar64 [_N]uint64
func (z *scalar64) fromScalar(x *Scalar) {
z[0] = binary.LittleEndian.Uint64(x[0*8 : 1*8])
z[1] = binary.LittleEndian.Uint64(x[1*8 : 2*8])
z[2] = binary.LittleEndian.Uint64(x[2*8 : 3*8])
z[3] = binary.LittleEndian.Uint64(x[3*8 : 4*8])
z[4] = binary.LittleEndian.Uint64(x[4*8 : 5*8])
z[5] = binary.LittleEndian.Uint64(x[5*8 : 6*8])
z[6] = binary.LittleEndian.Uint64(x[6*8 : 7*8])
}
func (z *scalar64) toScalar(x *Scalar) {
binary.LittleEndian.PutUint64(x[0*8:1*8], z[0])
binary.LittleEndian.PutUint64(x[1*8:2*8], z[1])
binary.LittleEndian.PutUint64(x[2*8:3*8], z[2])
binary.LittleEndian.PutUint64(x[3*8:4*8], z[3])
binary.LittleEndian.PutUint64(x[4*8:5*8], z[4])
binary.LittleEndian.PutUint64(x[5*8:6*8], z[5])
binary.LittleEndian.PutUint64(x[6*8:7*8], z[6])
}
// add calculates z = x + y. Assumes len(z) > max(len(x),len(y)).
func add(z, x, y []uint64) uint64 {
l, L, zz := len(x), len(y), y
if l > L {
l, L, zz = L, l, x
}
c := uint64(0)
for i := 0; i < l; i++ {
z[i], c = bits.Add64(x[i], y[i], c)
}
for i := l; i < L; i++ {
z[i], c = bits.Add64(zz[i], 0, c)
}
return c
}
// sub calculates z = x - y. Assumes len(z) > max(len(x),len(y)).
func sub(z, x, y []uint64) uint64 {
l, L, zz := len(x), len(y), y
if l > L {
l, L, zz = L, l, x
}
c := uint64(0)
for i := 0; i < l; i++ {
z[i], c = bits.Sub64(x[i], y[i], c)
}
for i := l; i < L; i++ {
z[i], c = bits.Sub64(zz[i], 0, c)
}
return c
}
// mulWord calculates z = x * y. Assumes len(z) >= len(x)+1.
func mulWord(z, x []uint64, y uint64) {
for i := range z {
z[i] = 0
}
carry := uint64(0)
for i := range x {
hi, lo := bits.Mul64(x[i], y)
lo, cc := bits.Add64(lo, z[i], 0)
hi, _ = bits.Add64(hi, 0, cc)
z[i], cc = bits.Add64(lo, carry, 0)
carry, _ = bits.Add64(hi, 0, cc)
}
z[len(x)] = carry
}
// Cmov moves x into z if b=1.
func (z *scalar64) Cmov(b uint64, x *scalar64) {
m := uint64(0) - b
for i := range z {
z[i] = (z[i] &^ m) | (x[i] & m)
}
}
// leftShift shifts to the left the words of z returning the more significant word.
func (z *scalar64) leftShift(low uint64) uint64 {
high := z[_N-1]
for i := _N - 1; i > 0; i-- {
z[i] = z[i-1]
}
z[0] = low
return high
}
// reduceOneWord calculates z = z + 2^448*x such that the result fits in a Scalar.
func (z *scalar64) reduceOneWord(x uint64) {
prod := (&scalar64{})[:]
mulWord(prod, residue448[:], x)
cc := add(z[:], z[:], prod)
mulWord(prod, residue448[:], cc)
add(z[:], z[:], prod)
}
// modOrder reduces z mod order.
func (z *scalar64) modOrder() {
var o64, x scalar64
o64.fromScalar(&order)
// Performs: while (z >= order) { z = z-order }
// At most 8 (eight) iterations reduce 3 bits by subtracting.
for i := 0; i < 8; i++ {
c := sub(x[:], z[:], o64[:]) // (c || x) = z-order
z.Cmov(1-c, &x) // if c != 0 { z = x }
}
}
// FromBytes stores z = x mod order, where x is a number stored in little-endian order.
func (z *Scalar) FromBytes(x []byte) {
n := len(x)
nCeil := (n + 7) >> 3
for i := range z {
z[i] = 0
}
if nCeil < _N {
copy(z[:], x)
return
}
copy(z[:], x[8*(nCeil-_N):])
var z64 scalar64
z64.fromScalar(z)
for i := nCeil - _N - 1; i >= 0; i-- {
low := binary.LittleEndian.Uint64(x[8*i:])
high := z64.leftShift(low)
z64.reduceOneWord(high)
}
z64.modOrder()
z64.toScalar(z)
}
// divBy4 calculates z = x/4 mod order.
func (z *Scalar) divBy4(x *Scalar) { z.Mul(x, &invFour) }
// Red reduces z mod order.
func (z *Scalar) Red() { var t scalar64; t.fromScalar(z); t.modOrder(); t.toScalar(z) }
// Neg calculates z = -z mod order.
func (z *Scalar) Neg() { z.Sub(&order, z) }
// Add calculates z = x+y mod order.
func (z *Scalar) Add(x, y *Scalar) {
var z64, x64, y64, t scalar64
x64.fromScalar(x)
y64.fromScalar(y)
c := add(z64[:], x64[:], y64[:])
add(t[:], z64[:], residue448[:])
z64.Cmov(c, &t)
z64.modOrder()
z64.toScalar(z)
}
// Sub calculates z = x-y mod order.
func (z *Scalar) Sub(x, y *Scalar) {
var z64, x64, y64, t scalar64
x64.fromScalar(x)
y64.fromScalar(y)
c := sub(z64[:], x64[:], y64[:])
sub(t[:], z64[:], residue448[:])
z64.Cmov(c, &t)
z64.modOrder()
z64.toScalar(z)
}
// Mul calculates z = x*y mod order.
func (z *Scalar) Mul(x, y *Scalar) {
var z64, x64, y64 scalar64
prod := (&[_N + 1]uint64{})[:]
x64.fromScalar(x)
y64.fromScalar(y)
mulWord(prod, x64[:], y64[_N-1])
copy(z64[:], prod[:_N])
z64.reduceOneWord(prod[_N])
for i := _N - 2; i >= 0; i-- {
h := z64.leftShift(0)
z64.reduceOneWord(h)
mulWord(prod, x64[:], y64[i])
c := add(z64[:], z64[:], prod[:_N])
z64.reduceOneWord(prod[_N] + c)
}
z64.modOrder()
z64.toScalar(z)
}
// IsZero returns true if z=0.
func (z *Scalar) IsZero() bool { z.Red(); return *z == Scalar{} }

View File

@ -0,0 +1,138 @@
package goldilocks
import (
"crypto/subtle"
"math/bits"
"github.com/cloudflare/circl/internal/conv"
"github.com/cloudflare/circl/math"
fp "github.com/cloudflare/circl/math/fp448"
)
// twistCurve is -x^2+y^2=1-39082x^2y^2 and is 4-isogeneous to Goldilocks.
type twistCurve struct{}
// Identity returns the identity point.
func (twistCurve) Identity() *twistPoint {
return &twistPoint{
y: fp.One(),
z: fp.One(),
}
}
// subYDiv16 update x = (x - y) / 16.
func subYDiv16(x *scalar64, y int64) {
s := uint64(y >> 63)
x0, b0 := bits.Sub64((*x)[0], uint64(y), 0)
x1, b1 := bits.Sub64((*x)[1], s, b0)
x2, b2 := bits.Sub64((*x)[2], s, b1)
x3, b3 := bits.Sub64((*x)[3], s, b2)
x4, b4 := bits.Sub64((*x)[4], s, b3)
x5, b5 := bits.Sub64((*x)[5], s, b4)
x6, _ := bits.Sub64((*x)[6], s, b5)
x[0] = (x0 >> 4) | (x1 << 60)
x[1] = (x1 >> 4) | (x2 << 60)
x[2] = (x2 >> 4) | (x3 << 60)
x[3] = (x3 >> 4) | (x4 << 60)
x[4] = (x4 >> 4) | (x5 << 60)
x[5] = (x5 >> 4) | (x6 << 60)
x[6] = (x6 >> 4)
}
func recodeScalar(d *[113]int8, k *Scalar) {
var k64 scalar64
k64.fromScalar(k)
for i := 0; i < 112; i++ {
d[i] = int8((k64[0] & 0x1f) - 16)
subYDiv16(&k64, int64(d[i]))
}
d[112] = int8(k64[0])
}
// ScalarMult returns kP.
func (e twistCurve) ScalarMult(k *Scalar, P *twistPoint) *twistPoint {
var TabP [8]preTwistPointProy
var S preTwistPointProy
var d [113]int8
var isZero int
if k.IsZero() {
isZero = 1
}
subtle.ConstantTimeCopy(isZero, k[:], order[:])
minusK := *k
isEven := 1 - int(k[0]&0x1)
minusK.Neg()
subtle.ConstantTimeCopy(isEven, k[:], minusK[:])
recodeScalar(&d, k)
P.oddMultiples(TabP[:])
Q := e.Identity()
for i := 112; i >= 0; i-- {
Q.Double()
Q.Double()
Q.Double()
Q.Double()
mask := d[i] >> 7
absDi := (d[i] + mask) ^ mask
inx := int32((absDi - 1) >> 1)
sig := int((d[i] >> 7) & 0x1)
for j := range TabP {
S.cmov(&TabP[j], uint(subtle.ConstantTimeEq(inx, int32(j))))
}
S.cneg(sig)
Q.mixAdd(&S)
}
Q.cneg(uint(isEven))
return Q
}
const (
omegaFix = 7
omegaVar = 5
)
// CombinedMult returns mG+nP.
func (e twistCurve) CombinedMult(m, n *Scalar, P *twistPoint) *twistPoint {
nafFix := math.OmegaNAF(conv.BytesLe2BigInt(m[:]), omegaFix)
nafVar := math.OmegaNAF(conv.BytesLe2BigInt(n[:]), omegaVar)
if len(nafFix) > len(nafVar) {
nafVar = append(nafVar, make([]int32, len(nafFix)-len(nafVar))...)
} else if len(nafFix) < len(nafVar) {
nafFix = append(nafFix, make([]int32, len(nafVar)-len(nafFix))...)
}
var TabQ [1 << (omegaVar - 2)]preTwistPointProy
P.oddMultiples(TabQ[:])
Q := e.Identity()
for i := len(nafFix) - 1; i >= 0; i-- {
Q.Double()
// Generator point
if nafFix[i] != 0 {
idxM := absolute(nafFix[i]) >> 1
R := tabVerif[idxM]
if nafFix[i] < 0 {
R.neg()
}
Q.mixAddZ1(&R)
}
// Variable input point
if nafVar[i] != 0 {
idxN := absolute(nafVar[i]) >> 1
S := TabQ[idxN]
if nafVar[i] < 0 {
S.neg()
}
Q.mixAdd(&S)
}
}
return Q
}
// absolute returns always a positive value.
func absolute(x int32) int32 {
mask := x >> 31
return (x + mask) ^ mask
}

View File

@ -0,0 +1,135 @@
package goldilocks
import (
"fmt"
fp "github.com/cloudflare/circl/math/fp448"
)
type twistPoint struct{ x, y, z, ta, tb fp.Elt }
type preTwistPointAffine struct{ addYX, subYX, dt2 fp.Elt }
type preTwistPointProy struct {
preTwistPointAffine
z2 fp.Elt
}
func (P *twistPoint) String() string {
return fmt.Sprintf("x: %v\ny: %v\nz: %v\nta: %v\ntb: %v", P.x, P.y, P.z, P.ta, P.tb)
}
// cneg conditionally negates the point if b=1.
func (P *twistPoint) cneg(b uint) {
t := &fp.Elt{}
fp.Neg(t, &P.x)
fp.Cmov(&P.x, t, b)
fp.Neg(t, &P.ta)
fp.Cmov(&P.ta, t, b)
}
// Double updates P with 2P.
func (P *twistPoint) Double() {
// This is formula (7) from "Twisted Edwards Curves Revisited" by
// Hisil H., Wong K.KH., Carter G., Dawson E. (2008)
// https://doi.org/10.1007/978-3-540-89255-7_20
Px, Py, Pz, Pta, Ptb := &P.x, &P.y, &P.z, &P.ta, &P.tb
a, b, c, e, f, g, h := Px, Py, Pz, Pta, Px, Py, Ptb
fp.Add(e, Px, Py) // x+y
fp.Sqr(a, Px) // A = x^2
fp.Sqr(b, Py) // B = y^2
fp.Sqr(c, Pz) // z^2
fp.Add(c, c, c) // C = 2*z^2
fp.Add(h, a, b) // H = A+B
fp.Sqr(e, e) // (x+y)^2
fp.Sub(e, e, h) // E = (x+y)^2-A-B
fp.Sub(g, b, a) // G = B-A
fp.Sub(f, c, g) // F = C-G
fp.Mul(Pz, f, g) // Z = F * G
fp.Mul(Px, e, f) // X = E * F
fp.Mul(Py, g, h) // Y = G * H, T = E * H
}
// mixAdd calculates P= P+Q, where Q is a precomputed point with Z_Q = 1.
func (P *twistPoint) mixAddZ1(Q *preTwistPointAffine) {
fp.Add(&P.z, &P.z, &P.z) // D = 2*z1 (z2=1)
P.coreAddition(Q)
}
// coreAddition calculates P=P+Q for curves with A=-1.
func (P *twistPoint) coreAddition(Q *preTwistPointAffine) {
// This is the formula following (5) from "Twisted Edwards Curves Revisited" by
// Hisil H., Wong K.KH., Carter G., Dawson E. (2008)
// https://doi.org/10.1007/978-3-540-89255-7_20
Px, Py, Pz, Pta, Ptb := &P.x, &P.y, &P.z, &P.ta, &P.tb
addYX2, subYX2, dt2 := &Q.addYX, &Q.subYX, &Q.dt2
a, b, c, d, e, f, g, h := Px, Py, &fp.Elt{}, Pz, Pta, Px, Py, Ptb
fp.Mul(c, Pta, Ptb) // t1 = ta*tb
fp.Sub(h, Py, Px) // y1-x1
fp.Add(b, Py, Px) // y1+x1
fp.Mul(a, h, subYX2) // A = (y1-x1)*(y2-x2)
fp.Mul(b, b, addYX2) // B = (y1+x1)*(y2+x2)
fp.Mul(c, c, dt2) // C = 2*D*t1*t2
fp.Sub(e, b, a) // E = B-A
fp.Add(h, b, a) // H = B+A
fp.Sub(f, d, c) // F = D-C
fp.Add(g, d, c) // G = D+C
fp.Mul(Pz, f, g) // Z = F * G
fp.Mul(Px, e, f) // X = E * F
fp.Mul(Py, g, h) // Y = G * H, T = E * H
}
func (P *preTwistPointAffine) neg() {
P.addYX, P.subYX = P.subYX, P.addYX
fp.Neg(&P.dt2, &P.dt2)
}
func (P *preTwistPointAffine) cneg(b int) {
t := &fp.Elt{}
fp.Cswap(&P.addYX, &P.subYX, uint(b))
fp.Neg(t, &P.dt2)
fp.Cmov(&P.dt2, t, uint(b))
}
func (P *preTwistPointAffine) cmov(Q *preTwistPointAffine, b uint) {
fp.Cmov(&P.addYX, &Q.addYX, b)
fp.Cmov(&P.subYX, &Q.subYX, b)
fp.Cmov(&P.dt2, &Q.dt2, b)
}
// mixAdd calculates P= P+Q, where Q is a precomputed point with Z_Q != 1.
func (P *twistPoint) mixAdd(Q *preTwistPointProy) {
fp.Mul(&P.z, &P.z, &Q.z2) // D = 2*z1*z2
P.coreAddition(&Q.preTwistPointAffine)
}
// oddMultiples calculates T[i] = (2*i-1)P for 0 < i < len(T).
func (P *twistPoint) oddMultiples(T []preTwistPointProy) {
if n := len(T); n > 0 {
T[0].FromTwistPoint(P)
_2P := *P
_2P.Double()
R := &preTwistPointProy{}
R.FromTwistPoint(&_2P)
for i := 1; i < n; i++ {
P.mixAdd(R)
T[i].FromTwistPoint(P)
}
}
}
// cmov conditionally moves Q into P if b=1.
func (P *preTwistPointProy) cmov(Q *preTwistPointProy, b uint) {
P.preTwistPointAffine.cmov(&Q.preTwistPointAffine, b)
fp.Cmov(&P.z2, &Q.z2, b)
}
// FromTwistPoint precomputes some coordinates of Q for missed addition.
func (P *preTwistPointProy) FromTwistPoint(Q *twistPoint) {
fp.Add(&P.addYX, &Q.y, &Q.x) // addYX = X + Y
fp.Sub(&P.subYX, &Q.y, &Q.x) // subYX = Y - X
fp.Mul(&P.dt2, &Q.ta, &Q.tb) // T = ta*tb
fp.Mul(&P.dt2, &P.dt2, &paramDTwist) // D*T
fp.Add(&P.dt2, &P.dt2, &P.dt2) // dt2 = 2*D*T
fp.Add(&P.z2, &Q.z, &Q.z) // z2 = 2*Z
}

View File

@ -0,0 +1,216 @@
package goldilocks
import fp "github.com/cloudflare/circl/math/fp448"
var tabFixMult = [fxV][fx2w1]preTwistPointAffine{
{
{
addYX: fp.Elt{0x65, 0x4a, 0xdd, 0xdf, 0xb4, 0x79, 0x60, 0xc8, 0xa1, 0x70, 0xb4, 0x3a, 0x1e, 0x0c, 0x9b, 0x19, 0xe5, 0x48, 0x3f, 0xd7, 0x44, 0x18, 0x18, 0x14, 0x14, 0x27, 0x45, 0xd0, 0x2b, 0x24, 0xd5, 0x93, 0xc3, 0x74, 0x4c, 0x50, 0x70, 0x43, 0x26, 0x05, 0x08, 0x24, 0xca, 0x78, 0x30, 0xc1, 0x06, 0x8d, 0xd4, 0x86, 0x42, 0xf0, 0x14, 0xde, 0x08, 0x05},
subYX: fp.Elt{0x64, 0x4a, 0xdd, 0xdf, 0xb4, 0x79, 0x60, 0xc8, 0xa1, 0x70, 0xb4, 0x3a, 0x1e, 0x0c, 0x9b, 0x19, 0xe5, 0x48, 0x3f, 0xd7, 0x44, 0x18, 0x18, 0x14, 0x14, 0x27, 0x45, 0xd0, 0x2d, 0x24, 0xd5, 0x93, 0xc3, 0x74, 0x4c, 0x50, 0x70, 0x43, 0x26, 0x05, 0x08, 0x24, 0xca, 0x78, 0x30, 0xc1, 0x06, 0x8d, 0xd4, 0x86, 0x42, 0xf0, 0x14, 0xde, 0x08, 0x05},
dt2: fp.Elt{0x1a, 0x33, 0xea, 0x64, 0x45, 0x1c, 0xdf, 0x17, 0x1d, 0x16, 0x34, 0x28, 0xd6, 0x61, 0x19, 0x67, 0x79, 0xb4, 0x13, 0xcf, 0x3e, 0x7c, 0x0e, 0x72, 0xda, 0xf1, 0x5f, 0xda, 0xe6, 0xcf, 0x42, 0xd3, 0xb6, 0x17, 0xc2, 0x68, 0x13, 0x2d, 0xd9, 0x60, 0x3e, 0xae, 0xf0, 0x5b, 0x96, 0xf0, 0xcd, 0xaf, 0xea, 0xb7, 0x0d, 0x59, 0x16, 0xa7, 0xff, 0x55},
},
{
addYX: fp.Elt{0xca, 0xd8, 0x7d, 0x86, 0x1a, 0xef, 0xad, 0x11, 0xe3, 0x27, 0x41, 0x7e, 0x7f, 0x3e, 0xa9, 0xd2, 0xb5, 0x4e, 0x50, 0xe0, 0x77, 0x91, 0xc2, 0x13, 0x52, 0x73, 0x41, 0x09, 0xa6, 0x57, 0x9a, 0xc8, 0xa8, 0x90, 0x9d, 0x26, 0x14, 0xbb, 0xa1, 0x2a, 0xf7, 0x45, 0x43, 0x4e, 0xea, 0x35, 0x62, 0xe1, 0x08, 0x85, 0x46, 0xb8, 0x24, 0x05, 0x2d, 0xab},
subYX: fp.Elt{0x9b, 0xe6, 0xd3, 0xe5, 0xfe, 0x50, 0x36, 0x3c, 0x3c, 0x6d, 0x74, 0x1d, 0x74, 0xc0, 0xde, 0x5b, 0x45, 0x27, 0xe5, 0x12, 0xee, 0x63, 0x35, 0x6b, 0x13, 0xe2, 0x41, 0x6b, 0x3a, 0x05, 0x2b, 0xb1, 0x89, 0x26, 0xb6, 0xc6, 0xd1, 0x84, 0xff, 0x0e, 0x9b, 0xa3, 0xfb, 0x21, 0x36, 0x6b, 0x01, 0xf7, 0x9f, 0x7c, 0xeb, 0xf5, 0x18, 0x7a, 0x2a, 0x70},
dt2: fp.Elt{0x09, 0xad, 0x99, 0x1a, 0x38, 0xd3, 0xdf, 0x22, 0x37, 0x32, 0x61, 0x8b, 0xf3, 0x19, 0x48, 0x08, 0xe8, 0x49, 0xb6, 0x4a, 0xa7, 0xed, 0xa4, 0xa2, 0xee, 0x86, 0xd7, 0x31, 0x5e, 0xce, 0x95, 0x76, 0x86, 0x42, 0x1c, 0x9d, 0x07, 0x14, 0x8c, 0x34, 0x18, 0x9c, 0x6d, 0x3a, 0xdf, 0xa9, 0xe8, 0x36, 0x7e, 0xe4, 0x95, 0xbe, 0xb5, 0x09, 0xf8, 0x9c},
},
{
addYX: fp.Elt{0x51, 0xdb, 0x49, 0xa8, 0x9f, 0xe3, 0xd7, 0xec, 0x0d, 0x0f, 0x49, 0xe8, 0xb6, 0xc5, 0x0f, 0x5a, 0x1c, 0xce, 0x54, 0x0d, 0xb1, 0x8d, 0x5b, 0xbf, 0xf4, 0xaa, 0x34, 0x77, 0xc4, 0x5d, 0x59, 0xb6, 0xc5, 0x0e, 0x5a, 0xd8, 0x5b, 0x30, 0xc2, 0x1d, 0xec, 0x85, 0x1c, 0x42, 0xbe, 0x24, 0x2e, 0x50, 0x55, 0x44, 0xb2, 0x3a, 0x01, 0xaa, 0x98, 0xfb},
subYX: fp.Elt{0xe7, 0x29, 0xb7, 0xd0, 0xaa, 0x4f, 0x32, 0x53, 0x56, 0xde, 0xbc, 0xd1, 0x92, 0x5d, 0x19, 0xbe, 0xa3, 0xe3, 0x75, 0x48, 0xe0, 0x7a, 0x1b, 0x54, 0x7a, 0xb7, 0x41, 0x77, 0x84, 0x38, 0xdd, 0x14, 0x9f, 0xca, 0x3f, 0xa3, 0xc8, 0xa7, 0x04, 0x70, 0xf1, 0x4d, 0x3d, 0xb3, 0x84, 0x79, 0xcb, 0xdb, 0xe4, 0xc5, 0x42, 0x9b, 0x57, 0x19, 0xf1, 0x2d},
dt2: fp.Elt{0x20, 0xb4, 0x94, 0x9e, 0xdf, 0x31, 0x44, 0x0b, 0xc9, 0x7b, 0x75, 0x40, 0x9d, 0xd1, 0x96, 0x39, 0x70, 0x71, 0x15, 0xc8, 0x93, 0xd5, 0xc5, 0xe5, 0xba, 0xfe, 0xee, 0x08, 0x6a, 0x98, 0x0a, 0x1b, 0xb2, 0xaa, 0x3a, 0xf4, 0xa4, 0x79, 0xf9, 0x8e, 0x4d, 0x65, 0x10, 0x9b, 0x3a, 0x6e, 0x7c, 0x87, 0x94, 0x92, 0x11, 0x65, 0xbf, 0x1a, 0x09, 0xde},
},
{
addYX: fp.Elt{0xf3, 0x84, 0x76, 0x77, 0xa5, 0x6b, 0x27, 0x3b, 0x83, 0x3d, 0xdf, 0xa0, 0xeb, 0x32, 0x6d, 0x58, 0x81, 0x57, 0x64, 0xc2, 0x21, 0x7c, 0x9b, 0xea, 0xe6, 0xb0, 0x93, 0xf9, 0xe7, 0xc3, 0xed, 0x5a, 0x8e, 0xe2, 0xb4, 0x72, 0x76, 0x66, 0x0f, 0x22, 0x29, 0x94, 0x3e, 0x63, 0x48, 0x5e, 0x80, 0xcb, 0xac, 0xfa, 0x95, 0xb6, 0x4b, 0xc4, 0x95, 0x33},
subYX: fp.Elt{0x0c, 0x55, 0xd1, 0x5e, 0x5f, 0xbf, 0xbf, 0xe2, 0x4c, 0xfc, 0x37, 0x4a, 0xc4, 0xb1, 0xf4, 0x83, 0x61, 0x93, 0x60, 0x8e, 0x9f, 0x31, 0xf0, 0xa0, 0x41, 0xff, 0x1d, 0xe2, 0x7f, 0xca, 0x40, 0xd6, 0x88, 0xe8, 0x91, 0x61, 0xe2, 0x11, 0x18, 0x83, 0xf3, 0x25, 0x2f, 0x3f, 0x49, 0x40, 0xd4, 0x83, 0xe2, 0xd7, 0x74, 0x6a, 0x16, 0x86, 0x4e, 0xab},
dt2: fp.Elt{0xdd, 0x58, 0x65, 0xd8, 0x9f, 0xdd, 0x70, 0x7f, 0x0f, 0xec, 0xbd, 0x5c, 0x5c, 0x9b, 0x7e, 0x1b, 0x9f, 0x79, 0x36, 0x1f, 0xfd, 0x79, 0x10, 0x1c, 0x52, 0xf3, 0x22, 0xa4, 0x1f, 0x71, 0x6e, 0x63, 0x14, 0xf4, 0xa7, 0x3e, 0xbe, 0xad, 0x43, 0x30, 0x38, 0x8c, 0x29, 0xc6, 0xcf, 0x50, 0x75, 0x21, 0xe5, 0x78, 0xfd, 0xb0, 0x9a, 0xc4, 0x6d, 0xd4},
},
},
{
{
addYX: fp.Elt{0x7a, 0xa1, 0x38, 0xa6, 0xfd, 0x0e, 0x96, 0xd5, 0x26, 0x76, 0x86, 0x70, 0x80, 0x30, 0xa6, 0x67, 0xeb, 0xf4, 0x39, 0xdb, 0x22, 0xf5, 0x9f, 0x98, 0xe4, 0xb5, 0x3a, 0x0c, 0x59, 0xbf, 0x85, 0xc6, 0xf0, 0x0b, 0x1c, 0x41, 0x38, 0x09, 0x01, 0xdb, 0xd6, 0x3c, 0xb7, 0xf1, 0x08, 0x6b, 0x4b, 0x9e, 0x63, 0x53, 0x83, 0xd3, 0xab, 0xa3, 0x72, 0x0d},
subYX: fp.Elt{0x84, 0x68, 0x25, 0xe8, 0xe9, 0x8f, 0x91, 0xbf, 0xf7, 0xa4, 0x30, 0xae, 0xea, 0x9f, 0xdd, 0x56, 0x64, 0x09, 0xc9, 0x54, 0x68, 0x4e, 0x33, 0xc5, 0x6f, 0x7b, 0x2d, 0x52, 0x2e, 0x42, 0xbe, 0xbe, 0xf5, 0x64, 0xbf, 0x77, 0x54, 0xdf, 0xb0, 0x10, 0xd2, 0x16, 0x5d, 0xce, 0xaf, 0x9f, 0xfb, 0xa3, 0x63, 0x50, 0xcb, 0xc0, 0xd0, 0x88, 0x44, 0xa3},
dt2: fp.Elt{0xc3, 0x8b, 0xa5, 0xf1, 0x44, 0xe4, 0x41, 0xcd, 0x75, 0xe3, 0x17, 0x69, 0x5b, 0xb9, 0xbb, 0xee, 0x82, 0xbb, 0xce, 0x57, 0xdf, 0x2a, 0x9c, 0x12, 0xab, 0x66, 0x08, 0x68, 0x05, 0x1b, 0x87, 0xee, 0x5d, 0x1e, 0x18, 0x14, 0x22, 0x4b, 0x99, 0x61, 0x75, 0x28, 0xe7, 0x65, 0x1c, 0x36, 0xb6, 0x18, 0x09, 0xa8, 0xdf, 0xef, 0x30, 0x35, 0xbc, 0x58},
},
{
addYX: fp.Elt{0xc5, 0xd3, 0x0e, 0x6f, 0xaf, 0x06, 0x69, 0xc4, 0x07, 0x9e, 0x58, 0x6e, 0x3f, 0x49, 0xd9, 0x0a, 0x3c, 0x2c, 0x37, 0xcd, 0x27, 0x4d, 0x87, 0x91, 0x7a, 0xb0, 0x28, 0xad, 0x2f, 0x68, 0x92, 0x05, 0x97, 0xf1, 0x30, 0x5f, 0x4c, 0x10, 0x20, 0x30, 0xd3, 0x08, 0x3f, 0xc1, 0xc6, 0xb7, 0xb5, 0xd1, 0x71, 0x7b, 0xa8, 0x0a, 0xd8, 0xf5, 0x17, 0xcf},
subYX: fp.Elt{0x64, 0xd4, 0x8f, 0x91, 0x40, 0xab, 0x6e, 0x1a, 0x62, 0x83, 0xdc, 0xd7, 0x30, 0x1a, 0x4a, 0x2a, 0x4c, 0x54, 0x86, 0x19, 0x81, 0x5d, 0x04, 0x52, 0xa3, 0xca, 0x82, 0x38, 0xdc, 0x1e, 0xf0, 0x7a, 0x78, 0x76, 0x49, 0x4f, 0x71, 0xc4, 0x74, 0x2f, 0xf0, 0x5b, 0x2e, 0x5e, 0xac, 0xef, 0x17, 0xe4, 0x8e, 0x6e, 0xed, 0x43, 0x23, 0x61, 0x99, 0x49},
dt2: fp.Elt{0x64, 0x90, 0x72, 0x76, 0xf8, 0x2c, 0x7d, 0x57, 0xf9, 0x30, 0x5e, 0x7a, 0x10, 0x74, 0x19, 0x39, 0xd9, 0xaf, 0x0a, 0xf1, 0x43, 0xed, 0x88, 0x9c, 0x8b, 0xdc, 0x9b, 0x1c, 0x90, 0xe7, 0xf7, 0xa3, 0xa5, 0x0d, 0xc6, 0xbc, 0x30, 0xfb, 0x91, 0x1a, 0x51, 0xba, 0x2d, 0xbe, 0x89, 0xdf, 0x1d, 0xdc, 0x53, 0xa8, 0x82, 0x8a, 0xd3, 0x8d, 0x16, 0x68},
},
{
addYX: fp.Elt{0xef, 0x5c, 0xe3, 0x74, 0xbf, 0x13, 0x4a, 0xbf, 0x66, 0x73, 0x64, 0xb7, 0xd4, 0xce, 0x98, 0x82, 0x05, 0xfa, 0x98, 0x0c, 0x0a, 0xae, 0xe5, 0x6b, 0x9f, 0xac, 0xbb, 0x6e, 0x1f, 0xcf, 0xff, 0xa6, 0x71, 0x9a, 0xa8, 0x7a, 0x9e, 0x64, 0x1f, 0x20, 0x4a, 0x61, 0xa2, 0xd6, 0x50, 0xe3, 0xba, 0x81, 0x0c, 0x50, 0x59, 0x69, 0x59, 0x15, 0x55, 0xdb},
subYX: fp.Elt{0xe8, 0x77, 0x4d, 0xe8, 0x66, 0x3d, 0xc1, 0x00, 0x3c, 0xf2, 0x25, 0x00, 0xdc, 0xb2, 0xe5, 0x9b, 0x12, 0x89, 0xf3, 0xd6, 0xea, 0x85, 0x60, 0xfe, 0x67, 0x91, 0xfd, 0x04, 0x7c, 0xe0, 0xf1, 0x86, 0x06, 0x11, 0x66, 0xee, 0xd4, 0xd5, 0xbe, 0x3b, 0x0f, 0xe3, 0x59, 0xb3, 0x4f, 0x00, 0xb6, 0xce, 0x80, 0xc1, 0x61, 0xf7, 0xaf, 0x04, 0x6a, 0x3c},
dt2: fp.Elt{0x00, 0xd7, 0x32, 0x93, 0x67, 0x70, 0x6f, 0xd7, 0x69, 0xab, 0xb1, 0xd3, 0xdc, 0xd6, 0xa8, 0xdd, 0x35, 0x25, 0xca, 0xd3, 0x8a, 0x6d, 0xce, 0xfb, 0xfd, 0x2b, 0x83, 0xf0, 0xd4, 0xac, 0x66, 0xfb, 0x72, 0x87, 0x7e, 0x55, 0xb7, 0x91, 0x58, 0x10, 0xc3, 0x11, 0x7e, 0x15, 0xfe, 0x7c, 0x55, 0x90, 0xa3, 0x9e, 0xed, 0x9a, 0x7f, 0xa7, 0xb7, 0xeb},
},
{
addYX: fp.Elt{0x25, 0x0f, 0xc2, 0x09, 0x9c, 0x10, 0xc8, 0x7c, 0x93, 0xa7, 0xbe, 0xe9, 0x26, 0x25, 0x7c, 0x21, 0xfe, 0xe7, 0x5f, 0x3c, 0x02, 0x83, 0xa7, 0x9e, 0xdf, 0xc0, 0x94, 0x2b, 0x7d, 0x1a, 0xd0, 0x1d, 0xcc, 0x2e, 0x7d, 0xd4, 0x85, 0xe7, 0xc1, 0x15, 0x66, 0xd6, 0xd6, 0x32, 0xb8, 0xf7, 0x63, 0xaa, 0x3b, 0xa5, 0xea, 0x49, 0xad, 0x88, 0x9b, 0x66},
subYX: fp.Elt{0x09, 0x97, 0x79, 0x36, 0x41, 0x56, 0x9b, 0xdf, 0x15, 0xd8, 0x43, 0x28, 0x17, 0x5b, 0x96, 0xc9, 0xcf, 0x39, 0x1f, 0x13, 0xf7, 0x4d, 0x1d, 0x1f, 0xda, 0x51, 0x56, 0xe7, 0x0a, 0x5a, 0x65, 0xb6, 0x2a, 0x87, 0x49, 0x86, 0xc2, 0x2b, 0xcd, 0xfe, 0x07, 0xf6, 0x4c, 0xe2, 0x1d, 0x9b, 0xd8, 0x82, 0x09, 0x5b, 0x11, 0x10, 0x62, 0x56, 0x89, 0xbd},
dt2: fp.Elt{0xd9, 0x15, 0x73, 0xf2, 0x96, 0x35, 0x53, 0xb0, 0xe7, 0xa8, 0x0b, 0x93, 0x35, 0x0b, 0x3a, 0x00, 0xf5, 0x18, 0xb1, 0xc3, 0x12, 0x3f, 0x91, 0x17, 0xc1, 0x4c, 0x15, 0x5a, 0x86, 0x92, 0x11, 0xbd, 0x44, 0x40, 0x5a, 0x7b, 0x15, 0x89, 0xba, 0xc1, 0xc1, 0xbc, 0x43, 0x45, 0xe6, 0x52, 0x02, 0x73, 0x0a, 0xd0, 0x2a, 0x19, 0xda, 0x47, 0xa8, 0xff},
},
},
}
// tabVerif contains the odd multiples of P. The entry T[i] = (2i+1)P, where
// P = phi(G) and G is the generator of the Goldilocks curve, and phi is a
// 4-degree isogeny.
var tabVerif = [1 << (omegaFix - 2)]preTwistPointAffine{
{ /* 1P*/
addYX: fp.Elt{0x65, 0x4a, 0xdd, 0xdf, 0xb4, 0x79, 0x60, 0xc8, 0xa1, 0x70, 0xb4, 0x3a, 0x1e, 0x0c, 0x9b, 0x19, 0xe5, 0x48, 0x3f, 0xd7, 0x44, 0x18, 0x18, 0x14, 0x14, 0x27, 0x45, 0xd0, 0x2b, 0x24, 0xd5, 0x93, 0xc3, 0x74, 0x4c, 0x50, 0x70, 0x43, 0x26, 0x05, 0x08, 0x24, 0xca, 0x78, 0x30, 0xc1, 0x06, 0x8d, 0xd4, 0x86, 0x42, 0xf0, 0x14, 0xde, 0x08, 0x05},
subYX: fp.Elt{0x64, 0x4a, 0xdd, 0xdf, 0xb4, 0x79, 0x60, 0xc8, 0xa1, 0x70, 0xb4, 0x3a, 0x1e, 0x0c, 0x9b, 0x19, 0xe5, 0x48, 0x3f, 0xd7, 0x44, 0x18, 0x18, 0x14, 0x14, 0x27, 0x45, 0xd0, 0x2d, 0x24, 0xd5, 0x93, 0xc3, 0x74, 0x4c, 0x50, 0x70, 0x43, 0x26, 0x05, 0x08, 0x24, 0xca, 0x78, 0x30, 0xc1, 0x06, 0x8d, 0xd4, 0x86, 0x42, 0xf0, 0x14, 0xde, 0x08, 0x05},
dt2: fp.Elt{0x1a, 0x33, 0xea, 0x64, 0x45, 0x1c, 0xdf, 0x17, 0x1d, 0x16, 0x34, 0x28, 0xd6, 0x61, 0x19, 0x67, 0x79, 0xb4, 0x13, 0xcf, 0x3e, 0x7c, 0x0e, 0x72, 0xda, 0xf1, 0x5f, 0xda, 0xe6, 0xcf, 0x42, 0xd3, 0xb6, 0x17, 0xc2, 0x68, 0x13, 0x2d, 0xd9, 0x60, 0x3e, 0xae, 0xf0, 0x5b, 0x96, 0xf0, 0xcd, 0xaf, 0xea, 0xb7, 0x0d, 0x59, 0x16, 0xa7, 0xff, 0x55},
},
{ /* 3P*/
addYX: fp.Elt{0xd1, 0xe9, 0xa8, 0x33, 0x20, 0x76, 0x18, 0x08, 0x45, 0x2a, 0xc9, 0x67, 0x2a, 0xc3, 0x15, 0x24, 0xf9, 0x74, 0x21, 0x30, 0x99, 0x59, 0x8b, 0xb2, 0xf0, 0xa4, 0x07, 0xe2, 0x6a, 0x36, 0x8d, 0xd9, 0xd2, 0x4a, 0x7f, 0x73, 0x50, 0x39, 0x3d, 0xaa, 0xa7, 0x51, 0x73, 0x0d, 0x2b, 0x8b, 0x96, 0x47, 0xac, 0x3c, 0x5d, 0xaa, 0x39, 0x9c, 0xcf, 0xd5},
subYX: fp.Elt{0x6b, 0x11, 0x5d, 0x1a, 0xf9, 0x41, 0x9d, 0xc5, 0x30, 0x3e, 0xad, 0x25, 0x2c, 0x04, 0x45, 0xea, 0xcc, 0x67, 0x07, 0x85, 0xe9, 0xda, 0x0e, 0xb5, 0x40, 0xb7, 0x32, 0xb4, 0x49, 0xdd, 0xff, 0xaa, 0xfc, 0xbb, 0x19, 0xca, 0x8b, 0x79, 0x2b, 0x8f, 0x8d, 0x00, 0x33, 0xc2, 0xad, 0xe9, 0xd3, 0x12, 0xa8, 0xaa, 0x87, 0x62, 0xad, 0x2d, 0xff, 0xa4},
dt2: fp.Elt{0xb0, 0xaf, 0x3b, 0xea, 0xf0, 0x42, 0x0b, 0x5e, 0x88, 0xd3, 0x98, 0x08, 0x87, 0x59, 0x72, 0x0a, 0xc2, 0xdf, 0xcb, 0x7f, 0x59, 0xb5, 0x4c, 0x63, 0x68, 0xe8, 0x41, 0x38, 0x67, 0x4f, 0xe9, 0xc6, 0xb2, 0x6b, 0x08, 0xa7, 0xf7, 0x0e, 0xcd, 0xea, 0xca, 0x3d, 0xaf, 0x8e, 0xda, 0x4b, 0x2e, 0xd2, 0x88, 0x64, 0x8d, 0xc5, 0x5f, 0x76, 0x0f, 0x3d},
},
{ /* 5P*/
addYX: fp.Elt{0xe5, 0x65, 0xc9, 0xe2, 0x75, 0xf0, 0x7d, 0x1a, 0xba, 0xa4, 0x40, 0x4b, 0x93, 0x12, 0xa2, 0x80, 0x95, 0x0d, 0x03, 0x93, 0xe8, 0xa5, 0x4d, 0xe2, 0x3d, 0x81, 0xf5, 0xce, 0xd4, 0x2d, 0x25, 0x59, 0x16, 0x5c, 0xe7, 0xda, 0xc7, 0x45, 0xd2, 0x7e, 0x2c, 0x38, 0xd4, 0x37, 0x64, 0xb2, 0xc2, 0x28, 0xc5, 0x72, 0x16, 0x32, 0x45, 0x36, 0x6f, 0x9f},
subYX: fp.Elt{0x09, 0xf4, 0x7e, 0xbd, 0x89, 0xdb, 0x19, 0x58, 0xe1, 0x08, 0x00, 0x8a, 0xf4, 0x5f, 0x2a, 0x32, 0x40, 0xf0, 0x2c, 0x3f, 0x5d, 0xe4, 0xfc, 0x89, 0x11, 0x24, 0xb4, 0x2f, 0x97, 0xad, 0xac, 0x8f, 0x19, 0xab, 0xfa, 0x12, 0xe5, 0xf9, 0x50, 0x4e, 0x50, 0x6f, 0x32, 0x30, 0x88, 0xa6, 0xe5, 0x48, 0x28, 0xa2, 0x1b, 0x9f, 0xcd, 0xe2, 0x43, 0x38},
dt2: fp.Elt{0xa9, 0xcc, 0x53, 0x39, 0x86, 0x02, 0x60, 0x75, 0x34, 0x99, 0x57, 0xbd, 0xfc, 0x5a, 0x8e, 0xce, 0x5e, 0x98, 0x22, 0xd0, 0xa5, 0x24, 0xff, 0x90, 0x28, 0x9f, 0x58, 0xf3, 0x39, 0xe9, 0xba, 0x36, 0x23, 0xfb, 0x7f, 0x41, 0xcc, 0x2b, 0x5a, 0x25, 0x3f, 0x4c, 0x2a, 0xf1, 0x52, 0x6f, 0x2f, 0x07, 0xe3, 0x88, 0x81, 0x77, 0xdd, 0x7c, 0x88, 0x82},
},
{ /* 7P*/
addYX: fp.Elt{0xf7, 0xee, 0x88, 0xfd, 0x3a, 0xbf, 0x7e, 0x28, 0x39, 0x23, 0x79, 0xe6, 0x5c, 0x56, 0xcb, 0xb5, 0x48, 0x6a, 0x80, 0x6d, 0x37, 0x60, 0x6c, 0x10, 0x35, 0x49, 0x4b, 0x46, 0x60, 0xd4, 0x79, 0xd4, 0x53, 0xd3, 0x67, 0x88, 0xd0, 0x41, 0xd5, 0x43, 0x85, 0xc8, 0x71, 0xe3, 0x1c, 0xb6, 0xda, 0x22, 0x64, 0x8f, 0x80, 0xac, 0xad, 0x7d, 0xd5, 0x82},
subYX: fp.Elt{0x92, 0x40, 0xc1, 0x83, 0x21, 0x9b, 0xd5, 0x7d, 0x3f, 0x29, 0xb6, 0x26, 0xef, 0x12, 0xb9, 0x27, 0x39, 0x42, 0x37, 0x97, 0x09, 0x9a, 0x08, 0xe1, 0x68, 0xb6, 0x7a, 0x3f, 0x9f, 0x45, 0xf8, 0x37, 0x19, 0x83, 0x97, 0xe6, 0x73, 0x30, 0x32, 0x35, 0xcf, 0xae, 0x5c, 0x12, 0x68, 0xdf, 0x6e, 0x2b, 0xde, 0x83, 0xa0, 0x44, 0x74, 0x2e, 0x4a, 0xe9},
dt2: fp.Elt{0xcb, 0x22, 0x0a, 0xda, 0x6b, 0xc1, 0x8a, 0x29, 0xa1, 0xac, 0x8b, 0x5b, 0x8b, 0x32, 0x20, 0xf2, 0x21, 0xae, 0x0c, 0x43, 0xc4, 0xd7, 0x19, 0x37, 0x3d, 0x79, 0x25, 0x98, 0x6c, 0x9c, 0x22, 0x31, 0x2a, 0x55, 0x9f, 0xda, 0x5e, 0xa8, 0x13, 0xdb, 0x8e, 0x2e, 0x16, 0x39, 0xf4, 0x91, 0x6f, 0xec, 0x71, 0x71, 0xc9, 0x10, 0xf2, 0xa4, 0x8f, 0x11},
},
{ /* 9P*/
addYX: fp.Elt{0x85, 0xdd, 0x37, 0x62, 0x74, 0x8e, 0x33, 0x5b, 0x25, 0x12, 0x1b, 0xe7, 0xdf, 0x47, 0xe5, 0x12, 0xfd, 0x3a, 0x3a, 0xf5, 0x5d, 0x4c, 0xa2, 0x29, 0x3c, 0x5c, 0x2f, 0xee, 0x18, 0x19, 0x0a, 0x2b, 0xef, 0x67, 0x50, 0x7a, 0x0d, 0x29, 0xae, 0x55, 0x82, 0xcd, 0xd6, 0x41, 0x90, 0xb4, 0x13, 0x31, 0x5d, 0x11, 0xb8, 0xaa, 0x12, 0x86, 0x08, 0xac},
subYX: fp.Elt{0xcc, 0x37, 0x8d, 0x83, 0x5f, 0xfd, 0xde, 0xd5, 0xf7, 0xf1, 0xae, 0x0a, 0xa7, 0x0b, 0xeb, 0x6d, 0x19, 0x8a, 0xb6, 0x1a, 0x59, 0xd8, 0xff, 0x3c, 0xbc, 0xbc, 0xef, 0x9c, 0xda, 0x7b, 0x75, 0x12, 0xaf, 0x80, 0x8f, 0x2c, 0x3c, 0xaa, 0x0b, 0x17, 0x86, 0x36, 0x78, 0x18, 0xc8, 0x8a, 0xf6, 0xb8, 0x2c, 0x2f, 0x57, 0x2c, 0x62, 0x57, 0xf6, 0x90},
dt2: fp.Elt{0x83, 0xbc, 0xa2, 0x07, 0xa5, 0x38, 0x96, 0xea, 0xfe, 0x11, 0x46, 0x1d, 0x3b, 0xcd, 0x42, 0xc5, 0xee, 0x67, 0x04, 0x72, 0x08, 0xd8, 0xd9, 0x96, 0x07, 0xf7, 0xac, 0xc3, 0x64, 0xf1, 0x98, 0x2c, 0x55, 0xd7, 0x7d, 0xc8, 0x6c, 0xbd, 0x2c, 0xff, 0x15, 0xd6, 0x6e, 0xb8, 0x17, 0x8e, 0xa8, 0x27, 0x66, 0xb1, 0x73, 0x79, 0x96, 0xff, 0x29, 0x10},
},
{ /* 11P*/
addYX: fp.Elt{0x76, 0xcb, 0x9b, 0x0c, 0x5b, 0xfe, 0xe1, 0x2a, 0xdd, 0x6f, 0x6c, 0xdd, 0x6f, 0xb4, 0xc0, 0xc2, 0x1b, 0x4b, 0x38, 0xe8, 0x66, 0x8c, 0x1e, 0x31, 0x63, 0xb9, 0x94, 0xcd, 0xc3, 0x8c, 0x44, 0x25, 0x7b, 0xd5, 0x39, 0x80, 0xfc, 0x01, 0xaa, 0xf7, 0x2a, 0x61, 0x8a, 0x25, 0xd2, 0x5f, 0xc5, 0x66, 0x38, 0xa4, 0x17, 0xcf, 0x3e, 0x11, 0x0f, 0xa3},
subYX: fp.Elt{0xe0, 0xb6, 0xd1, 0x9c, 0x71, 0x49, 0x2e, 0x7b, 0xde, 0x00, 0xda, 0x6b, 0xf1, 0xec, 0xe6, 0x7a, 0x15, 0x38, 0x71, 0xe9, 0x7b, 0xdb, 0xf8, 0x98, 0xc0, 0x91, 0x2e, 0x53, 0xee, 0x92, 0x87, 0x25, 0xc9, 0xb0, 0xbb, 0x33, 0x15, 0x46, 0x7f, 0xfd, 0x4f, 0x8b, 0x77, 0x05, 0x96, 0xb6, 0xe2, 0x08, 0xdb, 0x0d, 0x09, 0xee, 0x5b, 0xd1, 0x2a, 0x63},
dt2: fp.Elt{0x8f, 0x7b, 0x57, 0x8c, 0xbf, 0x06, 0x0d, 0x43, 0x21, 0x92, 0x94, 0x2d, 0x6a, 0x38, 0x07, 0x0f, 0xa0, 0xf1, 0xe3, 0xd8, 0x2a, 0xbf, 0x46, 0xc6, 0x9e, 0x1f, 0x8f, 0x2b, 0x46, 0x84, 0x0b, 0x74, 0xed, 0xff, 0xf8, 0xa5, 0x94, 0xae, 0xf1, 0x67, 0xb1, 0x9b, 0xdd, 0x4a, 0xd0, 0xdb, 0xc2, 0xb5, 0x58, 0x49, 0x0c, 0xa9, 0x1d, 0x7d, 0xa9, 0xd3},
},
{ /* 13P*/
addYX: fp.Elt{0x73, 0x84, 0x2e, 0x31, 0x1f, 0xdc, 0xed, 0x9f, 0x74, 0xfa, 0xe0, 0x35, 0xb1, 0x85, 0x6a, 0x8d, 0x86, 0xd0, 0xff, 0xd6, 0x08, 0x43, 0x73, 0x1a, 0xd5, 0xf8, 0x43, 0xd4, 0xb3, 0xe5, 0x3f, 0xa8, 0x84, 0x17, 0x59, 0x65, 0x4e, 0xe6, 0xee, 0x54, 0x9c, 0xda, 0x5e, 0x7e, 0x98, 0x29, 0x6d, 0x73, 0x34, 0x1f, 0x99, 0x80, 0x54, 0x54, 0x81, 0x0b},
subYX: fp.Elt{0xb1, 0xe5, 0xbb, 0x80, 0x22, 0x9c, 0x81, 0x6d, 0xaf, 0x27, 0x65, 0x6f, 0x7e, 0x9c, 0xb6, 0x8d, 0x35, 0x5c, 0x2e, 0x20, 0x48, 0x7a, 0x28, 0xf0, 0x97, 0xfe, 0xb7, 0x71, 0xce, 0xd6, 0xad, 0x3a, 0x81, 0xf6, 0x74, 0x5e, 0xf3, 0xfd, 0x1b, 0xd4, 0x1e, 0x7c, 0xc2, 0xb7, 0xc8, 0xa6, 0xc9, 0x89, 0x03, 0x47, 0xec, 0x24, 0xd6, 0x0e, 0xec, 0x9c},
dt2: fp.Elt{0x91, 0x0a, 0x43, 0x34, 0x20, 0xc2, 0x64, 0xf7, 0x4e, 0x48, 0xc8, 0xd2, 0x95, 0x83, 0xd1, 0xa4, 0xfb, 0x4e, 0x41, 0x3b, 0x0d, 0xd5, 0x07, 0xd9, 0xf1, 0x13, 0x16, 0x78, 0x54, 0x57, 0xd0, 0xf1, 0x4f, 0x20, 0xac, 0xcf, 0x9c, 0x3b, 0x33, 0x0b, 0x99, 0x54, 0xc3, 0x7f, 0x3e, 0x57, 0x26, 0x86, 0xd5, 0xa5, 0x2b, 0x8d, 0xe3, 0x19, 0x36, 0xf7},
},
{ /* 15P*/
addYX: fp.Elt{0x23, 0x69, 0x47, 0x14, 0xf9, 0x9a, 0x50, 0xff, 0x64, 0xd1, 0x50, 0x35, 0xc3, 0x11, 0xd3, 0x19, 0xcf, 0x87, 0xda, 0x30, 0x0b, 0x50, 0xda, 0xc0, 0xe0, 0x25, 0x00, 0xe5, 0x68, 0x93, 0x04, 0xc2, 0xaf, 0xbd, 0x2f, 0x36, 0x5f, 0x47, 0x96, 0x10, 0xa8, 0xbd, 0xe4, 0x88, 0xac, 0x80, 0x52, 0x61, 0x73, 0xe9, 0x63, 0xdd, 0x99, 0xad, 0x20, 0x5b},
subYX: fp.Elt{0x1b, 0x5e, 0xa2, 0x2a, 0x25, 0x0f, 0x86, 0xc0, 0xb1, 0x2e, 0x0c, 0x13, 0x40, 0x8d, 0xf0, 0xe6, 0x00, 0x55, 0x08, 0xc5, 0x7d, 0xf4, 0xc9, 0x31, 0x25, 0x3a, 0x99, 0x69, 0xdd, 0x67, 0x63, 0x9a, 0xd6, 0x89, 0x2e, 0xa1, 0x19, 0xca, 0x2c, 0xd9, 0x59, 0x5f, 0x5d, 0xc3, 0x6e, 0x62, 0x36, 0x12, 0x59, 0x15, 0xe1, 0xdc, 0xa4, 0xad, 0xc9, 0xd0},
dt2: fp.Elt{0xbc, 0xea, 0xfc, 0xaf, 0x66, 0x23, 0xb7, 0x39, 0x6b, 0x2a, 0x96, 0xa8, 0x54, 0x43, 0xe9, 0xaa, 0x32, 0x40, 0x63, 0x92, 0x5e, 0xdf, 0x35, 0xc2, 0x9f, 0x24, 0x0c, 0xed, 0xfc, 0xde, 0x73, 0x8f, 0xa7, 0xd5, 0xa3, 0x2b, 0x18, 0x1f, 0xb0, 0xf8, 0xeb, 0x55, 0xd9, 0xc3, 0xfd, 0x28, 0x7c, 0x4f, 0xce, 0x0d, 0xf7, 0xae, 0xc2, 0x83, 0xc3, 0x78},
},
{ /* 17P*/
addYX: fp.Elt{0x71, 0xe6, 0x60, 0x93, 0x37, 0xdb, 0x01, 0xa5, 0x4c, 0xba, 0xe8, 0x8e, 0xd5, 0xf9, 0xd3, 0x98, 0xe5, 0xeb, 0xab, 0x3a, 0x15, 0x8b, 0x35, 0x60, 0xbe, 0xe5, 0x9c, 0x2d, 0x10, 0x9b, 0x2e, 0xcf, 0x65, 0x64, 0xea, 0x8f, 0x72, 0xce, 0xf5, 0x18, 0xe5, 0xe2, 0xf0, 0x0e, 0xae, 0x04, 0xec, 0xa0, 0x20, 0x65, 0x63, 0x07, 0xb1, 0x9f, 0x03, 0x97},
subYX: fp.Elt{0x9e, 0x41, 0x64, 0x30, 0x95, 0x7f, 0x3a, 0x89, 0x7b, 0x0a, 0x79, 0x59, 0x23, 0x9a, 0x3b, 0xfe, 0xa4, 0x13, 0x08, 0xb2, 0x2e, 0x04, 0x50, 0x10, 0x30, 0xcd, 0x2e, 0xa4, 0x91, 0x71, 0x50, 0x36, 0x4a, 0x02, 0xf4, 0x8d, 0xa3, 0x36, 0x1b, 0xf4, 0x52, 0xba, 0x15, 0x04, 0x8b, 0x80, 0x25, 0xd9, 0xae, 0x67, 0x20, 0xd9, 0x88, 0x8f, 0x97, 0xa6},
dt2: fp.Elt{0xb5, 0xe7, 0x46, 0xbd, 0x55, 0x23, 0xa0, 0x68, 0xc0, 0x12, 0xd9, 0xf1, 0x0a, 0x75, 0xe2, 0xda, 0xf4, 0x6b, 0xca, 0x14, 0xe4, 0x9f, 0x0f, 0xb5, 0x3c, 0xa6, 0xa5, 0xa2, 0x63, 0x94, 0xd1, 0x1c, 0x39, 0x58, 0x57, 0x02, 0x27, 0x98, 0xb6, 0x47, 0xc6, 0x61, 0x4b, 0x5c, 0xab, 0x6f, 0x2d, 0xab, 0xe3, 0xc1, 0x69, 0xf9, 0x12, 0xb0, 0xc8, 0xd5},
},
{ /* 19P*/
addYX: fp.Elt{0x19, 0x7d, 0xd5, 0xac, 0x79, 0xa2, 0x82, 0x9b, 0x28, 0x31, 0x22, 0xc0, 0x73, 0x02, 0x76, 0x17, 0x10, 0x70, 0x79, 0x57, 0xc9, 0x84, 0x62, 0x8e, 0x04, 0x04, 0x61, 0x67, 0x08, 0x48, 0xb4, 0x4b, 0xde, 0x53, 0x8c, 0xff, 0x36, 0x1b, 0x62, 0x86, 0x5d, 0xe1, 0x9b, 0xb1, 0xe5, 0xe8, 0x44, 0x64, 0xa1, 0x68, 0x3f, 0xa8, 0x45, 0x52, 0x91, 0xed},
subYX: fp.Elt{0x42, 0x1a, 0x36, 0x1f, 0x90, 0x15, 0x24, 0x8d, 0x24, 0x80, 0xe6, 0xfe, 0x1e, 0xf0, 0xad, 0xaf, 0x6a, 0x93, 0xf0, 0xa6, 0x0d, 0x5d, 0xea, 0xf6, 0x62, 0x96, 0x7a, 0x05, 0x76, 0x85, 0x74, 0x32, 0xc7, 0xc8, 0x64, 0x53, 0x62, 0xe7, 0x54, 0x84, 0xe0, 0x40, 0x66, 0x19, 0x70, 0x40, 0x95, 0x35, 0x68, 0x64, 0x43, 0xcd, 0xba, 0x29, 0x32, 0xa8},
dt2: fp.Elt{0x3e, 0xf6, 0xd6, 0xe4, 0x99, 0xeb, 0x20, 0x66, 0x08, 0x2e, 0x26, 0x64, 0xd7, 0x76, 0xf3, 0xb4, 0xc5, 0xa4, 0x35, 0x92, 0xd2, 0x99, 0x70, 0x5a, 0x1a, 0xe9, 0xe9, 0x3d, 0x3b, 0xe1, 0xcd, 0x0e, 0xee, 0x24, 0x13, 0x03, 0x22, 0xd6, 0xd6, 0x72, 0x08, 0x2b, 0xde, 0xfd, 0x93, 0xed, 0x0c, 0x7f, 0x5e, 0x31, 0x22, 0x4d, 0x80, 0x78, 0xc0, 0x48},
},
{ /* 21P*/
addYX: fp.Elt{0x8f, 0x72, 0xd2, 0x9e, 0xc4, 0xcd, 0x2c, 0xbf, 0xa8, 0xd3, 0x24, 0x62, 0x28, 0xee, 0x39, 0x0a, 0x19, 0x3a, 0x58, 0xff, 0x21, 0x2e, 0x69, 0x6c, 0x6e, 0x18, 0xd0, 0xcd, 0x61, 0xc1, 0x18, 0x02, 0x5a, 0xe9, 0xe3, 0xef, 0x1f, 0x8e, 0x10, 0xe8, 0x90, 0x2b, 0x48, 0xcd, 0xee, 0x38, 0xbd, 0x3a, 0xca, 0xbc, 0x2d, 0xe2, 0x3a, 0x03, 0x71, 0x02},
subYX: fp.Elt{0xf8, 0xa4, 0x32, 0x26, 0x66, 0xaf, 0x3b, 0x53, 0xe7, 0xb0, 0x91, 0x92, 0xf5, 0x3c, 0x74, 0xce, 0xf2, 0xdd, 0x68, 0xa9, 0xf4, 0xcd, 0x5f, 0x60, 0xab, 0x71, 0xdf, 0xcd, 0x5c, 0x5d, 0x51, 0x72, 0x3a, 0x96, 0xea, 0xd6, 0xde, 0x54, 0x8e, 0x55, 0x4c, 0x08, 0x4c, 0x60, 0xdd, 0x34, 0xa9, 0x6f, 0xf3, 0x04, 0x02, 0xa8, 0xa6, 0x4e, 0x4d, 0x62},
dt2: fp.Elt{0x76, 0x4a, 0xae, 0x38, 0x62, 0x69, 0x72, 0xdc, 0xe8, 0x43, 0xbe, 0x1d, 0x61, 0xde, 0x31, 0xc3, 0x42, 0x8f, 0x33, 0x9d, 0xca, 0xc7, 0x9c, 0xec, 0x6a, 0xe2, 0xaa, 0x01, 0x49, 0x78, 0x8d, 0x72, 0x4f, 0x38, 0xea, 0x52, 0xc2, 0xd3, 0xc9, 0x39, 0x71, 0xba, 0xb9, 0x09, 0x9b, 0xa3, 0x7f, 0x45, 0x43, 0x65, 0x36, 0x29, 0xca, 0xe7, 0x5c, 0x5f},
},
{ /* 23P*/
addYX: fp.Elt{0x89, 0x42, 0x35, 0x48, 0x6d, 0x74, 0xe5, 0x1f, 0xc3, 0xdd, 0x28, 0x5b, 0x84, 0x41, 0x33, 0x9f, 0x42, 0xf3, 0x1d, 0x5d, 0x15, 0x6d, 0x76, 0x33, 0x36, 0xaf, 0xe9, 0xdd, 0xfa, 0x63, 0x4f, 0x7a, 0x9c, 0xeb, 0x1c, 0x4f, 0x34, 0x65, 0x07, 0x54, 0xbb, 0x4c, 0x8b, 0x62, 0x9d, 0xd0, 0x06, 0x99, 0xb3, 0xe9, 0xda, 0x85, 0x19, 0xb0, 0x3d, 0x3c},
subYX: fp.Elt{0xbb, 0x99, 0xf6, 0xbf, 0xaf, 0x2c, 0x22, 0x0d, 0x7a, 0xaa, 0x98, 0x6f, 0x01, 0x82, 0x99, 0xcf, 0x88, 0xbd, 0x0e, 0x3a, 0x89, 0xe0, 0x9c, 0x8c, 0x17, 0x20, 0xc4, 0xe0, 0xcf, 0x43, 0x7a, 0xef, 0x0d, 0x9f, 0x87, 0xd4, 0xfb, 0xf2, 0x96, 0xb8, 0x03, 0xe8, 0xcb, 0x5c, 0xec, 0x65, 0x5f, 0x49, 0xa4, 0x7c, 0x85, 0xb4, 0xf6, 0xc7, 0xdb, 0xa3},
dt2: fp.Elt{0x11, 0xf3, 0x32, 0xa3, 0xa7, 0xb2, 0x7d, 0x51, 0x82, 0x44, 0xeb, 0xa2, 0x7d, 0x72, 0xcb, 0xc6, 0xf6, 0xc7, 0xb2, 0x38, 0x0e, 0x0f, 0x4f, 0x29, 0x00, 0xe4, 0x5b, 0x94, 0x46, 0x86, 0x66, 0xa1, 0x83, 0xb3, 0xeb, 0x15, 0xb6, 0x31, 0x50, 0x28, 0xeb, 0xed, 0x0d, 0x32, 0x39, 0xe9, 0x23, 0x81, 0x99, 0x3e, 0xff, 0x17, 0x4c, 0x11, 0x43, 0xd1},
},
{ /* 25P*/
addYX: fp.Elt{0xce, 0xe7, 0xf8, 0x94, 0x8f, 0x96, 0xf8, 0x96, 0xe6, 0x72, 0x20, 0x44, 0x2c, 0xa7, 0xfc, 0xba, 0xc8, 0xe1, 0xbb, 0xc9, 0x16, 0x85, 0xcd, 0x0b, 0xe5, 0xb5, 0x5a, 0x7f, 0x51, 0x43, 0x63, 0x8b, 0x23, 0x8e, 0x1d, 0x31, 0xff, 0x46, 0x02, 0x66, 0xcc, 0x9e, 0x4d, 0xa2, 0xca, 0xe2, 0xc7, 0xfd, 0x22, 0xb1, 0xdb, 0xdf, 0x6f, 0xe6, 0xa5, 0x82},
subYX: fp.Elt{0xd0, 0xf5, 0x65, 0x40, 0xec, 0x8e, 0x65, 0x42, 0x78, 0xc1, 0x65, 0xe4, 0x10, 0xc8, 0x0b, 0x1b, 0xdd, 0x96, 0x68, 0xce, 0xee, 0x45, 0x55, 0xd8, 0x6e, 0xd3, 0xe6, 0x77, 0x19, 0xae, 0xc2, 0x8d, 0x8d, 0x3e, 0x14, 0x3f, 0x6d, 0x00, 0x2f, 0x9b, 0xd1, 0x26, 0x60, 0x28, 0x0f, 0x3a, 0x47, 0xb3, 0xe6, 0x68, 0x28, 0x24, 0x25, 0xca, 0xc8, 0x06},
dt2: fp.Elt{0x54, 0xbb, 0x60, 0x92, 0xdb, 0x8f, 0x0f, 0x38, 0xe0, 0xe6, 0xe4, 0xc9, 0xcc, 0x14, 0x62, 0x01, 0xc4, 0x2b, 0x0f, 0xcf, 0xed, 0x7d, 0x8e, 0xa4, 0xd9, 0x73, 0x0b, 0xba, 0x0c, 0xaf, 0x0c, 0xf9, 0xe2, 0xeb, 0x29, 0x2a, 0x53, 0xdf, 0x2c, 0x5a, 0xfa, 0x8f, 0xc1, 0x01, 0xd7, 0xb1, 0x45, 0x73, 0x92, 0x32, 0x83, 0x85, 0x12, 0x74, 0x89, 0x44},
},
{ /* 27P*/
addYX: fp.Elt{0x0b, 0x73, 0x3c, 0xc2, 0xb1, 0x2e, 0xe1, 0xa7, 0xf5, 0xc9, 0x7a, 0xfb, 0x3d, 0x2d, 0xac, 0x59, 0xdb, 0xfa, 0x36, 0x11, 0xd1, 0x13, 0x04, 0x51, 0x1d, 0xab, 0x9b, 0x6b, 0x93, 0xfe, 0xda, 0xb0, 0x8e, 0xb4, 0x79, 0x11, 0x21, 0x0f, 0x65, 0xb9, 0xbb, 0x79, 0x96, 0x2a, 0xfd, 0x30, 0xe0, 0xb4, 0x2d, 0x9a, 0x55, 0x25, 0x5d, 0xd4, 0xad, 0x2a},
subYX: fp.Elt{0x9e, 0xc5, 0x04, 0xfe, 0xec, 0x3c, 0x64, 0x1c, 0xed, 0x95, 0xed, 0xae, 0xaf, 0x5c, 0x6e, 0x08, 0x9e, 0x02, 0x29, 0x59, 0x7e, 0x5f, 0xc4, 0x9a, 0xd5, 0x32, 0x72, 0x86, 0xe1, 0x4e, 0x3c, 0xce, 0x99, 0x69, 0x3b, 0xc4, 0xdd, 0x4d, 0xb7, 0xbb, 0xda, 0x3b, 0x1a, 0x99, 0xaa, 0x62, 0x15, 0xc1, 0xf0, 0xb6, 0x6c, 0xec, 0x56, 0xc1, 0xff, 0x0c},
dt2: fp.Elt{0x2f, 0xf1, 0x3f, 0x7a, 0x2d, 0x56, 0x19, 0x7f, 0xea, 0xbe, 0x59, 0x2e, 0x13, 0x67, 0x81, 0xfb, 0xdb, 0xc8, 0xa3, 0x1d, 0xd5, 0xe9, 0x13, 0x8b, 0x29, 0xdf, 0xcf, 0x9f, 0xe7, 0xd9, 0x0b, 0x70, 0xd3, 0x15, 0x57, 0x4a, 0xe9, 0x50, 0x12, 0x1b, 0x81, 0x4b, 0x98, 0x98, 0xa8, 0x31, 0x1d, 0x27, 0x47, 0x38, 0xed, 0x57, 0x99, 0x26, 0xb2, 0xee},
},
{ /* 29P*/
addYX: fp.Elt{0x1c, 0xb2, 0xb2, 0x67, 0x3b, 0x8b, 0x3d, 0x5a, 0x30, 0x7e, 0x38, 0x7e, 0x3c, 0x3d, 0x28, 0x56, 0x59, 0xd8, 0x87, 0x53, 0x8b, 0xe6, 0x6c, 0x5d, 0xe5, 0x0a, 0x33, 0x10, 0xce, 0xa2, 0x17, 0x0d, 0xe8, 0x76, 0xee, 0x68, 0xa8, 0x72, 0x54, 0xbd, 0xa6, 0x24, 0x94, 0x6e, 0x77, 0xc7, 0x53, 0xb7, 0x89, 0x1c, 0x7a, 0xe9, 0x78, 0x9a, 0x74, 0x5f},
subYX: fp.Elt{0x76, 0x96, 0x1c, 0xcf, 0x08, 0x55, 0xd8, 0x1e, 0x0d, 0xa3, 0x59, 0x95, 0x32, 0xf4, 0xc2, 0x8e, 0x84, 0x5e, 0x4b, 0x04, 0xda, 0x71, 0xc9, 0x78, 0x52, 0xde, 0x14, 0xb4, 0x31, 0xf4, 0xd4, 0xb8, 0x58, 0xc5, 0x20, 0xe8, 0xdd, 0x15, 0xb5, 0xee, 0xea, 0x61, 0xe0, 0xf5, 0xd6, 0xae, 0x55, 0x59, 0x05, 0x3e, 0xaf, 0x74, 0xac, 0x1f, 0x17, 0x82},
dt2: fp.Elt{0x59, 0x24, 0xcd, 0xfc, 0x11, 0x7e, 0x85, 0x18, 0x3d, 0x69, 0xf7, 0x71, 0x31, 0x66, 0x98, 0x42, 0x95, 0x00, 0x8c, 0xb2, 0xae, 0x39, 0x7e, 0x85, 0xd6, 0xb0, 0x02, 0xec, 0xce, 0xfc, 0x25, 0xb2, 0xe3, 0x99, 0x8e, 0x5b, 0x61, 0x96, 0x2e, 0x6d, 0x96, 0x57, 0x71, 0xa5, 0x93, 0x41, 0x0e, 0x6f, 0xfd, 0x0a, 0xbf, 0xa9, 0xf7, 0x56, 0xa9, 0x3e},
},
{ /* 31P*/
addYX: fp.Elt{0xa2, 0x2e, 0x0c, 0x17, 0x4d, 0xcc, 0x85, 0x2c, 0x18, 0xa0, 0xd2, 0x08, 0xba, 0x11, 0xfa, 0x47, 0x71, 0x86, 0xaf, 0x36, 0x6a, 0xd7, 0xfe, 0xb9, 0xb0, 0x2f, 0x89, 0x98, 0x49, 0x69, 0xf8, 0x6a, 0xad, 0x27, 0x5e, 0x0a, 0x22, 0x60, 0x5e, 0x5d, 0xca, 0x06, 0x51, 0x27, 0x99, 0x29, 0x85, 0x68, 0x98, 0xe1, 0xc4, 0x21, 0x50, 0xa0, 0xe9, 0xc1},
subYX: fp.Elt{0x4d, 0x70, 0xee, 0x91, 0x92, 0x3f, 0xb7, 0xd3, 0x1d, 0xdb, 0x8d, 0x6e, 0x16, 0xf5, 0x65, 0x7d, 0x5f, 0xb5, 0x6c, 0x59, 0x26, 0x70, 0x4b, 0xf2, 0xfc, 0xe7, 0xdf, 0x86, 0xfe, 0xa5, 0xa7, 0xa6, 0x5d, 0xfb, 0x06, 0xe9, 0xf9, 0xcc, 0xc0, 0x37, 0xcc, 0xd8, 0x09, 0x04, 0xd2, 0xa5, 0x1d, 0xd7, 0xb7, 0xce, 0x92, 0xac, 0x3c, 0xad, 0xfb, 0xae},
dt2: fp.Elt{0x17, 0xa3, 0x9a, 0xc7, 0x86, 0x2a, 0x51, 0xf7, 0x96, 0x79, 0x49, 0x22, 0x2e, 0x5a, 0x01, 0x5c, 0xb5, 0x95, 0xd4, 0xe8, 0xcb, 0x00, 0xca, 0x2d, 0x55, 0xb6, 0x34, 0x36, 0x0b, 0x65, 0x46, 0xf0, 0x49, 0xfc, 0x87, 0x86, 0xe5, 0xc3, 0x15, 0xdb, 0x32, 0xcd, 0xf2, 0xd3, 0x82, 0x4c, 0xe6, 0x61, 0x8a, 0xaf, 0xd4, 0x9e, 0x0f, 0x5a, 0xf2, 0x81},
},
{ /* 33P*/
addYX: fp.Elt{0x88, 0x10, 0xc0, 0xcb, 0xf5, 0x77, 0xae, 0xa5, 0xbe, 0xf6, 0xcd, 0x2e, 0x8b, 0x7e, 0xbd, 0x79, 0x62, 0x4a, 0xeb, 0x69, 0xc3, 0x28, 0xaa, 0x72, 0x87, 0xa9, 0x25, 0x87, 0x46, 0xea, 0x0e, 0x62, 0xa3, 0x6a, 0x1a, 0xe2, 0xba, 0xdc, 0x81, 0x10, 0x33, 0x01, 0xf6, 0x16, 0x89, 0x80, 0xc6, 0xcd, 0xdb, 0xdc, 0xba, 0x0e, 0x09, 0x4a, 0x35, 0x4a},
subYX: fp.Elt{0x86, 0xb2, 0x2b, 0xd0, 0xb8, 0x4a, 0x6d, 0x66, 0x7b, 0x32, 0xdf, 0x3b, 0x1a, 0x19, 0x1f, 0x63, 0xee, 0x1f, 0x3d, 0x1c, 0x5c, 0x14, 0x60, 0x5b, 0x72, 0x49, 0x07, 0xb1, 0x0d, 0x72, 0xc6, 0x35, 0xf0, 0xbc, 0x5e, 0xda, 0x80, 0x6b, 0x64, 0x5b, 0xe5, 0x34, 0x54, 0x39, 0xdd, 0xe6, 0x3c, 0xcb, 0xe5, 0x29, 0x32, 0x06, 0xc6, 0xb1, 0x96, 0x34},
dt2: fp.Elt{0x85, 0x86, 0xf5, 0x84, 0x86, 0xe6, 0x77, 0x8a, 0x71, 0x85, 0x0c, 0x4f, 0x81, 0x5b, 0x29, 0x06, 0xb5, 0x2e, 0x26, 0x71, 0x07, 0x78, 0x07, 0xae, 0xbc, 0x95, 0x46, 0xc3, 0x65, 0xac, 0xe3, 0x76, 0x51, 0x7d, 0xd4, 0x85, 0x31, 0xe3, 0x43, 0xf3, 0x1b, 0x7c, 0xf7, 0x6b, 0x2c, 0xf8, 0x1c, 0xbb, 0x8d, 0xca, 0xab, 0x4b, 0xba, 0x7f, 0xa4, 0xe2},
},
{ /* 35P*/
addYX: fp.Elt{0x1a, 0xee, 0xe7, 0xa4, 0x8a, 0x9d, 0x53, 0x80, 0xc6, 0xb8, 0x4e, 0xdc, 0x89, 0xe0, 0xc4, 0x2b, 0x60, 0x52, 0x6f, 0xec, 0x81, 0xd2, 0x55, 0x6b, 0x1b, 0x6f, 0x17, 0x67, 0x8e, 0x42, 0x26, 0x4c, 0x65, 0x23, 0x29, 0xc6, 0x7b, 0xcd, 0x9f, 0xad, 0x4b, 0x42, 0xd3, 0x0c, 0x75, 0xc3, 0x8a, 0xf5, 0xbe, 0x9e, 0x55, 0xf7, 0x47, 0x5d, 0xbd, 0x3a},
subYX: fp.Elt{0x0d, 0xa8, 0x3b, 0xf9, 0xc7, 0x7e, 0xc6, 0x86, 0x94, 0xc0, 0x01, 0xff, 0x27, 0xce, 0x43, 0xac, 0xe5, 0xe1, 0xd2, 0x8d, 0xc1, 0x22, 0x31, 0xbe, 0xe1, 0xaf, 0xf9, 0x4a, 0x78, 0xa1, 0x0c, 0xaa, 0xd4, 0x80, 0xe4, 0x09, 0x8d, 0xfb, 0x1d, 0x52, 0xc8, 0x60, 0x2d, 0xf2, 0xa2, 0x89, 0x02, 0x56, 0x3d, 0x56, 0x27, 0x85, 0xc7, 0xf0, 0x2b, 0x9a},
dt2: fp.Elt{0x62, 0x7c, 0xc7, 0x6b, 0x2c, 0x9d, 0x0a, 0x7c, 0xe5, 0x50, 0x3c, 0xe6, 0x87, 0x1c, 0x82, 0x30, 0x67, 0x3c, 0x39, 0xb6, 0xa0, 0x31, 0xfb, 0x03, 0x7b, 0xa1, 0x58, 0xdf, 0x12, 0x76, 0x5d, 0x5d, 0x0a, 0x8f, 0x9b, 0x37, 0x32, 0xc3, 0x60, 0x33, 0xea, 0x9f, 0x0a, 0x99, 0xfa, 0x20, 0xd0, 0x33, 0x21, 0xc3, 0x94, 0xd4, 0x86, 0x49, 0x7c, 0x4e},
},
{ /* 37P*/
addYX: fp.Elt{0xc7, 0x0c, 0x71, 0xfe, 0x55, 0xd1, 0x95, 0x8f, 0x43, 0xbb, 0x6b, 0x74, 0x30, 0xbd, 0xe8, 0x6f, 0x1c, 0x1b, 0x06, 0x62, 0xf5, 0xfc, 0x65, 0xa0, 0xeb, 0x81, 0x12, 0xc9, 0x64, 0x66, 0x61, 0xde, 0xf3, 0x6d, 0xd4, 0xae, 0x8e, 0xb1, 0x72, 0xe0, 0xcd, 0x37, 0x01, 0x28, 0x52, 0xd7, 0x39, 0x46, 0x0c, 0x55, 0xcf, 0x47, 0x70, 0xef, 0xa1, 0x17},
subYX: fp.Elt{0x8d, 0x58, 0xde, 0x83, 0x88, 0x16, 0x0e, 0x12, 0x42, 0x03, 0x50, 0x60, 0x4b, 0xdf, 0xbf, 0x95, 0xcc, 0x7d, 0x18, 0x17, 0x7e, 0x31, 0x5d, 0x8a, 0x66, 0xc1, 0xcf, 0x14, 0xea, 0xf4, 0xf4, 0xe5, 0x63, 0x2d, 0x32, 0x86, 0x9b, 0xed, 0x1f, 0x4f, 0x03, 0xaf, 0x33, 0x92, 0xcb, 0xaf, 0x9c, 0x05, 0x0d, 0x47, 0x1b, 0x42, 0xba, 0x13, 0x22, 0x98},
dt2: fp.Elt{0xb5, 0x48, 0xeb, 0x7d, 0x3d, 0x10, 0x9f, 0x59, 0xde, 0xf8, 0x1c, 0x4f, 0x7d, 0x9d, 0x40, 0x4d, 0x9e, 0x13, 0x24, 0xb5, 0x21, 0x09, 0xb7, 0xee, 0x98, 0x5c, 0x56, 0xbc, 0x5e, 0x2b, 0x78, 0x38, 0x06, 0xac, 0xe3, 0xe0, 0xfa, 0x2e, 0xde, 0x4f, 0xd2, 0xb3, 0xfb, 0x2d, 0x71, 0x84, 0xd1, 0x9d, 0x12, 0x5b, 0x35, 0xc8, 0x03, 0x68, 0x67, 0xc7},
},
{ /* 39P*/
addYX: fp.Elt{0xb6, 0x65, 0xfb, 0xa7, 0x06, 0x35, 0xbb, 0xe0, 0x31, 0x8d, 0x91, 0x40, 0x98, 0xab, 0x30, 0xe4, 0xca, 0x12, 0x59, 0x89, 0xed, 0x65, 0x5d, 0x7f, 0xae, 0x69, 0xa0, 0xa4, 0xfa, 0x78, 0xb4, 0xf7, 0xed, 0xae, 0x86, 0x78, 0x79, 0x64, 0x24, 0xa6, 0xd4, 0xe1, 0xf6, 0xd3, 0xa0, 0x89, 0xba, 0x20, 0xf4, 0x54, 0x0d, 0x8f, 0xdb, 0x1a, 0x79, 0xdb},
subYX: fp.Elt{0xe1, 0x82, 0x0c, 0x4d, 0xde, 0x9f, 0x40, 0xf0, 0xc1, 0xbd, 0x8b, 0xd3, 0x24, 0x03, 0xcd, 0xf2, 0x92, 0x7d, 0xe2, 0x68, 0x7f, 0xf1, 0xbe, 0x69, 0xde, 0x34, 0x67, 0x4c, 0x85, 0x3b, 0xec, 0x98, 0xcc, 0x4d, 0x3e, 0xc0, 0x96, 0x27, 0xe6, 0x75, 0xfc, 0xdf, 0x37, 0xc0, 0x1e, 0x27, 0xe0, 0xf6, 0xc2, 0xbd, 0xbc, 0x3d, 0x9b, 0x39, 0xdc, 0xe2},
dt2: fp.Elt{0xd8, 0x29, 0xa7, 0x39, 0xe3, 0x9f, 0x2f, 0x0e, 0x4b, 0x24, 0x21, 0x70, 0xef, 0xfd, 0x91, 0xea, 0xbf, 0xe1, 0x72, 0x90, 0xcc, 0xc9, 0x84, 0x0e, 0xad, 0xd5, 0xe6, 0xbb, 0xc5, 0x99, 0x7f, 0xa4, 0xf0, 0x2e, 0xcc, 0x95, 0x64, 0x27, 0x19, 0xd8, 0x4c, 0x27, 0x0d, 0xff, 0xb6, 0x29, 0xe2, 0x6c, 0xfa, 0xbb, 0x4d, 0x9c, 0xbb, 0xaf, 0xa5, 0xec},
},
{ /* 41P*/
addYX: fp.Elt{0xd6, 0x33, 0x3f, 0x9f, 0xcf, 0xfd, 0x4c, 0xd1, 0xfe, 0xe5, 0xeb, 0x64, 0x27, 0xae, 0x7a, 0xa2, 0x82, 0x50, 0x6d, 0xaa, 0xe3, 0x5d, 0xe2, 0x48, 0x60, 0xb3, 0x76, 0x04, 0xd9, 0x19, 0xa7, 0xa1, 0x73, 0x8d, 0x38, 0xa9, 0xaf, 0x45, 0xb5, 0xb2, 0x62, 0x9b, 0xf1, 0x35, 0x7b, 0x84, 0x66, 0xeb, 0x06, 0xef, 0xf1, 0xb2, 0x2d, 0x6a, 0x61, 0x15},
subYX: fp.Elt{0x86, 0x50, 0x42, 0xf7, 0xda, 0x59, 0xb2, 0xcf, 0x0d, 0x3d, 0xee, 0x8e, 0x53, 0x5d, 0xf7, 0x9e, 0x6a, 0x26, 0x2d, 0xc7, 0x8c, 0x8e, 0x18, 0x50, 0x6d, 0xb7, 0x51, 0x4c, 0xa7, 0x52, 0x6e, 0x0e, 0x0a, 0x16, 0x74, 0xb2, 0x81, 0x8b, 0x56, 0x27, 0x22, 0x84, 0xf4, 0x56, 0xc5, 0x06, 0xe1, 0x8b, 0xca, 0x2d, 0xdb, 0x9a, 0xf6, 0x10, 0x9c, 0x51},
dt2: fp.Elt{0x1f, 0x16, 0xa2, 0x78, 0x96, 0x1b, 0x85, 0x9c, 0x76, 0x49, 0xd4, 0x0f, 0xac, 0xb0, 0xf4, 0xd0, 0x06, 0x2c, 0x7e, 0x6d, 0x6e, 0x8e, 0xc7, 0x9f, 0x18, 0xad, 0xfc, 0x88, 0x0c, 0x0c, 0x09, 0x05, 0x05, 0xa0, 0x79, 0x72, 0x32, 0x72, 0x87, 0x0f, 0x49, 0x87, 0x0c, 0xb4, 0x12, 0xc2, 0x09, 0xf8, 0x9f, 0x30, 0x72, 0xa9, 0x47, 0x13, 0x93, 0x49},
},
{ /* 43P*/
addYX: fp.Elt{0xcc, 0xb1, 0x4c, 0xd3, 0xc0, 0x9e, 0x9e, 0x4d, 0x6d, 0x28, 0x0b, 0xa5, 0x94, 0xa7, 0x2e, 0xc2, 0xc7, 0xaf, 0x29, 0x73, 0xc9, 0x68, 0xea, 0x0f, 0x34, 0x37, 0x8d, 0x96, 0x8f, 0x3a, 0x3d, 0x73, 0x1e, 0x6d, 0x9f, 0xcf, 0x8d, 0x83, 0xb5, 0x71, 0xb9, 0xe1, 0x4b, 0x67, 0x71, 0xea, 0xcf, 0x56, 0xe5, 0xeb, 0x72, 0x15, 0x2f, 0x9e, 0xa8, 0xaa},
subYX: fp.Elt{0xf4, 0x3e, 0x85, 0x1c, 0x1a, 0xef, 0x50, 0xd1, 0xb4, 0x20, 0xb2, 0x60, 0x05, 0x98, 0xfe, 0x47, 0x3b, 0xc1, 0x76, 0xca, 0x2c, 0x4e, 0x5a, 0x42, 0xa3, 0xf7, 0x20, 0xaa, 0x57, 0x39, 0xee, 0x34, 0x1f, 0xe1, 0x68, 0xd3, 0x7e, 0x06, 0xc4, 0x6c, 0xc7, 0x76, 0x2b, 0xe4, 0x1c, 0x48, 0x44, 0xe6, 0xe5, 0x44, 0x24, 0x8d, 0xb3, 0xb6, 0x88, 0x32},
dt2: fp.Elt{0x18, 0xa7, 0xba, 0xd0, 0x44, 0x6f, 0x33, 0x31, 0x00, 0xf8, 0xf6, 0x12, 0xe3, 0xc5, 0xc7, 0xb5, 0x91, 0x9c, 0x91, 0xb5, 0x75, 0x18, 0x18, 0x8a, 0xab, 0xed, 0x24, 0x11, 0x2e, 0xce, 0x5a, 0x0f, 0x94, 0x5f, 0x2e, 0xca, 0xd3, 0x80, 0xea, 0xe5, 0x34, 0x96, 0x67, 0x8b, 0x6a, 0x26, 0x5e, 0xc8, 0x9d, 0x2c, 0x5e, 0x6c, 0xa2, 0x0c, 0xbf, 0xf0},
},
{ /* 45P*/
addYX: fp.Elt{0xb3, 0xbf, 0xa3, 0x85, 0xee, 0xf6, 0x58, 0x02, 0x78, 0xc4, 0x30, 0xd6, 0x57, 0x59, 0x8c, 0x88, 0x08, 0x7c, 0xbc, 0xbe, 0x0a, 0x74, 0xa9, 0xde, 0x69, 0xe7, 0x41, 0xd8, 0xbf, 0x66, 0x8d, 0x3d, 0x28, 0x00, 0x8c, 0x47, 0x65, 0x34, 0xfe, 0x86, 0x9e, 0x6a, 0xf2, 0x41, 0x6a, 0x94, 0xc4, 0x88, 0x75, 0x23, 0x0d, 0x52, 0x69, 0xee, 0x07, 0x89},
subYX: fp.Elt{0x22, 0x3c, 0xa1, 0x70, 0x58, 0x97, 0x93, 0xbe, 0x59, 0xa8, 0x0b, 0x8a, 0x46, 0x2a, 0x38, 0x1e, 0x08, 0x6b, 0x61, 0x9f, 0xf2, 0x4a, 0x8b, 0x80, 0x68, 0x6e, 0xc8, 0x92, 0x60, 0xf3, 0xc9, 0x89, 0xb2, 0x6d, 0x63, 0xb0, 0xeb, 0x83, 0x15, 0x63, 0x0e, 0x64, 0xbb, 0xb8, 0xfe, 0xb4, 0x81, 0x90, 0x01, 0x28, 0x10, 0xb9, 0x74, 0x6e, 0xde, 0xa4},
dt2: fp.Elt{0x1a, 0x23, 0x45, 0xa8, 0x6f, 0x4e, 0xa7, 0x4a, 0x0c, 0xeb, 0xb0, 0x43, 0xf9, 0xef, 0x99, 0x60, 0x5b, 0xdb, 0x66, 0xc0, 0x86, 0x71, 0x43, 0xb1, 0x22, 0x7b, 0x1c, 0xe7, 0x8d, 0x09, 0x1d, 0x83, 0x76, 0x9c, 0xd3, 0x5a, 0xdd, 0x42, 0xd9, 0x2f, 0x2d, 0xba, 0x7a, 0xc2, 0xd9, 0x6b, 0xd4, 0x7a, 0xf1, 0xd5, 0x5f, 0x6b, 0x85, 0xbf, 0x0b, 0xf1},
},
{ /* 47P*/
addYX: fp.Elt{0xb2, 0x83, 0xfa, 0x1f, 0xd2, 0xce, 0xb6, 0xf2, 0x2d, 0xea, 0x1b, 0xe5, 0x29, 0xa5, 0x72, 0xf9, 0x25, 0x48, 0x4e, 0xf2, 0x50, 0x1b, 0x39, 0xda, 0x34, 0xc5, 0x16, 0x13, 0xb4, 0x0c, 0xa1, 0x00, 0x79, 0x7a, 0xf5, 0x8b, 0xf3, 0x70, 0x14, 0xb6, 0xfc, 0x9a, 0x47, 0x68, 0x1e, 0x42, 0x70, 0x64, 0x2a, 0x84, 0x3e, 0x3d, 0x20, 0x58, 0xf9, 0x6a},
subYX: fp.Elt{0xd9, 0xee, 0xc0, 0xc4, 0xf5, 0xc2, 0x86, 0xaf, 0x45, 0xd2, 0xd2, 0x87, 0x1b, 0x64, 0xd5, 0xe0, 0x8c, 0x44, 0x00, 0x4f, 0x43, 0x89, 0x04, 0x48, 0x4a, 0x0b, 0xca, 0x94, 0x06, 0x2f, 0x23, 0x5b, 0x6c, 0x8d, 0x44, 0x66, 0x53, 0xf5, 0x5a, 0x20, 0x72, 0x28, 0x58, 0x84, 0xcc, 0x73, 0x22, 0x5e, 0xd1, 0x0b, 0x56, 0x5e, 0x6a, 0xa3, 0x11, 0x91},
dt2: fp.Elt{0x6e, 0x9f, 0x88, 0xa8, 0x68, 0x2f, 0x12, 0x37, 0x88, 0xfc, 0x92, 0x8f, 0x24, 0xeb, 0x5b, 0x2a, 0x2a, 0xd0, 0x14, 0x40, 0x4c, 0xa9, 0xa4, 0x03, 0x0c, 0x45, 0x48, 0x13, 0xe8, 0xa6, 0x37, 0xab, 0xc0, 0x06, 0x38, 0x6c, 0x96, 0x73, 0x40, 0x6c, 0xc6, 0xea, 0x56, 0xc6, 0xe9, 0x1a, 0x69, 0xeb, 0x7a, 0xd1, 0x33, 0x69, 0x58, 0x2b, 0xea, 0x2f},
},
{ /* 49P*/
addYX: fp.Elt{0x58, 0xa8, 0x05, 0x41, 0x00, 0x9d, 0xaa, 0xd9, 0x98, 0xcf, 0xb9, 0x41, 0xb5, 0x4a, 0x8d, 0xe2, 0xe7, 0xc0, 0x72, 0xef, 0xc8, 0x28, 0x6b, 0x68, 0x9d, 0xc9, 0xdf, 0x05, 0x8b, 0xd0, 0x04, 0x74, 0x79, 0x45, 0x52, 0x05, 0xa3, 0x6e, 0x35, 0x3a, 0xe3, 0xef, 0xb2, 0xdc, 0x08, 0x6f, 0x4e, 0x76, 0x85, 0x67, 0xba, 0x23, 0x8f, 0xdd, 0xaf, 0x09},
subYX: fp.Elt{0xb4, 0x38, 0xc8, 0xff, 0x4f, 0x65, 0x2a, 0x7e, 0xad, 0xb1, 0xc6, 0xb9, 0x3d, 0xd6, 0xf7, 0x14, 0xcf, 0xf6, 0x98, 0x75, 0xbb, 0x47, 0x83, 0x90, 0xe7, 0xe1, 0xf6, 0x14, 0x99, 0x7e, 0xfa, 0xe4, 0x77, 0x24, 0xe3, 0xe7, 0xf0, 0x1e, 0xdb, 0x27, 0x4e, 0x16, 0x04, 0xf2, 0x08, 0x52, 0xfc, 0xec, 0x55, 0xdb, 0x2e, 0x67, 0xe1, 0x94, 0x32, 0x89},
dt2: fp.Elt{0x00, 0xad, 0x03, 0x35, 0x1a, 0xb1, 0x88, 0xf0, 0xc9, 0x11, 0xe4, 0x12, 0x52, 0x61, 0xfd, 0x8a, 0x1b, 0x6a, 0x0a, 0x4c, 0x42, 0x46, 0x22, 0x0e, 0xa5, 0xf9, 0xe2, 0x50, 0xf2, 0xb2, 0x1f, 0x20, 0x78, 0x10, 0xf6, 0xbf, 0x7f, 0x0c, 0x9c, 0xad, 0x40, 0x8b, 0x82, 0xd4, 0xba, 0x69, 0x09, 0xac, 0x4b, 0x6d, 0xc4, 0x49, 0x17, 0x81, 0x57, 0x3b},
},
{ /* 51P*/
addYX: fp.Elt{0x0d, 0xfe, 0xb4, 0x35, 0x11, 0xbd, 0x1d, 0x6b, 0xc2, 0xc5, 0x3b, 0xd2, 0x23, 0x2c, 0x72, 0xe3, 0x48, 0xb1, 0x48, 0x73, 0xfb, 0xa3, 0x21, 0x6e, 0xc0, 0x09, 0x69, 0xac, 0xe1, 0x60, 0xbc, 0x24, 0x03, 0x99, 0x63, 0x0a, 0x00, 0xf0, 0x75, 0xf6, 0x92, 0xc5, 0xd6, 0xdb, 0x51, 0xd4, 0x7d, 0xe6, 0xf4, 0x11, 0x79, 0xd7, 0xc3, 0xaf, 0x48, 0xd0},
subYX: fp.Elt{0xf4, 0x4f, 0xaf, 0x31, 0xe3, 0x10, 0x89, 0x95, 0xf0, 0x8a, 0xf6, 0x31, 0x9f, 0x48, 0x02, 0xba, 0x42, 0x2b, 0x3c, 0x22, 0x8b, 0xcc, 0x12, 0x98, 0x6e, 0x7a, 0x64, 0x3a, 0xc4, 0xca, 0x32, 0x2a, 0x72, 0xf8, 0x2c, 0xcf, 0x78, 0x5e, 0x7a, 0x75, 0x6e, 0x72, 0x46, 0x48, 0x62, 0x28, 0xac, 0x58, 0x1a, 0xc6, 0x59, 0x88, 0x2a, 0x44, 0x9e, 0x83},
dt2: fp.Elt{0xb3, 0xde, 0x36, 0xfd, 0xeb, 0x1b, 0xd4, 0x24, 0x1b, 0x08, 0x8c, 0xfe, 0xa9, 0x41, 0xa1, 0x64, 0xf2, 0x6d, 0xdb, 0xf9, 0x94, 0xae, 0x86, 0x71, 0xab, 0x10, 0xbf, 0xa3, 0xb2, 0xa0, 0xdf, 0x10, 0x8c, 0x74, 0xce, 0xb3, 0xfc, 0xdb, 0xba, 0x15, 0xf6, 0x91, 0x7a, 0x9c, 0x36, 0x1e, 0x45, 0x07, 0x3c, 0xec, 0x1a, 0x61, 0x26, 0x93, 0xe3, 0x50},
},
{ /* 53P*/
addYX: fp.Elt{0xc5, 0x50, 0xc5, 0x83, 0xb0, 0xbd, 0xd9, 0xf6, 0x6d, 0x15, 0x5e, 0xc1, 0x1a, 0x33, 0xa0, 0xce, 0x13, 0x70, 0x3b, 0xe1, 0x31, 0xc6, 0xc4, 0x02, 0xec, 0x8c, 0xd5, 0x9c, 0x97, 0xd3, 0x12, 0xc4, 0xa2, 0xf9, 0xd5, 0xfb, 0x22, 0x69, 0x94, 0x09, 0x2f, 0x59, 0xce, 0xdb, 0xf2, 0xf2, 0x00, 0xe0, 0xa9, 0x08, 0x44, 0x2e, 0x8b, 0x6b, 0xf5, 0xb3},
subYX: fp.Elt{0x90, 0xdd, 0xec, 0xa2, 0x65, 0xb7, 0x61, 0xbc, 0xaa, 0x70, 0xa2, 0x15, 0xd8, 0xb0, 0xf8, 0x8e, 0x23, 0x3d, 0x9f, 0x46, 0xa3, 0x29, 0x20, 0xd1, 0xa1, 0x15, 0x81, 0xc6, 0xb6, 0xde, 0xbe, 0x60, 0x63, 0x24, 0xac, 0x15, 0xfb, 0xeb, 0xd3, 0xea, 0x57, 0x13, 0x86, 0x38, 0x1e, 0x22, 0xf4, 0x8c, 0x5d, 0xaf, 0x1b, 0x27, 0x21, 0x4f, 0xa3, 0x63},
dt2: fp.Elt{0x07, 0x15, 0x87, 0xc4, 0xfd, 0xa1, 0x97, 0x7a, 0x07, 0x1f, 0x56, 0xcc, 0xe3, 0x6a, 0x01, 0x90, 0xce, 0xf9, 0xfa, 0x50, 0xb2, 0xe0, 0x87, 0x8b, 0x6c, 0x63, 0x6c, 0xf6, 0x2a, 0x09, 0xef, 0xef, 0xd2, 0x31, 0x40, 0x25, 0xf6, 0x84, 0xcb, 0xe0, 0xc4, 0x23, 0xc1, 0xcb, 0xe2, 0x02, 0x83, 0x2d, 0xed, 0x74, 0x74, 0x8b, 0xf8, 0x7c, 0x81, 0x18},
},
{ /* 55P*/
addYX: fp.Elt{0x9e, 0xe5, 0x59, 0x95, 0x63, 0x2e, 0xac, 0x8b, 0x03, 0x3c, 0xc1, 0x8e, 0xe1, 0x5b, 0x56, 0x3c, 0x16, 0x41, 0xe4, 0xc2, 0x60, 0x0c, 0x6d, 0x65, 0x9f, 0xfc, 0x27, 0x68, 0x43, 0x44, 0x05, 0x12, 0x6c, 0xda, 0x04, 0xef, 0xcf, 0xcf, 0xdc, 0x0a, 0x1a, 0x7f, 0x12, 0xd3, 0xeb, 0x02, 0xb6, 0x04, 0xca, 0xd6, 0xcb, 0xf0, 0x22, 0xba, 0x35, 0x6d},
subYX: fp.Elt{0x09, 0x6d, 0xf9, 0x64, 0x4c, 0xe6, 0x41, 0xff, 0x01, 0x4d, 0xce, 0x1e, 0xfa, 0x38, 0xa2, 0x25, 0x62, 0xff, 0x03, 0x39, 0x18, 0x91, 0xbb, 0x9d, 0xce, 0x02, 0xf0, 0xf1, 0x3c, 0x55, 0x18, 0xa9, 0xab, 0x4d, 0xd2, 0x35, 0xfd, 0x8d, 0xa9, 0xb2, 0xad, 0xb7, 0x06, 0x6e, 0xc6, 0x69, 0x49, 0xd6, 0x98, 0x98, 0x0b, 0x22, 0x81, 0x6b, 0xbd, 0xa0},
dt2: fp.Elt{0x22, 0xf4, 0x85, 0x5d, 0x2b, 0xf1, 0x55, 0xa5, 0xd6, 0x27, 0x86, 0x57, 0x12, 0x1f, 0x16, 0x0a, 0x5a, 0x9b, 0xf2, 0x38, 0xb6, 0x28, 0xd8, 0x99, 0x0c, 0x89, 0x1d, 0x7f, 0xca, 0x21, 0x17, 0x1a, 0x0b, 0x02, 0x5f, 0x77, 0x2f, 0x73, 0x30, 0x7c, 0xc8, 0xd7, 0x2b, 0xcc, 0xe7, 0xf3, 0x21, 0xac, 0x53, 0xa7, 0x11, 0x5d, 0xd8, 0x1d, 0x9b, 0xf5},
},
{ /* 57P*/
addYX: fp.Elt{0x94, 0x63, 0x5d, 0xef, 0xfd, 0x6d, 0x25, 0x4e, 0x6d, 0x29, 0x03, 0xed, 0x24, 0x28, 0x27, 0x57, 0x47, 0x3e, 0x6a, 0x1a, 0xfe, 0x37, 0xee, 0x5f, 0x83, 0x29, 0x14, 0xfd, 0x78, 0x25, 0x8a, 0xe1, 0x02, 0x38, 0xd8, 0xca, 0x65, 0x55, 0x40, 0x7d, 0x48, 0x2c, 0x7c, 0x7e, 0x60, 0xb6, 0x0c, 0x6d, 0xf7, 0xe8, 0xb3, 0x62, 0x53, 0xd6, 0x9c, 0x2b},
subYX: fp.Elt{0x47, 0x25, 0x70, 0x62, 0xf5, 0x65, 0x93, 0x62, 0x08, 0xac, 0x59, 0x66, 0xdb, 0x08, 0xd9, 0x1a, 0x19, 0xaf, 0xf4, 0xef, 0x02, 0xa2, 0x78, 0xa9, 0x55, 0x1c, 0xfa, 0x08, 0x11, 0xcb, 0xa3, 0x71, 0x74, 0xb1, 0x62, 0xe7, 0xc7, 0xf3, 0x5a, 0xb5, 0x8b, 0xd4, 0xf6, 0x10, 0x57, 0x79, 0x72, 0x2f, 0x13, 0x86, 0x7b, 0x44, 0x5f, 0x48, 0xfd, 0x88},
dt2: fp.Elt{0x10, 0x02, 0xcd, 0x05, 0x9a, 0xc3, 0x32, 0x6d, 0x10, 0x3a, 0x74, 0xba, 0x06, 0xc4, 0x3b, 0x34, 0xbc, 0x36, 0xed, 0xa3, 0xba, 0x9a, 0xdb, 0x6d, 0xd4, 0x69, 0x99, 0x97, 0xd0, 0xe4, 0xdd, 0xf5, 0xd4, 0x7c, 0xd3, 0x4e, 0xab, 0xd1, 0x3b, 0xbb, 0xe9, 0xc7, 0x6a, 0x94, 0x25, 0x61, 0xf0, 0x06, 0xc5, 0x12, 0xa8, 0x86, 0xe5, 0x35, 0x46, 0xeb},
},
{ /* 59P*/
addYX: fp.Elt{0x9e, 0x95, 0x11, 0xc6, 0xc7, 0xe8, 0xee, 0x5a, 0x26, 0xa0, 0x72, 0x72, 0x59, 0x91, 0x59, 0x16, 0x49, 0x99, 0x7e, 0xbb, 0xd7, 0x15, 0xb4, 0xf2, 0x40, 0xf9, 0x5a, 0x4d, 0xc8, 0xa0, 0xe2, 0x34, 0x7b, 0x34, 0xf3, 0x99, 0xbf, 0xa9, 0xf3, 0x79, 0xc1, 0x1a, 0x0c, 0xf4, 0x86, 0x74, 0x4e, 0xcb, 0xbc, 0x90, 0xad, 0xb6, 0x51, 0x6d, 0xaa, 0x33},
subYX: fp.Elt{0x9f, 0xd1, 0xc5, 0xa2, 0x6c, 0x24, 0x88, 0x15, 0x71, 0x68, 0xf6, 0x07, 0x45, 0x02, 0xc4, 0x73, 0x7e, 0x75, 0x87, 0xca, 0x7c, 0xf0, 0x92, 0x00, 0x75, 0xd6, 0x5a, 0xdd, 0xe0, 0x64, 0x16, 0x9d, 0x62, 0x80, 0x33, 0x9f, 0xf4, 0x8e, 0x1a, 0x15, 0x1c, 0xd3, 0x0f, 0x4d, 0x4f, 0x62, 0x2d, 0xd7, 0xa5, 0x77, 0xe3, 0xea, 0xf0, 0xfb, 0x1a, 0xdb},
dt2: fp.Elt{0x6a, 0xa2, 0xb1, 0xaa, 0xfb, 0x5a, 0x32, 0x4e, 0xff, 0x47, 0x06, 0xd5, 0x9a, 0x4f, 0xce, 0x83, 0x5b, 0x82, 0x34, 0x3e, 0x47, 0xb8, 0xf8, 0xe9, 0x7c, 0x67, 0x69, 0x8d, 0x9c, 0xb7, 0xde, 0x57, 0xf4, 0x88, 0x41, 0x56, 0x0c, 0x87, 0x1e, 0xc9, 0x2f, 0x54, 0xbf, 0x5c, 0x68, 0x2c, 0xd9, 0xc4, 0xef, 0x53, 0x73, 0x1e, 0xa6, 0x38, 0x02, 0x10},
},
{ /* 61P*/
addYX: fp.Elt{0x08, 0x80, 0x4a, 0xc9, 0xb7, 0xa8, 0x88, 0xd9, 0xfc, 0x6a, 0xc0, 0x3e, 0xc2, 0x33, 0x4d, 0x2b, 0x2a, 0xa3, 0x6d, 0x72, 0x3e, 0xdc, 0x34, 0x68, 0x08, 0xbf, 0x27, 0xef, 0xf4, 0xff, 0xe2, 0x0c, 0x31, 0x0c, 0xa2, 0x0a, 0x1f, 0x65, 0xc1, 0x4c, 0x61, 0xd3, 0x1b, 0xbc, 0x25, 0xb1, 0xd0, 0xd4, 0x89, 0xb2, 0x53, 0xfb, 0x43, 0xa5, 0xaf, 0x04},
subYX: fp.Elt{0xe3, 0xe1, 0x37, 0xad, 0x58, 0xa9, 0x55, 0x81, 0xee, 0x64, 0x21, 0xb9, 0xf5, 0x4c, 0x35, 0xea, 0x4a, 0xd3, 0x26, 0xaa, 0x90, 0xd4, 0x60, 0x46, 0x09, 0x4b, 0x4a, 0x62, 0xf9, 0xcd, 0xe1, 0xee, 0xbb, 0xc2, 0x09, 0x0b, 0xb0, 0x96, 0x8e, 0x43, 0x77, 0xaf, 0x25, 0x20, 0x5e, 0x47, 0xe4, 0x1d, 0x50, 0x69, 0x74, 0x08, 0xd7, 0xb9, 0x90, 0x13},
dt2: fp.Elt{0x51, 0x91, 0x95, 0x64, 0x03, 0x16, 0xfd, 0x6e, 0x26, 0x94, 0x6b, 0x61, 0xe7, 0xd9, 0xe0, 0x4a, 0x6d, 0x7c, 0xfa, 0xc0, 0xe2, 0x43, 0x23, 0x53, 0x70, 0xf5, 0x6f, 0x73, 0x8b, 0x81, 0xb0, 0x0c, 0xee, 0x2e, 0x46, 0xf2, 0x8d, 0xa6, 0xfb, 0xb5, 0x1c, 0x33, 0xbf, 0x90, 0x59, 0xc9, 0x7c, 0xb8, 0x6f, 0xad, 0x75, 0x02, 0x90, 0x8e, 0x59, 0x75},
},
{ /* 63P*/
addYX: fp.Elt{0x36, 0x4d, 0x77, 0x04, 0xb8, 0x7d, 0x4a, 0xd1, 0xc5, 0xbb, 0x7b, 0x50, 0x5f, 0x8d, 0x9d, 0x62, 0x0f, 0x66, 0x71, 0xec, 0x87, 0xc5, 0x80, 0x82, 0xc8, 0xf4, 0x6a, 0x94, 0x92, 0x5b, 0xb0, 0x16, 0x9b, 0xb2, 0xc9, 0x6f, 0x2b, 0x2d, 0xee, 0x95, 0x73, 0x2e, 0xc2, 0x1b, 0xc5, 0x55, 0x36, 0x86, 0x24, 0xf8, 0x20, 0x05, 0x0d, 0x93, 0xd7, 0x76},
subYX: fp.Elt{0x7f, 0x01, 0xeb, 0x2e, 0x48, 0x4d, 0x1d, 0xf1, 0x06, 0x7e, 0x7c, 0x2a, 0x43, 0xbf, 0x28, 0xac, 0xe9, 0x58, 0x13, 0xc8, 0xbf, 0x8e, 0xc0, 0xef, 0xe8, 0x4f, 0x46, 0x8a, 0xe7, 0xc0, 0xf6, 0x0f, 0x0a, 0x03, 0x48, 0x91, 0x55, 0x39, 0x2a, 0xe3, 0xdc, 0xf6, 0x22, 0x9d, 0x4d, 0x71, 0x55, 0x68, 0x25, 0x6e, 0x95, 0x52, 0xee, 0x4c, 0xd9, 0x01},
dt2: fp.Elt{0xac, 0x33, 0x3f, 0x7c, 0x27, 0x35, 0x15, 0x91, 0x33, 0x8d, 0xf9, 0xc4, 0xf4, 0xf3, 0x90, 0x09, 0x75, 0x69, 0x62, 0x9f, 0x61, 0x35, 0x83, 0x92, 0x04, 0xef, 0x96, 0x38, 0x80, 0x9e, 0x88, 0xb3, 0x67, 0x95, 0xbe, 0x79, 0x3c, 0x35, 0xd8, 0xdc, 0xb2, 0x3e, 0x2d, 0xe6, 0x46, 0xbe, 0x81, 0xf3, 0x32, 0x0e, 0x37, 0x23, 0x75, 0x2a, 0x3d, 0xa0},
},
}

View File

@ -0,0 +1,62 @@
package goldilocks
import (
"crypto/subtle"
mlsb "github.com/cloudflare/circl/math/mlsbset"
)
const (
// MLSBRecoding parameters
fxT = 448
fxV = 2
fxW = 3
fx2w1 = 1 << (uint(fxW) - 1)
)
// ScalarBaseMult returns kG where G is the generator point.
func (e twistCurve) ScalarBaseMult(k *Scalar) *twistPoint {
m, err := mlsb.New(fxT, fxV, fxW)
if err != nil {
panic(err)
}
if m.IsExtended() {
panic("not extended")
}
var isZero int
if k.IsZero() {
isZero = 1
}
subtle.ConstantTimeCopy(isZero, k[:], order[:])
minusK := *k
isEven := 1 - int(k[0]&0x1)
minusK.Neg()
subtle.ConstantTimeCopy(isEven, k[:], minusK[:])
c, err := m.Encode(k[:])
if err != nil {
panic(err)
}
gP := c.Exp(groupMLSB{})
P := gP.(*twistPoint)
P.cneg(uint(isEven))
return P
}
type groupMLSB struct{}
func (e groupMLSB) ExtendedEltP() mlsb.EltP { return nil }
func (e groupMLSB) Sqr(x mlsb.EltG) { x.(*twistPoint).Double() }
func (e groupMLSB) Mul(x mlsb.EltG, y mlsb.EltP) { x.(*twistPoint).mixAddZ1(y.(*preTwistPointAffine)) }
func (e groupMLSB) Identity() mlsb.EltG { return twistCurve{}.Identity() }
func (e groupMLSB) NewEltP() mlsb.EltP { return &preTwistPointAffine{} }
func (e groupMLSB) Lookup(a mlsb.EltP, v uint, s, u int32) {
Tabj := &tabFixMult[v]
P := a.(*preTwistPointAffine)
for k := range Tabj {
P.cmov(&Tabj[k], uint(subtle.ConstantTimeEq(int32(k), u)))
}
P.cneg(int(s >> 31))
}

View File

@ -0,0 +1,140 @@
package conv
import (
"encoding/binary"
"fmt"
"math/big"
"strings"
)
// BytesLe2Hex returns an hexadecimal string of a number stored in a
// little-endian order slice x.
func BytesLe2Hex(x []byte) string {
b := &strings.Builder{}
b.Grow(2*len(x) + 2)
fmt.Fprint(b, "0x")
if len(x) == 0 {
fmt.Fprint(b, "00")
}
for i := len(x) - 1; i >= 0; i-- {
fmt.Fprintf(b, "%02x", x[i])
}
return b.String()
}
// BytesLe2BigInt converts a little-endian slice x into a big-endian
// math/big.Int.
func BytesLe2BigInt(x []byte) *big.Int {
n := len(x)
b := new(big.Int)
if len(x) > 0 {
y := make([]byte, n)
for i := 0; i < n; i++ {
y[n-1-i] = x[i]
}
b.SetBytes(y)
}
return b
}
// BytesBe2Uint64Le converts a big-endian slice x to a little-endian slice of uint64.
func BytesBe2Uint64Le(x []byte) []uint64 {
l := len(x)
z := make([]uint64, (l+7)/8)
blocks := l / 8
for i := 0; i < blocks; i++ {
z[i] = binary.BigEndian.Uint64(x[l-8*(i+1):])
}
remBytes := l % 8
for i := 0; i < remBytes; i++ {
z[blocks] |= uint64(x[l-1-8*blocks-i]) << uint(8*i)
}
return z
}
// BigInt2BytesLe stores a positive big.Int number x into a little-endian slice z.
// The slice is modified if the bitlength of x <= 8*len(z) (padding with zeros).
// If x does not fit in the slice or is negative, z is not modified.
func BigInt2BytesLe(z []byte, x *big.Int) {
xLen := (x.BitLen() + 7) >> 3
zLen := len(z)
if zLen >= xLen && x.Sign() >= 0 {
y := x.Bytes()
for i := 0; i < xLen; i++ {
z[i] = y[xLen-1-i]
}
for i := xLen; i < zLen; i++ {
z[i] = 0
}
}
}
// Uint64Le2BigInt converts a little-endian slice x into a big number.
func Uint64Le2BigInt(x []uint64) *big.Int {
n := len(x)
b := new(big.Int)
var bi big.Int
for i := n - 1; i >= 0; i-- {
bi.SetUint64(x[i])
b.Lsh(b, 64)
b.Add(b, &bi)
}
return b
}
// Uint64Le2BytesLe converts a little-endian slice x to a little-endian slice of bytes.
func Uint64Le2BytesLe(x []uint64) []byte {
b := make([]byte, 8*len(x))
n := len(x)
for i := 0; i < n; i++ {
binary.LittleEndian.PutUint64(b[i*8:], x[i])
}
return b
}
// Uint64Le2BytesBe converts a little-endian slice x to a big-endian slice of bytes.
func Uint64Le2BytesBe(x []uint64) []byte {
b := make([]byte, 8*len(x))
n := len(x)
for i := 0; i < n; i++ {
binary.BigEndian.PutUint64(b[i*8:], x[n-1-i])
}
return b
}
// Uint64Le2Hex returns an hexadecimal string of a number stored in a
// little-endian order slice x.
func Uint64Le2Hex(x []uint64) string {
b := new(strings.Builder)
b.Grow(16*len(x) + 2)
fmt.Fprint(b, "0x")
if len(x) == 0 {
fmt.Fprint(b, "00")
}
for i := len(x) - 1; i >= 0; i-- {
fmt.Fprintf(b, "%016x", x[i])
}
return b.String()
}
// BigInt2Uint64Le stores a positive big.Int number x into a little-endian slice z.
// The slice is modified if the bitlength of x <= 8*len(z) (padding with zeros).
// If x does not fit in the slice or is negative, z is not modified.
func BigInt2Uint64Le(z []uint64, x *big.Int) {
xLen := (x.BitLen() + 63) >> 6 // number of 64-bit words
zLen := len(z)
if zLen >= xLen && x.Sign() > 0 {
var y, yi big.Int
y.Set(x)
two64 := big.NewInt(1)
two64.Lsh(two64, 64).Sub(two64, big.NewInt(1))
for i := 0; i < xLen; i++ {
yi.And(&y, two64)
z[i] = yi.Uint64()
y.Rsh(&y, 64)
}
}
for i := xLen; i < zLen; i++ {
z[i] = 0
}
}

View File

@ -0,0 +1,62 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package sha3 implements the SHA-3 fixed-output-length hash functions and
// the SHAKE variable-output-length hash functions defined by FIPS-202.
//
// Both types of hash function use the "sponge" construction and the Keccak
// permutation. For a detailed specification see http://keccak.noekeon.org/
//
// # Guidance
//
// If you aren't sure what function you need, use SHAKE256 with at least 64
// bytes of output. The SHAKE instances are faster than the SHA3 instances;
// the latter have to allocate memory to conform to the hash.Hash interface.
//
// If you need a secret-key MAC (message authentication code), prepend the
// secret key to the input, hash with SHAKE256 and read at least 32 bytes of
// output.
//
// # Security strengths
//
// The SHA3-x (x equals 224, 256, 384, or 512) functions have a security
// strength against preimage attacks of x bits. Since they only produce "x"
// bits of output, their collision-resistance is only "x/2" bits.
//
// The SHAKE-256 and -128 functions have a generic security strength of 256 and
// 128 bits against all attacks, provided that at least 2x bits of their output
// is used. Requesting more than 64 or 32 bytes of output, respectively, does
// not increase the collision-resistance of the SHAKE functions.
//
// # The sponge construction
//
// A sponge builds a pseudo-random function from a public pseudo-random
// permutation, by applying the permutation to a state of "rate + capacity"
// bytes, but hiding "capacity" of the bytes.
//
// A sponge starts out with a zero state. To hash an input using a sponge, up
// to "rate" bytes of the input are XORed into the sponge's state. The sponge
// is then "full" and the permutation is applied to "empty" it. This process is
// repeated until all the input has been "absorbed". The input is then padded.
// The digest is "squeezed" from the sponge in the same way, except that output
// is copied out instead of input being XORed in.
//
// A sponge is parameterized by its generic security strength, which is equal
// to half its capacity; capacity + rate is equal to the permutation's width.
// Since the KeccakF-1600 permutation is 1600 bits (200 bytes) wide, this means
// that the security strength of a sponge instance is equal to (1600 - bitrate) / 2.
//
// # Recommendations
//
// The SHAKE functions are recommended for most new uses. They can produce
// output of arbitrary length. SHAKE256, with an output length of at least
// 64 bytes, provides 256-bit security against all attacks. The Keccak team
// recommends it for most applications upgrading from SHA2-512. (NIST chose a
// much stronger, but much slower, sponge instance for SHA3-512.)
//
// The SHA-3 functions are "drop-in" replacements for the SHA-2 functions.
// They produce output of the same length, with the same security strengths
// against all attacks. This means, in particular, that SHA3-256 only has
// 128-bit collision resistance, because its output length is 32 bytes.
package sha3

View File

@ -0,0 +1,69 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sha3
// This file provides functions for creating instances of the SHA-3
// and SHAKE hash functions, as well as utility functions for hashing
// bytes.
// New224 creates a new SHA3-224 hash.
// Its generic security strength is 224 bits against preimage attacks,
// and 112 bits against collision attacks.
func New224() State {
return State{rate: 144, outputLen: 28, dsbyte: 0x06}
}
// New256 creates a new SHA3-256 hash.
// Its generic security strength is 256 bits against preimage attacks,
// and 128 bits against collision attacks.
func New256() State {
return State{rate: 136, outputLen: 32, dsbyte: 0x06}
}
// New384 creates a new SHA3-384 hash.
// Its generic security strength is 384 bits against preimage attacks,
// and 192 bits against collision attacks.
func New384() State {
return State{rate: 104, outputLen: 48, dsbyte: 0x06}
}
// New512 creates a new SHA3-512 hash.
// Its generic security strength is 512 bits against preimage attacks,
// and 256 bits against collision attacks.
func New512() State {
return State{rate: 72, outputLen: 64, dsbyte: 0x06}
}
// Sum224 returns the SHA3-224 digest of the data.
func Sum224(data []byte) (digest [28]byte) {
h := New224()
_, _ = h.Write(data)
h.Sum(digest[:0])
return
}
// Sum256 returns the SHA3-256 digest of the data.
func Sum256(data []byte) (digest [32]byte) {
h := New256()
_, _ = h.Write(data)
h.Sum(digest[:0])
return
}
// Sum384 returns the SHA3-384 digest of the data.
func Sum384(data []byte) (digest [48]byte) {
h := New384()
_, _ = h.Write(data)
h.Sum(digest[:0])
return
}
// Sum512 returns the SHA3-512 digest of the data.
func Sum512(data []byte) (digest [64]byte) {
h := New512()
_, _ = h.Write(data)
h.Sum(digest[:0])
return
}

View File

@ -0,0 +1,383 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sha3
// KeccakF1600 applies the Keccak permutation to a 1600b-wide
// state represented as a slice of 25 uint64s.
// nolint:funlen
func KeccakF1600(a *[25]uint64) {
// Implementation translated from Keccak-inplace.c
// in the keccak reference code.
var t, bc0, bc1, bc2, bc3, bc4, d0, d1, d2, d3, d4 uint64
for i := 0; i < 24; i += 4 {
// Combines the 5 steps in each round into 2 steps.
// Unrolls 4 rounds per loop and spreads some steps across rounds.
// Round 1
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
d0 = bc4 ^ (bc1<<1 | bc1>>63)
d1 = bc0 ^ (bc2<<1 | bc2>>63)
d2 = bc1 ^ (bc3<<1 | bc3>>63)
d3 = bc2 ^ (bc4<<1 | bc4>>63)
d4 = bc3 ^ (bc0<<1 | bc0>>63)
bc0 = a[0] ^ d0
t = a[6] ^ d1
bc1 = t<<44 | t>>(64-44)
t = a[12] ^ d2
bc2 = t<<43 | t>>(64-43)
t = a[18] ^ d3
bc3 = t<<21 | t>>(64-21)
t = a[24] ^ d4
bc4 = t<<14 | t>>(64-14)
a[0] = bc0 ^ (bc2 &^ bc1) ^ RC[i]
a[6] = bc1 ^ (bc3 &^ bc2)
a[12] = bc2 ^ (bc4 &^ bc3)
a[18] = bc3 ^ (bc0 &^ bc4)
a[24] = bc4 ^ (bc1 &^ bc0)
t = a[10] ^ d0
bc2 = t<<3 | t>>(64-3)
t = a[16] ^ d1
bc3 = t<<45 | t>>(64-45)
t = a[22] ^ d2
bc4 = t<<61 | t>>(64-61)
t = a[3] ^ d3
bc0 = t<<28 | t>>(64-28)
t = a[9] ^ d4
bc1 = t<<20 | t>>(64-20)
a[10] = bc0 ^ (bc2 &^ bc1)
a[16] = bc1 ^ (bc3 &^ bc2)
a[22] = bc2 ^ (bc4 &^ bc3)
a[3] = bc3 ^ (bc0 &^ bc4)
a[9] = bc4 ^ (bc1 &^ bc0)
t = a[20] ^ d0
bc4 = t<<18 | t>>(64-18)
t = a[1] ^ d1
bc0 = t<<1 | t>>(64-1)
t = a[7] ^ d2
bc1 = t<<6 | t>>(64-6)
t = a[13] ^ d3
bc2 = t<<25 | t>>(64-25)
t = a[19] ^ d4
bc3 = t<<8 | t>>(64-8)
a[20] = bc0 ^ (bc2 &^ bc1)
a[1] = bc1 ^ (bc3 &^ bc2)
a[7] = bc2 ^ (bc4 &^ bc3)
a[13] = bc3 ^ (bc0 &^ bc4)
a[19] = bc4 ^ (bc1 &^ bc0)
t = a[5] ^ d0
bc1 = t<<36 | t>>(64-36)
t = a[11] ^ d1
bc2 = t<<10 | t>>(64-10)
t = a[17] ^ d2
bc3 = t<<15 | t>>(64-15)
t = a[23] ^ d3
bc4 = t<<56 | t>>(64-56)
t = a[4] ^ d4
bc0 = t<<27 | t>>(64-27)
a[5] = bc0 ^ (bc2 &^ bc1)
a[11] = bc1 ^ (bc3 &^ bc2)
a[17] = bc2 ^ (bc4 &^ bc3)
a[23] = bc3 ^ (bc0 &^ bc4)
a[4] = bc4 ^ (bc1 &^ bc0)
t = a[15] ^ d0
bc3 = t<<41 | t>>(64-41)
t = a[21] ^ d1
bc4 = t<<2 | t>>(64-2)
t = a[2] ^ d2
bc0 = t<<62 | t>>(64-62)
t = a[8] ^ d3
bc1 = t<<55 | t>>(64-55)
t = a[14] ^ d4
bc2 = t<<39 | t>>(64-39)
a[15] = bc0 ^ (bc2 &^ bc1)
a[21] = bc1 ^ (bc3 &^ bc2)
a[2] = bc2 ^ (bc4 &^ bc3)
a[8] = bc3 ^ (bc0 &^ bc4)
a[14] = bc4 ^ (bc1 &^ bc0)
// Round 2
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
d0 = bc4 ^ (bc1<<1 | bc1>>63)
d1 = bc0 ^ (bc2<<1 | bc2>>63)
d2 = bc1 ^ (bc3<<1 | bc3>>63)
d3 = bc2 ^ (bc4<<1 | bc4>>63)
d4 = bc3 ^ (bc0<<1 | bc0>>63)
bc0 = a[0] ^ d0
t = a[16] ^ d1
bc1 = t<<44 | t>>(64-44)
t = a[7] ^ d2
bc2 = t<<43 | t>>(64-43)
t = a[23] ^ d3
bc3 = t<<21 | t>>(64-21)
t = a[14] ^ d4
bc4 = t<<14 | t>>(64-14)
a[0] = bc0 ^ (bc2 &^ bc1) ^ RC[i+1]
a[16] = bc1 ^ (bc3 &^ bc2)
a[7] = bc2 ^ (bc4 &^ bc3)
a[23] = bc3 ^ (bc0 &^ bc4)
a[14] = bc4 ^ (bc1 &^ bc0)
t = a[20] ^ d0
bc2 = t<<3 | t>>(64-3)
t = a[11] ^ d1
bc3 = t<<45 | t>>(64-45)
t = a[2] ^ d2
bc4 = t<<61 | t>>(64-61)
t = a[18] ^ d3
bc0 = t<<28 | t>>(64-28)
t = a[9] ^ d4
bc1 = t<<20 | t>>(64-20)
a[20] = bc0 ^ (bc2 &^ bc1)
a[11] = bc1 ^ (bc3 &^ bc2)
a[2] = bc2 ^ (bc4 &^ bc3)
a[18] = bc3 ^ (bc0 &^ bc4)
a[9] = bc4 ^ (bc1 &^ bc0)
t = a[15] ^ d0
bc4 = t<<18 | t>>(64-18)
t = a[6] ^ d1
bc0 = t<<1 | t>>(64-1)
t = a[22] ^ d2
bc1 = t<<6 | t>>(64-6)
t = a[13] ^ d3
bc2 = t<<25 | t>>(64-25)
t = a[4] ^ d4
bc3 = t<<8 | t>>(64-8)
a[15] = bc0 ^ (bc2 &^ bc1)
a[6] = bc1 ^ (bc3 &^ bc2)
a[22] = bc2 ^ (bc4 &^ bc3)
a[13] = bc3 ^ (bc0 &^ bc4)
a[4] = bc4 ^ (bc1 &^ bc0)
t = a[10] ^ d0
bc1 = t<<36 | t>>(64-36)
t = a[1] ^ d1
bc2 = t<<10 | t>>(64-10)
t = a[17] ^ d2
bc3 = t<<15 | t>>(64-15)
t = a[8] ^ d3
bc4 = t<<56 | t>>(64-56)
t = a[24] ^ d4
bc0 = t<<27 | t>>(64-27)
a[10] = bc0 ^ (bc2 &^ bc1)
a[1] = bc1 ^ (bc3 &^ bc2)
a[17] = bc2 ^ (bc4 &^ bc3)
a[8] = bc3 ^ (bc0 &^ bc4)
a[24] = bc4 ^ (bc1 &^ bc0)
t = a[5] ^ d0
bc3 = t<<41 | t>>(64-41)
t = a[21] ^ d1
bc4 = t<<2 | t>>(64-2)
t = a[12] ^ d2
bc0 = t<<62 | t>>(64-62)
t = a[3] ^ d3
bc1 = t<<55 | t>>(64-55)
t = a[19] ^ d4
bc2 = t<<39 | t>>(64-39)
a[5] = bc0 ^ (bc2 &^ bc1)
a[21] = bc1 ^ (bc3 &^ bc2)
a[12] = bc2 ^ (bc4 &^ bc3)
a[3] = bc3 ^ (bc0 &^ bc4)
a[19] = bc4 ^ (bc1 &^ bc0)
// Round 3
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
d0 = bc4 ^ (bc1<<1 | bc1>>63)
d1 = bc0 ^ (bc2<<1 | bc2>>63)
d2 = bc1 ^ (bc3<<1 | bc3>>63)
d3 = bc2 ^ (bc4<<1 | bc4>>63)
d4 = bc3 ^ (bc0<<1 | bc0>>63)
bc0 = a[0] ^ d0
t = a[11] ^ d1
bc1 = t<<44 | t>>(64-44)
t = a[22] ^ d2
bc2 = t<<43 | t>>(64-43)
t = a[8] ^ d3
bc3 = t<<21 | t>>(64-21)
t = a[19] ^ d4
bc4 = t<<14 | t>>(64-14)
a[0] = bc0 ^ (bc2 &^ bc1) ^ RC[i+2]
a[11] = bc1 ^ (bc3 &^ bc2)
a[22] = bc2 ^ (bc4 &^ bc3)
a[8] = bc3 ^ (bc0 &^ bc4)
a[19] = bc4 ^ (bc1 &^ bc0)
t = a[15] ^ d0
bc2 = t<<3 | t>>(64-3)
t = a[1] ^ d1
bc3 = t<<45 | t>>(64-45)
t = a[12] ^ d2
bc4 = t<<61 | t>>(64-61)
t = a[23] ^ d3
bc0 = t<<28 | t>>(64-28)
t = a[9] ^ d4
bc1 = t<<20 | t>>(64-20)
a[15] = bc0 ^ (bc2 &^ bc1)
a[1] = bc1 ^ (bc3 &^ bc2)
a[12] = bc2 ^ (bc4 &^ bc3)
a[23] = bc3 ^ (bc0 &^ bc4)
a[9] = bc4 ^ (bc1 &^ bc0)
t = a[5] ^ d0
bc4 = t<<18 | t>>(64-18)
t = a[16] ^ d1
bc0 = t<<1 | t>>(64-1)
t = a[2] ^ d2
bc1 = t<<6 | t>>(64-6)
t = a[13] ^ d3
bc2 = t<<25 | t>>(64-25)
t = a[24] ^ d4
bc3 = t<<8 | t>>(64-8)
a[5] = bc0 ^ (bc2 &^ bc1)
a[16] = bc1 ^ (bc3 &^ bc2)
a[2] = bc2 ^ (bc4 &^ bc3)
a[13] = bc3 ^ (bc0 &^ bc4)
a[24] = bc4 ^ (bc1 &^ bc0)
t = a[20] ^ d0
bc1 = t<<36 | t>>(64-36)
t = a[6] ^ d1
bc2 = t<<10 | t>>(64-10)
t = a[17] ^ d2
bc3 = t<<15 | t>>(64-15)
t = a[3] ^ d3
bc4 = t<<56 | t>>(64-56)
t = a[14] ^ d4
bc0 = t<<27 | t>>(64-27)
a[20] = bc0 ^ (bc2 &^ bc1)
a[6] = bc1 ^ (bc3 &^ bc2)
a[17] = bc2 ^ (bc4 &^ bc3)
a[3] = bc3 ^ (bc0 &^ bc4)
a[14] = bc4 ^ (bc1 &^ bc0)
t = a[10] ^ d0
bc3 = t<<41 | t>>(64-41)
t = a[21] ^ d1
bc4 = t<<2 | t>>(64-2)
t = a[7] ^ d2
bc0 = t<<62 | t>>(64-62)
t = a[18] ^ d3
bc1 = t<<55 | t>>(64-55)
t = a[4] ^ d4
bc2 = t<<39 | t>>(64-39)
a[10] = bc0 ^ (bc2 &^ bc1)
a[21] = bc1 ^ (bc3 &^ bc2)
a[7] = bc2 ^ (bc4 &^ bc3)
a[18] = bc3 ^ (bc0 &^ bc4)
a[4] = bc4 ^ (bc1 &^ bc0)
// Round 4
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
d0 = bc4 ^ (bc1<<1 | bc1>>63)
d1 = bc0 ^ (bc2<<1 | bc2>>63)
d2 = bc1 ^ (bc3<<1 | bc3>>63)
d3 = bc2 ^ (bc4<<1 | bc4>>63)
d4 = bc3 ^ (bc0<<1 | bc0>>63)
bc0 = a[0] ^ d0
t = a[1] ^ d1
bc1 = t<<44 | t>>(64-44)
t = a[2] ^ d2
bc2 = t<<43 | t>>(64-43)
t = a[3] ^ d3
bc3 = t<<21 | t>>(64-21)
t = a[4] ^ d4
bc4 = t<<14 | t>>(64-14)
a[0] = bc0 ^ (bc2 &^ bc1) ^ RC[i+3]
a[1] = bc1 ^ (bc3 &^ bc2)
a[2] = bc2 ^ (bc4 &^ bc3)
a[3] = bc3 ^ (bc0 &^ bc4)
a[4] = bc4 ^ (bc1 &^ bc0)
t = a[5] ^ d0
bc2 = t<<3 | t>>(64-3)
t = a[6] ^ d1
bc3 = t<<45 | t>>(64-45)
t = a[7] ^ d2
bc4 = t<<61 | t>>(64-61)
t = a[8] ^ d3
bc0 = t<<28 | t>>(64-28)
t = a[9] ^ d4
bc1 = t<<20 | t>>(64-20)
a[5] = bc0 ^ (bc2 &^ bc1)
a[6] = bc1 ^ (bc3 &^ bc2)
a[7] = bc2 ^ (bc4 &^ bc3)
a[8] = bc3 ^ (bc0 &^ bc4)
a[9] = bc4 ^ (bc1 &^ bc0)
t = a[10] ^ d0
bc4 = t<<18 | t>>(64-18)
t = a[11] ^ d1
bc0 = t<<1 | t>>(64-1)
t = a[12] ^ d2
bc1 = t<<6 | t>>(64-6)
t = a[13] ^ d3
bc2 = t<<25 | t>>(64-25)
t = a[14] ^ d4
bc3 = t<<8 | t>>(64-8)
a[10] = bc0 ^ (bc2 &^ bc1)
a[11] = bc1 ^ (bc3 &^ bc2)
a[12] = bc2 ^ (bc4 &^ bc3)
a[13] = bc3 ^ (bc0 &^ bc4)
a[14] = bc4 ^ (bc1 &^ bc0)
t = a[15] ^ d0
bc1 = t<<36 | t>>(64-36)
t = a[16] ^ d1
bc2 = t<<10 | t>>(64-10)
t = a[17] ^ d2
bc3 = t<<15 | t>>(64-15)
t = a[18] ^ d3
bc4 = t<<56 | t>>(64-56)
t = a[19] ^ d4
bc0 = t<<27 | t>>(64-27)
a[15] = bc0 ^ (bc2 &^ bc1)
a[16] = bc1 ^ (bc3 &^ bc2)
a[17] = bc2 ^ (bc4 &^ bc3)
a[18] = bc3 ^ (bc0 &^ bc4)
a[19] = bc4 ^ (bc1 &^ bc0)
t = a[20] ^ d0
bc3 = t<<41 | t>>(64-41)
t = a[21] ^ d1
bc4 = t<<2 | t>>(64-2)
t = a[22] ^ d2
bc0 = t<<62 | t>>(64-62)
t = a[23] ^ d3
bc1 = t<<55 | t>>(64-55)
t = a[24] ^ d4
bc2 = t<<39 | t>>(64-39)
a[20] = bc0 ^ (bc2 &^ bc1)
a[21] = bc1 ^ (bc3 &^ bc2)
a[22] = bc2 ^ (bc4 &^ bc3)
a[23] = bc3 ^ (bc0 &^ bc4)
a[24] = bc4 ^ (bc1 &^ bc0)
}
}

29
vendor/github.com/cloudflare/circl/internal/sha3/rc.go generated vendored Normal file
View File

@ -0,0 +1,29 @@
package sha3
// RC stores the round constants for use in the ι step.
var RC = [24]uint64{
0x0000000000000001,
0x0000000000008082,
0x800000000000808A,
0x8000000080008000,
0x000000000000808B,
0x0000000080000001,
0x8000000080008081,
0x8000000000008009,
0x000000000000008A,
0x0000000000000088,
0x0000000080008009,
0x000000008000000A,
0x000000008000808B,
0x800000000000008B,
0x8000000000008089,
0x8000000000008003,
0x8000000000008002,
0x8000000000000080,
0x000000000000800A,
0x800000008000000A,
0x8000000080008081,
0x8000000000008080,
0x0000000080000001,
0x8000000080008008,
}

View File

@ -0,0 +1,195 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sha3
// spongeDirection indicates the direction bytes are flowing through the sponge.
type spongeDirection int
const (
// spongeAbsorbing indicates that the sponge is absorbing input.
spongeAbsorbing spongeDirection = iota
// spongeSqueezing indicates that the sponge is being squeezed.
spongeSqueezing
)
const (
// maxRate is the maximum size of the internal buffer. SHAKE-256
// currently needs the largest buffer.
maxRate = 168
)
func (d *State) buf() []byte {
return d.storage.asBytes()[d.bufo:d.bufe]
}
type State struct {
// Generic sponge components.
a [25]uint64 // main state of the hash
rate int // the number of bytes of state to use
bufo int // offset of buffer in storage
bufe int // end of buffer in storage
// dsbyte contains the "domain separation" bits and the first bit of
// the padding. Sections 6.1 and 6.2 of [1] separate the outputs of the
// SHA-3 and SHAKE functions by appending bitstrings to the message.
// Using a little-endian bit-ordering convention, these are "01" for SHA-3
// and "1111" for SHAKE, or 00000010b and 00001111b, respectively. Then the
// padding rule from section 5.1 is applied to pad the message to a multiple
// of the rate, which involves adding a "1" bit, zero or more "0" bits, and
// a final "1" bit. We merge the first "1" bit from the padding into dsbyte,
// giving 00000110b (0x06) and 00011111b (0x1f).
// [1] http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf
// "Draft FIPS 202: SHA-3 Standard: Permutation-Based Hash and
// Extendable-Output Functions (May 2014)"
dsbyte byte
storage storageBuf
// Specific to SHA-3 and SHAKE.
outputLen int // the default output size in bytes
state spongeDirection // whether the sponge is absorbing or squeezing
}
// BlockSize returns the rate of sponge underlying this hash function.
func (d *State) BlockSize() int { return d.rate }
// Size returns the output size of the hash function in bytes.
func (d *State) Size() int { return d.outputLen }
// Reset clears the internal state by zeroing the sponge state and
// the byte buffer, and setting Sponge.state to absorbing.
func (d *State) Reset() {
// Zero the permutation's state.
for i := range d.a {
d.a[i] = 0
}
d.state = spongeAbsorbing
d.bufo = 0
d.bufe = 0
}
func (d *State) clone() *State {
ret := *d
return &ret
}
// permute applies the KeccakF-1600 permutation. It handles
// any input-output buffering.
func (d *State) permute() {
switch d.state {
case spongeAbsorbing:
// If we're absorbing, we need to xor the input into the state
// before applying the permutation.
xorIn(d, d.buf())
d.bufe = 0
d.bufo = 0
KeccakF1600(&d.a)
case spongeSqueezing:
// If we're squeezing, we need to apply the permutation before
// copying more output.
KeccakF1600(&d.a)
d.bufe = d.rate
d.bufo = 0
copyOut(d, d.buf())
}
}
// pads appends the domain separation bits in dsbyte, applies
// the multi-bitrate 10..1 padding rule, and permutes the state.
func (d *State) padAndPermute(dsbyte byte) {
// Pad with this instance's domain-separator bits. We know that there's
// at least one byte of space in d.buf() because, if it were full,
// permute would have been called to empty it. dsbyte also contains the
// first one bit for the padding. See the comment in the state struct.
zerosStart := d.bufe + 1
d.bufe = d.rate
buf := d.buf()
buf[zerosStart-1] = dsbyte
for i := zerosStart; i < d.rate; i++ {
buf[i] = 0
}
// This adds the final one bit for the padding. Because of the way that
// bits are numbered from the LSB upwards, the final bit is the MSB of
// the last byte.
buf[d.rate-1] ^= 0x80
// Apply the permutation
d.permute()
d.state = spongeSqueezing
d.bufe = d.rate
copyOut(d, buf)
}
// Write absorbs more data into the hash's state. It produces an error
// if more data is written to the ShakeHash after writing
func (d *State) Write(p []byte) (written int, err error) {
if d.state != spongeAbsorbing {
panic("sha3: write to sponge after read")
}
written = len(p)
for len(p) > 0 {
bufl := d.bufe - d.bufo
if bufl == 0 && len(p) >= d.rate {
// The fast path; absorb a full "rate" bytes of input and apply the permutation.
xorIn(d, p[:d.rate])
p = p[d.rate:]
KeccakF1600(&d.a)
} else {
// The slow path; buffer the input until we can fill the sponge, and then xor it in.
todo := d.rate - bufl
if todo > len(p) {
todo = len(p)
}
d.bufe += todo
buf := d.buf()
copy(buf[bufl:], p[:todo])
p = p[todo:]
// If the sponge is full, apply the permutation.
if d.bufe == d.rate {
d.permute()
}
}
}
return written, nil
}
// Read squeezes an arbitrary number of bytes from the sponge.
func (d *State) Read(out []byte) (n int, err error) {
// If we're still absorbing, pad and apply the permutation.
if d.state == spongeAbsorbing {
d.padAndPermute(d.dsbyte)
}
n = len(out)
// Now, do the squeezing.
for len(out) > 0 {
buf := d.buf()
n := copy(out, buf)
d.bufo += n
out = out[n:]
// Apply the permutation if we've squeezed the sponge dry.
if d.bufo == d.bufe {
d.permute()
}
}
return
}
// Sum applies padding to the hash state and then squeezes out the desired
// number of output bytes.
func (d *State) Sum(in []byte) []byte {
// Make a copy of the original hash so that caller can keep writing
// and summing.
dup := d.clone()
hash := make([]byte, dup.outputLen)
_, _ = dup.Read(hash)
return append(in, hash...)
}

View File

@ -0,0 +1,33 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !gccgo,!appengine
#include "textflag.h"
// func kimd(function code, chain *[200]byte, src []byte)
TEXT ·kimd(SB), NOFRAME|NOSPLIT, $0-40
MOVD function+0(FP), R0
MOVD chain+8(FP), R1
LMG src+16(FP), R2, R3 // R2=base, R3=len
continue:
WORD $0xB93E0002 // KIMD --, R2
BVS continue // continue if interrupted
MOVD $0, R0 // reset R0 for pre-go1.8 compilers
RET
// func klmd(function code, chain *[200]byte, dst, src []byte)
TEXT ·klmd(SB), NOFRAME|NOSPLIT, $0-64
// TODO: SHAKE support
MOVD function+0(FP), R0
MOVD chain+8(FP), R1
LMG dst+16(FP), R2, R3 // R2=base, R3=len
LMG src+40(FP), R4, R5 // R4=base, R5=len
continue:
WORD $0xB93F0024 // KLMD R2, R4
BVS continue // continue if interrupted
MOVD $0, R0 // reset R0 for pre-go1.8 compilers
RET

View File

@ -0,0 +1,79 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sha3
// This file defines the ShakeHash interface, and provides
// functions for creating SHAKE and cSHAKE instances, as well as utility
// functions for hashing bytes to arbitrary-length output.
//
//
// SHAKE implementation is based on FIPS PUB 202 [1]
// cSHAKE implementations is based on NIST SP 800-185 [2]
//
// [1] https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
// [2] https://doi.org/10.6028/NIST.SP.800-185
import (
"io"
)
// ShakeHash defines the interface to hash functions that
// support arbitrary-length output.
type ShakeHash interface {
// Write absorbs more data into the hash's state. It panics if input is
// written to it after output has been read from it.
io.Writer
// Read reads more output from the hash; reading affects the hash's
// state. (ShakeHash.Read is thus very different from Hash.Sum)
// It never returns an error.
io.Reader
// Clone returns a copy of the ShakeHash in its current state.
Clone() ShakeHash
// Reset resets the ShakeHash to its initial state.
Reset()
}
// Consts for configuring initial SHA-3 state
const (
dsbyteShake = 0x1f
rate128 = 168
rate256 = 136
)
// Clone returns copy of SHAKE context within its current state.
func (d *State) Clone() ShakeHash {
return d.clone()
}
// NewShake128 creates a new SHAKE128 variable-output-length ShakeHash.
// Its generic security strength is 128 bits against all attacks if at
// least 32 bytes of its output are used.
func NewShake128() State {
return State{rate: rate128, dsbyte: dsbyteShake}
}
// NewShake256 creates a new SHAKE256 variable-output-length ShakeHash.
// Its generic security strength is 256 bits against all attacks if
// at least 64 bytes of its output are used.
func NewShake256() State {
return State{rate: rate256, dsbyte: dsbyteShake}
}
// ShakeSum128 writes an arbitrary-length digest of data into hash.
func ShakeSum128(hash, data []byte) {
h := NewShake128()
_, _ = h.Write(data)
_, _ = h.Read(hash)
}
// ShakeSum256 writes an arbitrary-length digest of data into hash.
func ShakeSum256(hash, data []byte) {
h := NewShake256()
_, _ = h.Write(data)
_, _ = h.Read(hash)
}

View File

@ -0,0 +1,15 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build (!amd64 && !386 && !ppc64le) || appengine
// +build !amd64,!386,!ppc64le appengine
package sha3
// A storageBuf is an aligned array of maxRate bytes.
type storageBuf [maxRate]byte
func (b *storageBuf) asBytes() *[maxRate]byte {
return (*[maxRate]byte)(b)
}

View File

@ -0,0 +1,33 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build (!amd64 || appengine) && (!386 || appengine) && (!ppc64le || appengine)
// +build !amd64 appengine
// +build !386 appengine
// +build !ppc64le appengine
package sha3
import "encoding/binary"
// xorIn xors the bytes in buf into the state; it
// makes no non-portable assumptions about memory layout
// or alignment.
func xorIn(d *State, buf []byte) {
n := len(buf) / 8
for i := 0; i < n; i++ {
a := binary.LittleEndian.Uint64(buf)
d.a[i] ^= a
buf = buf[8:]
}
}
// copyOut copies ulint64s to a byte buffer.
func copyOut(d *State, b []byte) {
for i := 0; len(b) >= 8; i++ {
binary.LittleEndian.PutUint64(b, d.a[i])
b = b[8:]
}
}

View File

@ -0,0 +1,61 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build (amd64 || 386 || ppc64le) && !appengine
// +build amd64 386 ppc64le
// +build !appengine
package sha3
import "unsafe"
// A storageBuf is an aligned array of maxRate bytes.
type storageBuf [maxRate / 8]uint64
func (b *storageBuf) asBytes() *[maxRate]byte {
return (*[maxRate]byte)(unsafe.Pointer(b))
}
// xorInuses unaligned reads and writes to update d.a to contain d.a
// XOR buf.
func xorIn(d *State, buf []byte) {
n := len(buf)
bw := (*[maxRate / 8]uint64)(unsafe.Pointer(&buf[0]))[: n/8 : n/8]
if n >= 72 {
d.a[0] ^= bw[0]
d.a[1] ^= bw[1]
d.a[2] ^= bw[2]
d.a[3] ^= bw[3]
d.a[4] ^= bw[4]
d.a[5] ^= bw[5]
d.a[6] ^= bw[6]
d.a[7] ^= bw[7]
d.a[8] ^= bw[8]
}
if n >= 104 {
d.a[9] ^= bw[9]
d.a[10] ^= bw[10]
d.a[11] ^= bw[11]
d.a[12] ^= bw[12]
}
if n >= 136 {
d.a[13] ^= bw[13]
d.a[14] ^= bw[14]
d.a[15] ^= bw[15]
d.a[16] ^= bw[16]
}
if n >= 144 {
d.a[17] ^= bw[17]
}
if n >= 168 {
d.a[18] ^= bw[18]
d.a[19] ^= bw[19]
d.a[20] ^= bw[20]
}
}
func copyOut(d *State, buf []byte) {
ab := (*[maxRate]uint8)(unsafe.Pointer(&d.a[0]))
copy(buf, ab[:])
}

205
vendor/github.com/cloudflare/circl/math/fp25519/fp.go generated vendored Normal file
View File

@ -0,0 +1,205 @@
// Package fp25519 provides prime field arithmetic over GF(2^255-19).
package fp25519
import (
"errors"
"github.com/cloudflare/circl/internal/conv"
)
// Size in bytes of an element.
const Size = 32
// Elt is a prime field element.
type Elt [Size]byte
func (e Elt) String() string { return conv.BytesLe2Hex(e[:]) }
// p is the prime modulus 2^255-19.
var p = Elt{
0xed, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f,
}
// P returns the prime modulus 2^255-19.
func P() Elt { return p }
// ToBytes stores in b the little-endian byte representation of x.
func ToBytes(b []byte, x *Elt) error {
if len(b) != Size {
return errors.New("wrong size")
}
Modp(x)
copy(b, x[:])
return nil
}
// IsZero returns true if x is equal to 0.
func IsZero(x *Elt) bool { Modp(x); return *x == Elt{} }
// SetOne assigns x=1.
func SetOne(x *Elt) { *x = Elt{}; x[0] = 1 }
// Neg calculates z = -x.
func Neg(z, x *Elt) { Sub(z, &p, x) }
// InvSqrt calculates z = sqrt(x/y) iff x/y is a quadratic-residue, which is
// indicated by returning isQR = true. Otherwise, when x/y is a quadratic
// non-residue, z will have an undetermined value and isQR = false.
func InvSqrt(z, x, y *Elt) (isQR bool) {
sqrtMinusOne := &Elt{
0xb0, 0xa0, 0x0e, 0x4a, 0x27, 0x1b, 0xee, 0xc4,
0x78, 0xe4, 0x2f, 0xad, 0x06, 0x18, 0x43, 0x2f,
0xa7, 0xd7, 0xfb, 0x3d, 0x99, 0x00, 0x4d, 0x2b,
0x0b, 0xdf, 0xc1, 0x4f, 0x80, 0x24, 0x83, 0x2b,
}
t0, t1, t2, t3 := &Elt{}, &Elt{}, &Elt{}, &Elt{}
Mul(t0, x, y) // t0 = u*v
Sqr(t1, y) // t1 = v^2
Mul(t2, t0, t1) // t2 = u*v^3
Sqr(t0, t1) // t0 = v^4
Mul(t1, t0, t2) // t1 = u*v^7
var Tab [4]*Elt
Tab[0] = &Elt{}
Tab[1] = &Elt{}
Tab[2] = t3
Tab[3] = t1
*Tab[0] = *t1
Sqr(Tab[0], Tab[0])
Sqr(Tab[1], Tab[0])
Sqr(Tab[1], Tab[1])
Mul(Tab[1], Tab[1], Tab[3])
Mul(Tab[0], Tab[0], Tab[1])
Sqr(Tab[0], Tab[0])
Mul(Tab[0], Tab[0], Tab[1])
Sqr(Tab[1], Tab[0])
for i := 0; i < 4; i++ {
Sqr(Tab[1], Tab[1])
}
Mul(Tab[1], Tab[1], Tab[0])
Sqr(Tab[2], Tab[1])
for i := 0; i < 4; i++ {
Sqr(Tab[2], Tab[2])
}
Mul(Tab[2], Tab[2], Tab[0])
Sqr(Tab[1], Tab[2])
for i := 0; i < 14; i++ {
Sqr(Tab[1], Tab[1])
}
Mul(Tab[1], Tab[1], Tab[2])
Sqr(Tab[2], Tab[1])
for i := 0; i < 29; i++ {
Sqr(Tab[2], Tab[2])
}
Mul(Tab[2], Tab[2], Tab[1])
Sqr(Tab[1], Tab[2])
for i := 0; i < 59; i++ {
Sqr(Tab[1], Tab[1])
}
Mul(Tab[1], Tab[1], Tab[2])
for i := 0; i < 5; i++ {
Sqr(Tab[1], Tab[1])
}
Mul(Tab[1], Tab[1], Tab[0])
Sqr(Tab[2], Tab[1])
for i := 0; i < 124; i++ {
Sqr(Tab[2], Tab[2])
}
Mul(Tab[2], Tab[2], Tab[1])
Sqr(Tab[2], Tab[2])
Sqr(Tab[2], Tab[2])
Mul(Tab[2], Tab[2], Tab[3])
Mul(z, t3, t2) // z = xy^(p+3)/8 = xy^3*(xy^7)^(p-5)/8
// Checking whether y z^2 == x
Sqr(t0, z) // t0 = z^2
Mul(t0, t0, y) // t0 = yz^2
Sub(t1, t0, x) // t1 = t0-u
Add(t2, t0, x) // t2 = t0+u
if IsZero(t1) {
return true
} else if IsZero(t2) {
Mul(z, z, sqrtMinusOne) // z = z*sqrt(-1)
return true
} else {
return false
}
}
// Inv calculates z = 1/x mod p.
func Inv(z, x *Elt) {
x0, x1, x2 := &Elt{}, &Elt{}, &Elt{}
Sqr(x1, x)
Sqr(x0, x1)
Sqr(x0, x0)
Mul(x0, x0, x)
Mul(z, x0, x1)
Sqr(x1, z)
Mul(x0, x0, x1)
Sqr(x1, x0)
for i := 0; i < 4; i++ {
Sqr(x1, x1)
}
Mul(x0, x0, x1)
Sqr(x1, x0)
for i := 0; i < 9; i++ {
Sqr(x1, x1)
}
Mul(x1, x1, x0)
Sqr(x2, x1)
for i := 0; i < 19; i++ {
Sqr(x2, x2)
}
Mul(x2, x2, x1)
for i := 0; i < 10; i++ {
Sqr(x2, x2)
}
Mul(x2, x2, x0)
Sqr(x0, x2)
for i := 0; i < 49; i++ {
Sqr(x0, x0)
}
Mul(x0, x0, x2)
Sqr(x1, x0)
for i := 0; i < 99; i++ {
Sqr(x1, x1)
}
Mul(x1, x1, x0)
for i := 0; i < 50; i++ {
Sqr(x1, x1)
}
Mul(x1, x1, x2)
for i := 0; i < 5; i++ {
Sqr(x1, x1)
}
Mul(z, z, x1)
}
// Cmov assigns y to x if n is 1.
func Cmov(x, y *Elt, n uint) { cmov(x, y, n) }
// Cswap interchanges x and y if n is 1.
func Cswap(x, y *Elt, n uint) { cswap(x, y, n) }
// Add calculates z = x+y mod p.
func Add(z, x, y *Elt) { add(z, x, y) }
// Sub calculates z = x-y mod p.
func Sub(z, x, y *Elt) { sub(z, x, y) }
// AddSub calculates (x,y) = (x+y mod p, x-y mod p).
func AddSub(x, y *Elt) { addsub(x, y) }
// Mul calculates z = x*y mod p.
func Mul(z, x, y *Elt) { mul(z, x, y) }
// Sqr calculates z = x^2 mod p.
func Sqr(z, x *Elt) { sqr(z, x) }
// Modp ensures that z is between [0,p-1].
func Modp(z *Elt) { modp(z) }

View File

@ -0,0 +1,45 @@
//go:build amd64 && !purego
// +build amd64,!purego
package fp25519
import (
"golang.org/x/sys/cpu"
)
var hasBmi2Adx = cpu.X86.HasBMI2 && cpu.X86.HasADX
var _ = hasBmi2Adx
func cmov(x, y *Elt, n uint) { cmovAmd64(x, y, n) }
func cswap(x, y *Elt, n uint) { cswapAmd64(x, y, n) }
func add(z, x, y *Elt) { addAmd64(z, x, y) }
func sub(z, x, y *Elt) { subAmd64(z, x, y) }
func addsub(x, y *Elt) { addsubAmd64(x, y) }
func mul(z, x, y *Elt) { mulAmd64(z, x, y) }
func sqr(z, x *Elt) { sqrAmd64(z, x) }
func modp(z *Elt) { modpAmd64(z) }
//go:noescape
func cmovAmd64(x, y *Elt, n uint)
//go:noescape
func cswapAmd64(x, y *Elt, n uint)
//go:noescape
func addAmd64(z, x, y *Elt)
//go:noescape
func subAmd64(z, x, y *Elt)
//go:noescape
func addsubAmd64(x, y *Elt)
//go:noescape
func mulAmd64(z, x, y *Elt)
//go:noescape
func sqrAmd64(z, x *Elt)
//go:noescape
func modpAmd64(z *Elt)

View File

@ -0,0 +1,351 @@
// This code was imported from https://github.com/armfazh/rfc7748_precomputed
// CHECK_BMI2ADX triggers bmi2adx if supported,
// otherwise it fallbacks to legacy code.
#define CHECK_BMI2ADX(label, legacy, bmi2adx) \
CMPB ·hasBmi2Adx(SB), $0 \
JE label \
bmi2adx \
RET \
label: \
legacy \
RET
// cselect is a conditional move
// if b=1: it copies y into x;
// if b=0: x remains with the same value;
// if b<> 0,1: undefined.
// Uses: AX, DX, FLAGS
// Instr: x86_64, cmov
#define cselect(x,y,b) \
TESTQ b, b \
MOVQ 0+x, AX; MOVQ 0+y, DX; CMOVQNE DX, AX; MOVQ AX, 0+x; \
MOVQ 8+x, AX; MOVQ 8+y, DX; CMOVQNE DX, AX; MOVQ AX, 8+x; \
MOVQ 16+x, AX; MOVQ 16+y, DX; CMOVQNE DX, AX; MOVQ AX, 16+x; \
MOVQ 24+x, AX; MOVQ 24+y, DX; CMOVQNE DX, AX; MOVQ AX, 24+x;
// cswap is a conditional swap
// if b=1: x,y <- y,x;
// if b=0: x,y remain with the same values;
// if b<> 0,1: undefined.
// Uses: AX, DX, R8, FLAGS
// Instr: x86_64, cmov
#define cswap(x,y,b) \
TESTQ b, b \
MOVQ 0+x, AX; MOVQ AX, R8; MOVQ 0+y, DX; CMOVQNE DX, AX; CMOVQNE R8, DX; MOVQ AX, 0+x; MOVQ DX, 0+y; \
MOVQ 8+x, AX; MOVQ AX, R8; MOVQ 8+y, DX; CMOVQNE DX, AX; CMOVQNE R8, DX; MOVQ AX, 8+x; MOVQ DX, 8+y; \
MOVQ 16+x, AX; MOVQ AX, R8; MOVQ 16+y, DX; CMOVQNE DX, AX; CMOVQNE R8, DX; MOVQ AX, 16+x; MOVQ DX, 16+y; \
MOVQ 24+x, AX; MOVQ AX, R8; MOVQ 24+y, DX; CMOVQNE DX, AX; CMOVQNE R8, DX; MOVQ AX, 24+x; MOVQ DX, 24+y;
// additionLeg adds x and y and stores in z
// Uses: AX, DX, R8-R11, FLAGS
// Instr: x86_64, cmov
#define additionLeg(z,x,y) \
MOVL $38, AX; \
MOVL $0, DX; \
MOVQ 0+x, R8; ADDQ 0+y, R8; \
MOVQ 8+x, R9; ADCQ 8+y, R9; \
MOVQ 16+x, R10; ADCQ 16+y, R10; \
MOVQ 24+x, R11; ADCQ 24+y, R11; \
CMOVQCS AX, DX; \
ADDQ DX, R8; \
ADCQ $0, R9; MOVQ R9, 8+z; \
ADCQ $0, R10; MOVQ R10, 16+z; \
ADCQ $0, R11; MOVQ R11, 24+z; \
MOVL $0, DX; \
CMOVQCS AX, DX; \
ADDQ DX, R8; MOVQ R8, 0+z;
// additionAdx adds x and y and stores in z
// Uses: AX, DX, R8-R11, FLAGS
// Instr: x86_64, cmov, adx
#define additionAdx(z,x,y) \
MOVL $38, AX; \
XORL DX, DX; \
MOVQ 0+x, R8; ADCXQ 0+y, R8; \
MOVQ 8+x, R9; ADCXQ 8+y, R9; \
MOVQ 16+x, R10; ADCXQ 16+y, R10; \
MOVQ 24+x, R11; ADCXQ 24+y, R11; \
CMOVQCS AX, DX ; \
XORL AX, AX; \
ADCXQ DX, R8; \
ADCXQ AX, R9; MOVQ R9, 8+z; \
ADCXQ AX, R10; MOVQ R10, 16+z; \
ADCXQ AX, R11; MOVQ R11, 24+z; \
MOVL $38, DX; \
CMOVQCS DX, AX; \
ADDQ AX, R8; MOVQ R8, 0+z;
// subtraction subtracts y from x and stores in z
// Uses: AX, DX, R8-R11, FLAGS
// Instr: x86_64, cmov
#define subtraction(z,x,y) \
MOVL $38, AX; \
MOVQ 0+x, R8; SUBQ 0+y, R8; \
MOVQ 8+x, R9; SBBQ 8+y, R9; \
MOVQ 16+x, R10; SBBQ 16+y, R10; \
MOVQ 24+x, R11; SBBQ 24+y, R11; \
MOVL $0, DX; \
CMOVQCS AX, DX; \
SUBQ DX, R8; \
SBBQ $0, R9; MOVQ R9, 8+z; \
SBBQ $0, R10; MOVQ R10, 16+z; \
SBBQ $0, R11; MOVQ R11, 24+z; \
MOVL $0, DX; \
CMOVQCS AX, DX; \
SUBQ DX, R8; MOVQ R8, 0+z;
// integerMulAdx multiplies x and y and stores in z
// Uses: AX, DX, R8-R15, FLAGS
// Instr: x86_64, bmi2, adx
#define integerMulAdx(z,x,y) \
MOVL $0,R15; \
MOVQ 0+y, DX; XORL AX, AX; \
MULXQ 0+x, AX, R8; MOVQ AX, 0+z; \
MULXQ 8+x, AX, R9; ADCXQ AX, R8; \
MULXQ 16+x, AX, R10; ADCXQ AX, R9; \
MULXQ 24+x, AX, R11; ADCXQ AX, R10; \
MOVL $0, AX;;;;;;;;; ADCXQ AX, R11; \
MOVQ 8+y, DX; XORL AX, AX; \
MULXQ 0+x, AX, R12; ADCXQ R8, AX; MOVQ AX, 8+z; \
MULXQ 8+x, AX, R13; ADCXQ R9, R12; ADOXQ AX, R12; \
MULXQ 16+x, AX, R14; ADCXQ R10, R13; ADOXQ AX, R13; \
MULXQ 24+x, AX, R15; ADCXQ R11, R14; ADOXQ AX, R14; \
MOVL $0, AX;;;;;;;;; ADCXQ AX, R15; ADOXQ AX, R15; \
MOVQ 16+y, DX; XORL AX, AX; \
MULXQ 0+x, AX, R8; ADCXQ R12, AX; MOVQ AX, 16+z; \
MULXQ 8+x, AX, R9; ADCXQ R13, R8; ADOXQ AX, R8; \
MULXQ 16+x, AX, R10; ADCXQ R14, R9; ADOXQ AX, R9; \
MULXQ 24+x, AX, R11; ADCXQ R15, R10; ADOXQ AX, R10; \
MOVL $0, AX;;;;;;;;; ADCXQ AX, R11; ADOXQ AX, R11; \
MOVQ 24+y, DX; XORL AX, AX; \
MULXQ 0+x, AX, R12; ADCXQ R8, AX; MOVQ AX, 24+z; \
MULXQ 8+x, AX, R13; ADCXQ R9, R12; ADOXQ AX, R12; MOVQ R12, 32+z; \
MULXQ 16+x, AX, R14; ADCXQ R10, R13; ADOXQ AX, R13; MOVQ R13, 40+z; \
MULXQ 24+x, AX, R15; ADCXQ R11, R14; ADOXQ AX, R14; MOVQ R14, 48+z; \
MOVL $0, AX;;;;;;;;; ADCXQ AX, R15; ADOXQ AX, R15; MOVQ R15, 56+z;
// integerMulLeg multiplies x and y and stores in z
// Uses: AX, DX, R8-R15, FLAGS
// Instr: x86_64
#define integerMulLeg(z,x,y) \
MOVQ 0+y, R8; \
MOVQ 0+x, AX; MULQ R8; MOVQ AX, 0+z; MOVQ DX, R15; \
MOVQ 8+x, AX; MULQ R8; MOVQ AX, R13; MOVQ DX, R10; \
MOVQ 16+x, AX; MULQ R8; MOVQ AX, R14; MOVQ DX, R11; \
MOVQ 24+x, AX; MULQ R8; \
ADDQ R13, R15; \
ADCQ R14, R10; MOVQ R10, 16+z; \
ADCQ AX, R11; MOVQ R11, 24+z; \
ADCQ $0, DX; MOVQ DX, 32+z; \
MOVQ 8+y, R8; \
MOVQ 0+x, AX; MULQ R8; MOVQ AX, R12; MOVQ DX, R9; \
MOVQ 8+x, AX; MULQ R8; MOVQ AX, R13; MOVQ DX, R10; \
MOVQ 16+x, AX; MULQ R8; MOVQ AX, R14; MOVQ DX, R11; \
MOVQ 24+x, AX; MULQ R8; \
ADDQ R12, R15; MOVQ R15, 8+z; \
ADCQ R13, R9; \
ADCQ R14, R10; \
ADCQ AX, R11; \
ADCQ $0, DX; \
ADCQ 16+z, R9; MOVQ R9, R15; \
ADCQ 24+z, R10; MOVQ R10, 24+z; \
ADCQ 32+z, R11; MOVQ R11, 32+z; \
ADCQ $0, DX; MOVQ DX, 40+z; \
MOVQ 16+y, R8; \
MOVQ 0+x, AX; MULQ R8; MOVQ AX, R12; MOVQ DX, R9; \
MOVQ 8+x, AX; MULQ R8; MOVQ AX, R13; MOVQ DX, R10; \
MOVQ 16+x, AX; MULQ R8; MOVQ AX, R14; MOVQ DX, R11; \
MOVQ 24+x, AX; MULQ R8; \
ADDQ R12, R15; MOVQ R15, 16+z; \
ADCQ R13, R9; \
ADCQ R14, R10; \
ADCQ AX, R11; \
ADCQ $0, DX; \
ADCQ 24+z, R9; MOVQ R9, R15; \
ADCQ 32+z, R10; MOVQ R10, 32+z; \
ADCQ 40+z, R11; MOVQ R11, 40+z; \
ADCQ $0, DX; MOVQ DX, 48+z; \
MOVQ 24+y, R8; \
MOVQ 0+x, AX; MULQ R8; MOVQ AX, R12; MOVQ DX, R9; \
MOVQ 8+x, AX; MULQ R8; MOVQ AX, R13; MOVQ DX, R10; \
MOVQ 16+x, AX; MULQ R8; MOVQ AX, R14; MOVQ DX, R11; \
MOVQ 24+x, AX; MULQ R8; \
ADDQ R12, R15; MOVQ R15, 24+z; \
ADCQ R13, R9; \
ADCQ R14, R10; \
ADCQ AX, R11; \
ADCQ $0, DX; \
ADCQ 32+z, R9; MOVQ R9, 32+z; \
ADCQ 40+z, R10; MOVQ R10, 40+z; \
ADCQ 48+z, R11; MOVQ R11, 48+z; \
ADCQ $0, DX; MOVQ DX, 56+z;
// integerSqrLeg squares x and stores in z
// Uses: AX, CX, DX, R8-R15, FLAGS
// Instr: x86_64
#define integerSqrLeg(z,x) \
MOVQ 0+x, R8; \
MOVQ 8+x, AX; MULQ R8; MOVQ AX, R9; MOVQ DX, R10; /* A[0]*A[1] */ \
MOVQ 16+x, AX; MULQ R8; MOVQ AX, R14; MOVQ DX, R11; /* A[0]*A[2] */ \
MOVQ 24+x, AX; MULQ R8; MOVQ AX, R15; MOVQ DX, R12; /* A[0]*A[3] */ \
MOVQ 24+x, R8; \
MOVQ 8+x, AX; MULQ R8; MOVQ AX, CX; MOVQ DX, R13; /* A[3]*A[1] */ \
MOVQ 16+x, AX; MULQ R8; /* A[3]*A[2] */ \
\
ADDQ R14, R10;\
ADCQ R15, R11; MOVL $0, R15;\
ADCQ CX, R12;\
ADCQ AX, R13;\
ADCQ $0, DX; MOVQ DX, R14;\
MOVQ 8+x, AX; MULQ 16+x;\
\
ADDQ AX, R11;\
ADCQ DX, R12;\
ADCQ $0, R13;\
ADCQ $0, R14;\
ADCQ $0, R15;\
\
SHLQ $1, R14, R15; MOVQ R15, 56+z;\
SHLQ $1, R13, R14; MOVQ R14, 48+z;\
SHLQ $1, R12, R13; MOVQ R13, 40+z;\
SHLQ $1, R11, R12; MOVQ R12, 32+z;\
SHLQ $1, R10, R11; MOVQ R11, 24+z;\
SHLQ $1, R9, R10; MOVQ R10, 16+z;\
SHLQ $1, R9; MOVQ R9, 8+z;\
\
MOVQ 0+x,AX; MULQ AX; MOVQ AX, 0+z; MOVQ DX, R9;\
MOVQ 8+x,AX; MULQ AX; MOVQ AX, R10; MOVQ DX, R11;\
MOVQ 16+x,AX; MULQ AX; MOVQ AX, R12; MOVQ DX, R13;\
MOVQ 24+x,AX; MULQ AX; MOVQ AX, R14; MOVQ DX, R15;\
\
ADDQ 8+z, R9; MOVQ R9, 8+z;\
ADCQ 16+z, R10; MOVQ R10, 16+z;\
ADCQ 24+z, R11; MOVQ R11, 24+z;\
ADCQ 32+z, R12; MOVQ R12, 32+z;\
ADCQ 40+z, R13; MOVQ R13, 40+z;\
ADCQ 48+z, R14; MOVQ R14, 48+z;\
ADCQ 56+z, R15; MOVQ R15, 56+z;
// integerSqrAdx squares x and stores in z
// Uses: AX, CX, DX, R8-R15, FLAGS
// Instr: x86_64, bmi2, adx
#define integerSqrAdx(z,x) \
MOVQ 0+x, DX; /* A[0] */ \
MULXQ 8+x, R8, R14; /* A[1]*A[0] */ XORL R15, R15; \
MULXQ 16+x, R9, R10; /* A[2]*A[0] */ ADCXQ R14, R9; \
MULXQ 24+x, AX, CX; /* A[3]*A[0] */ ADCXQ AX, R10; \
MOVQ 24+x, DX; /* A[3] */ \
MULXQ 8+x, R11, R12; /* A[1]*A[3] */ ADCXQ CX, R11; \
MULXQ 16+x, AX, R13; /* A[2]*A[3] */ ADCXQ AX, R12; \
MOVQ 8+x, DX; /* A[1] */ ADCXQ R15, R13; \
MULXQ 16+x, AX, CX; /* A[2]*A[1] */ MOVL $0, R14; \
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ADCXQ R15, R14; \
XORL R15, R15; \
ADOXQ AX, R10; ADCXQ R8, R8; \
ADOXQ CX, R11; ADCXQ R9, R9; \
ADOXQ R15, R12; ADCXQ R10, R10; \
ADOXQ R15, R13; ADCXQ R11, R11; \
ADOXQ R15, R14; ADCXQ R12, R12; \
;;;;;;;;;;;;;;; ADCXQ R13, R13; \
;;;;;;;;;;;;;;; ADCXQ R14, R14; \
MOVQ 0+x, DX; MULXQ DX, AX, CX; /* A[0]^2 */ \
;;;;;;;;;;;;;;; MOVQ AX, 0+z; \
ADDQ CX, R8; MOVQ R8, 8+z; \
MOVQ 8+x, DX; MULXQ DX, AX, CX; /* A[1]^2 */ \
ADCQ AX, R9; MOVQ R9, 16+z; \
ADCQ CX, R10; MOVQ R10, 24+z; \
MOVQ 16+x, DX; MULXQ DX, AX, CX; /* A[2]^2 */ \
ADCQ AX, R11; MOVQ R11, 32+z; \
ADCQ CX, R12; MOVQ R12, 40+z; \
MOVQ 24+x, DX; MULXQ DX, AX, CX; /* A[3]^2 */ \
ADCQ AX, R13; MOVQ R13, 48+z; \
ADCQ CX, R14; MOVQ R14, 56+z;
// reduceFromDouble finds z congruent to x modulo p such that 0<z<2^256
// Uses: AX, DX, R8-R13, FLAGS
// Instr: x86_64
#define reduceFromDoubleLeg(z,x) \
/* 2*C = 38 = 2^256 */ \
MOVL $38, AX; MULQ 32+x; MOVQ AX, R8; MOVQ DX, R9; /* C*C[4] */ \
MOVL $38, AX; MULQ 40+x; MOVQ AX, R12; MOVQ DX, R10; /* C*C[5] */ \
MOVL $38, AX; MULQ 48+x; MOVQ AX, R13; MOVQ DX, R11; /* C*C[6] */ \
MOVL $38, AX; MULQ 56+x; /* C*C[7] */ \
ADDQ R12, R9; \
ADCQ R13, R10; \
ADCQ AX, R11; \
ADCQ $0, DX; \
ADDQ 0+x, R8; \
ADCQ 8+x, R9; \
ADCQ 16+x, R10; \
ADCQ 24+x, R11; \
ADCQ $0, DX; \
MOVL $38, AX; \
IMULQ AX, DX; /* C*C[4], CF=0, OF=0 */ \
ADDQ DX, R8; \
ADCQ $0, R9; MOVQ R9, 8+z; \
ADCQ $0, R10; MOVQ R10, 16+z; \
ADCQ $0, R11; MOVQ R11, 24+z; \
MOVL $0, DX; \
CMOVQCS AX, DX; \
ADDQ DX, R8; MOVQ R8, 0+z;
// reduceFromDoubleAdx finds z congruent to x modulo p such that 0<z<2^256
// Uses: AX, DX, R8-R13, FLAGS
// Instr: x86_64, bmi2, adx
#define reduceFromDoubleAdx(z,x) \
MOVL $38, DX; /* 2*C = 38 = 2^256 */ \
MULXQ 32+x, R8, R10; /* C*C[4] */ XORL AX, AX; ADOXQ 0+x, R8; \
MULXQ 40+x, R9, R11; /* C*C[5] */ ADCXQ R10, R9; ADOXQ 8+x, R9; \
MULXQ 48+x, R10, R13; /* C*C[6] */ ADCXQ R11, R10; ADOXQ 16+x, R10; \
MULXQ 56+x, R11, R12; /* C*C[7] */ ADCXQ R13, R11; ADOXQ 24+x, R11; \
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ADCXQ AX, R12; ADOXQ AX, R12; \
IMULQ DX, R12; /* C*C[4], CF=0, OF=0 */ \
ADCXQ R12, R8; \
ADCXQ AX, R9; MOVQ R9, 8+z; \
ADCXQ AX, R10; MOVQ R10, 16+z; \
ADCXQ AX, R11; MOVQ R11, 24+z; \
MOVL $0, R12; \
CMOVQCS DX, R12; \
ADDQ R12, R8; MOVQ R8, 0+z;
// addSub calculates two operations: x,y = x+y,x-y
// Uses: AX, DX, R8-R15, FLAGS
#define addSub(x,y) \
MOVL $38, AX; \
XORL DX, DX; \
MOVQ 0+x, R8; MOVQ R8, R12; ADDQ 0+y, R8; \
MOVQ 8+x, R9; MOVQ R9, R13; ADCQ 8+y, R9; \
MOVQ 16+x, R10; MOVQ R10, R14; ADCQ 16+y, R10; \
MOVQ 24+x, R11; MOVQ R11, R15; ADCQ 24+y, R11; \
CMOVQCS AX, DX; \
XORL AX, AX; \
ADDQ DX, R8; \
ADCQ $0, R9; \
ADCQ $0, R10; \
ADCQ $0, R11; \
MOVL $38, DX; \
CMOVQCS DX, AX; \
ADDQ AX, R8; \
MOVL $38, AX; \
SUBQ 0+y, R12; \
SBBQ 8+y, R13; \
SBBQ 16+y, R14; \
SBBQ 24+y, R15; \
MOVL $0, DX; \
CMOVQCS AX, DX; \
SUBQ DX, R12; \
SBBQ $0, R13; \
SBBQ $0, R14; \
SBBQ $0, R15; \
MOVL $0, DX; \
CMOVQCS AX, DX; \
SUBQ DX, R12; \
MOVQ R8, 0+x; \
MOVQ R9, 8+x; \
MOVQ R10, 16+x; \
MOVQ R11, 24+x; \
MOVQ R12, 0+y; \
MOVQ R13, 8+y; \
MOVQ R14, 16+y; \
MOVQ R15, 24+y;

View File

@ -0,0 +1,111 @@
// +build amd64
#include "textflag.h"
#include "fp_amd64.h"
// func cmovAmd64(x, y *Elt, n uint)
TEXT ·cmovAmd64(SB),NOSPLIT,$0-24
MOVQ x+0(FP), DI
MOVQ y+8(FP), SI
MOVQ n+16(FP), BX
cselect(0(DI),0(SI),BX)
RET
// func cswapAmd64(x, y *Elt, n uint)
TEXT ·cswapAmd64(SB),NOSPLIT,$0-24
MOVQ x+0(FP), DI
MOVQ y+8(FP), SI
MOVQ n+16(FP), BX
cswap(0(DI),0(SI),BX)
RET
// func subAmd64(z, x, y *Elt)
TEXT ·subAmd64(SB),NOSPLIT,$0-24
MOVQ z+0(FP), DI
MOVQ x+8(FP), SI
MOVQ y+16(FP), BX
subtraction(0(DI),0(SI),0(BX))
RET
// func addsubAmd64(x, y *Elt)
TEXT ·addsubAmd64(SB),NOSPLIT,$0-16
MOVQ x+0(FP), DI
MOVQ y+8(FP), SI
addSub(0(DI),0(SI))
RET
#define addLegacy \
additionLeg(0(DI),0(SI),0(BX))
#define addBmi2Adx \
additionAdx(0(DI),0(SI),0(BX))
#define mulLegacy \
integerMulLeg(0(SP),0(SI),0(BX)) \
reduceFromDoubleLeg(0(DI),0(SP))
#define mulBmi2Adx \
integerMulAdx(0(SP),0(SI),0(BX)) \
reduceFromDoubleAdx(0(DI),0(SP))
#define sqrLegacy \
integerSqrLeg(0(SP),0(SI)) \
reduceFromDoubleLeg(0(DI),0(SP))
#define sqrBmi2Adx \
integerSqrAdx(0(SP),0(SI)) \
reduceFromDoubleAdx(0(DI),0(SP))
// func addAmd64(z, x, y *Elt)
TEXT ·addAmd64(SB),NOSPLIT,$0-24
MOVQ z+0(FP), DI
MOVQ x+8(FP), SI
MOVQ y+16(FP), BX
CHECK_BMI2ADX(LADD, addLegacy, addBmi2Adx)
// func mulAmd64(z, x, y *Elt)
TEXT ·mulAmd64(SB),NOSPLIT,$64-24
MOVQ z+0(FP), DI
MOVQ x+8(FP), SI
MOVQ y+16(FP), BX
CHECK_BMI2ADX(LMUL, mulLegacy, mulBmi2Adx)
// func sqrAmd64(z, x *Elt)
TEXT ·sqrAmd64(SB),NOSPLIT,$64-16
MOVQ z+0(FP), DI
MOVQ x+8(FP), SI
CHECK_BMI2ADX(LSQR, sqrLegacy, sqrBmi2Adx)
// func modpAmd64(z *Elt)
TEXT ·modpAmd64(SB),NOSPLIT,$0-8
MOVQ z+0(FP), DI
MOVQ (DI), R8
MOVQ 8(DI), R9
MOVQ 16(DI), R10
MOVQ 24(DI), R11
MOVL $19, AX
MOVL $38, CX
BTRQ $63, R11 // PUT BIT 255 IN CARRY FLAG AND CLEAR
CMOVLCC AX, CX // C[255] ? 38 : 19
// ADD EITHER 19 OR 38 TO C
ADDQ CX, R8
ADCQ $0, R9
ADCQ $0, R10
ADCQ $0, R11
// TEST FOR BIT 255 AGAIN; ONLY TRIGGERED ON OVERFLOW MODULO 2^255-19
MOVL $0, CX
CMOVLPL AX, CX // C[255] ? 0 : 19
BTRQ $63, R11 // CLEAR BIT 255
// SUBTRACT 19 IF NECESSARY
SUBQ CX, R8
MOVQ R8, (DI)
SBBQ $0, R9
MOVQ R9, 8(DI)
SBBQ $0, R10
MOVQ R10, 16(DI)
SBBQ $0, R11
MOVQ R11, 24(DI)
RET

View File

@ -0,0 +1,317 @@
package fp25519
import (
"encoding/binary"
"math/bits"
)
func cmovGeneric(x, y *Elt, n uint) {
m := -uint64(n & 0x1)
x0 := binary.LittleEndian.Uint64(x[0*8 : 1*8])
x1 := binary.LittleEndian.Uint64(x[1*8 : 2*8])
x2 := binary.LittleEndian.Uint64(x[2*8 : 3*8])
x3 := binary.LittleEndian.Uint64(x[3*8 : 4*8])
y0 := binary.LittleEndian.Uint64(y[0*8 : 1*8])
y1 := binary.LittleEndian.Uint64(y[1*8 : 2*8])
y2 := binary.LittleEndian.Uint64(y[2*8 : 3*8])
y3 := binary.LittleEndian.Uint64(y[3*8 : 4*8])
x0 = (x0 &^ m) | (y0 & m)
x1 = (x1 &^ m) | (y1 & m)
x2 = (x2 &^ m) | (y2 & m)
x3 = (x3 &^ m) | (y3 & m)
binary.LittleEndian.PutUint64(x[0*8:1*8], x0)
binary.LittleEndian.PutUint64(x[1*8:2*8], x1)
binary.LittleEndian.PutUint64(x[2*8:3*8], x2)
binary.LittleEndian.PutUint64(x[3*8:4*8], x3)
}
func cswapGeneric(x, y *Elt, n uint) {
m := -uint64(n & 0x1)
x0 := binary.LittleEndian.Uint64(x[0*8 : 1*8])
x1 := binary.LittleEndian.Uint64(x[1*8 : 2*8])
x2 := binary.LittleEndian.Uint64(x[2*8 : 3*8])
x3 := binary.LittleEndian.Uint64(x[3*8 : 4*8])
y0 := binary.LittleEndian.Uint64(y[0*8 : 1*8])
y1 := binary.LittleEndian.Uint64(y[1*8 : 2*8])
y2 := binary.LittleEndian.Uint64(y[2*8 : 3*8])
y3 := binary.LittleEndian.Uint64(y[3*8 : 4*8])
t0 := m & (x0 ^ y0)
t1 := m & (x1 ^ y1)
t2 := m & (x2 ^ y2)
t3 := m & (x3 ^ y3)
x0 ^= t0
x1 ^= t1
x2 ^= t2
x3 ^= t3
y0 ^= t0
y1 ^= t1
y2 ^= t2
y3 ^= t3
binary.LittleEndian.PutUint64(x[0*8:1*8], x0)
binary.LittleEndian.PutUint64(x[1*8:2*8], x1)
binary.LittleEndian.PutUint64(x[2*8:3*8], x2)
binary.LittleEndian.PutUint64(x[3*8:4*8], x3)
binary.LittleEndian.PutUint64(y[0*8:1*8], y0)
binary.LittleEndian.PutUint64(y[1*8:2*8], y1)
binary.LittleEndian.PutUint64(y[2*8:3*8], y2)
binary.LittleEndian.PutUint64(y[3*8:4*8], y3)
}
func addGeneric(z, x, y *Elt) {
x0 := binary.LittleEndian.Uint64(x[0*8 : 1*8])
x1 := binary.LittleEndian.Uint64(x[1*8 : 2*8])
x2 := binary.LittleEndian.Uint64(x[2*8 : 3*8])
x3 := binary.LittleEndian.Uint64(x[3*8 : 4*8])
y0 := binary.LittleEndian.Uint64(y[0*8 : 1*8])
y1 := binary.LittleEndian.Uint64(y[1*8 : 2*8])
y2 := binary.LittleEndian.Uint64(y[2*8 : 3*8])
y3 := binary.LittleEndian.Uint64(y[3*8 : 4*8])
z0, c0 := bits.Add64(x0, y0, 0)
z1, c1 := bits.Add64(x1, y1, c0)
z2, c2 := bits.Add64(x2, y2, c1)
z3, c3 := bits.Add64(x3, y3, c2)
z0, c0 = bits.Add64(z0, (-c3)&38, 0)
z1, c1 = bits.Add64(z1, 0, c0)
z2, c2 = bits.Add64(z2, 0, c1)
z3, c3 = bits.Add64(z3, 0, c2)
z0, _ = bits.Add64(z0, (-c3)&38, 0)
binary.LittleEndian.PutUint64(z[0*8:1*8], z0)
binary.LittleEndian.PutUint64(z[1*8:2*8], z1)
binary.LittleEndian.PutUint64(z[2*8:3*8], z2)
binary.LittleEndian.PutUint64(z[3*8:4*8], z3)
}
func subGeneric(z, x, y *Elt) {
x0 := binary.LittleEndian.Uint64(x[0*8 : 1*8])
x1 := binary.LittleEndian.Uint64(x[1*8 : 2*8])
x2 := binary.LittleEndian.Uint64(x[2*8 : 3*8])
x3 := binary.LittleEndian.Uint64(x[3*8 : 4*8])
y0 := binary.LittleEndian.Uint64(y[0*8 : 1*8])
y1 := binary.LittleEndian.Uint64(y[1*8 : 2*8])
y2 := binary.LittleEndian.Uint64(y[2*8 : 3*8])
y3 := binary.LittleEndian.Uint64(y[3*8 : 4*8])
z0, c0 := bits.Sub64(x0, y0, 0)
z1, c1 := bits.Sub64(x1, y1, c0)
z2, c2 := bits.Sub64(x2, y2, c1)
z3, c3 := bits.Sub64(x3, y3, c2)
z0, c0 = bits.Sub64(z0, (-c3)&38, 0)
z1, c1 = bits.Sub64(z1, 0, c0)
z2, c2 = bits.Sub64(z2, 0, c1)
z3, c3 = bits.Sub64(z3, 0, c2)
z0, _ = bits.Sub64(z0, (-c3)&38, 0)
binary.LittleEndian.PutUint64(z[0*8:1*8], z0)
binary.LittleEndian.PutUint64(z[1*8:2*8], z1)
binary.LittleEndian.PutUint64(z[2*8:3*8], z2)
binary.LittleEndian.PutUint64(z[3*8:4*8], z3)
}
func addsubGeneric(x, y *Elt) {
z := &Elt{}
addGeneric(z, x, y)
subGeneric(y, x, y)
*x = *z
}
func mulGeneric(z, x, y *Elt) {
x0 := binary.LittleEndian.Uint64(x[0*8 : 1*8])
x1 := binary.LittleEndian.Uint64(x[1*8 : 2*8])
x2 := binary.LittleEndian.Uint64(x[2*8 : 3*8])
x3 := binary.LittleEndian.Uint64(x[3*8 : 4*8])
y0 := binary.LittleEndian.Uint64(y[0*8 : 1*8])
y1 := binary.LittleEndian.Uint64(y[1*8 : 2*8])
y2 := binary.LittleEndian.Uint64(y[2*8 : 3*8])
y3 := binary.LittleEndian.Uint64(y[3*8 : 4*8])
yi := y0
h0, l0 := bits.Mul64(x0, yi)
h1, l1 := bits.Mul64(x1, yi)
h2, l2 := bits.Mul64(x2, yi)
h3, l3 := bits.Mul64(x3, yi)
z0 := l0
a0, c0 := bits.Add64(h0, l1, 0)
a1, c1 := bits.Add64(h1, l2, c0)
a2, c2 := bits.Add64(h2, l3, c1)
a3, _ := bits.Add64(h3, 0, c2)
yi = y1
h0, l0 = bits.Mul64(x0, yi)
h1, l1 = bits.Mul64(x1, yi)
h2, l2 = bits.Mul64(x2, yi)
h3, l3 = bits.Mul64(x3, yi)
z1, c0 := bits.Add64(a0, l0, 0)
h0, c1 = bits.Add64(h0, l1, c0)
h1, c2 = bits.Add64(h1, l2, c1)
h2, c3 := bits.Add64(h2, l3, c2)
h3, _ = bits.Add64(h3, 0, c3)
a0, c0 = bits.Add64(a1, h0, 0)
a1, c1 = bits.Add64(a2, h1, c0)
a2, c2 = bits.Add64(a3, h2, c1)
a3, _ = bits.Add64(0, h3, c2)
yi = y2
h0, l0 = bits.Mul64(x0, yi)
h1, l1 = bits.Mul64(x1, yi)
h2, l2 = bits.Mul64(x2, yi)
h3, l3 = bits.Mul64(x3, yi)
z2, c0 := bits.Add64(a0, l0, 0)
h0, c1 = bits.Add64(h0, l1, c0)
h1, c2 = bits.Add64(h1, l2, c1)
h2, c3 = bits.Add64(h2, l3, c2)
h3, _ = bits.Add64(h3, 0, c3)
a0, c0 = bits.Add64(a1, h0, 0)
a1, c1 = bits.Add64(a2, h1, c0)
a2, c2 = bits.Add64(a3, h2, c1)
a3, _ = bits.Add64(0, h3, c2)
yi = y3
h0, l0 = bits.Mul64(x0, yi)
h1, l1 = bits.Mul64(x1, yi)
h2, l2 = bits.Mul64(x2, yi)
h3, l3 = bits.Mul64(x3, yi)
z3, c0 := bits.Add64(a0, l0, 0)
h0, c1 = bits.Add64(h0, l1, c0)
h1, c2 = bits.Add64(h1, l2, c1)
h2, c3 = bits.Add64(h2, l3, c2)
h3, _ = bits.Add64(h3, 0, c3)
z4, c0 := bits.Add64(a1, h0, 0)
z5, c1 := bits.Add64(a2, h1, c0)
z6, c2 := bits.Add64(a3, h2, c1)
z7, _ := bits.Add64(0, h3, c2)
red64(z, z0, z1, z2, z3, z4, z5, z6, z7)
}
func sqrGeneric(z, x *Elt) {
x0 := binary.LittleEndian.Uint64(x[0*8 : 1*8])
x1 := binary.LittleEndian.Uint64(x[1*8 : 2*8])
x2 := binary.LittleEndian.Uint64(x[2*8 : 3*8])
x3 := binary.LittleEndian.Uint64(x[3*8 : 4*8])
h0, a0 := bits.Mul64(x0, x1)
h1, l1 := bits.Mul64(x0, x2)
h2, l2 := bits.Mul64(x0, x3)
h3, l3 := bits.Mul64(x3, x1)
h4, l4 := bits.Mul64(x3, x2)
h, l := bits.Mul64(x1, x2)
a1, c0 := bits.Add64(l1, h0, 0)
a2, c1 := bits.Add64(l2, h1, c0)
a3, c2 := bits.Add64(l3, h2, c1)
a4, c3 := bits.Add64(l4, h3, c2)
a5, _ := bits.Add64(h4, 0, c3)
a2, c0 = bits.Add64(a2, l, 0)
a3, c1 = bits.Add64(a3, h, c0)
a4, c2 = bits.Add64(a4, 0, c1)
a5, c3 = bits.Add64(a5, 0, c2)
a6, _ := bits.Add64(0, 0, c3)
a0, c0 = bits.Add64(a0, a0, 0)
a1, c1 = bits.Add64(a1, a1, c0)
a2, c2 = bits.Add64(a2, a2, c1)
a3, c3 = bits.Add64(a3, a3, c2)
a4, c4 := bits.Add64(a4, a4, c3)
a5, c5 := bits.Add64(a5, a5, c4)
a6, _ = bits.Add64(a6, a6, c5)
b1, b0 := bits.Mul64(x0, x0)
b3, b2 := bits.Mul64(x1, x1)
b5, b4 := bits.Mul64(x2, x2)
b7, b6 := bits.Mul64(x3, x3)
b1, c0 = bits.Add64(b1, a0, 0)
b2, c1 = bits.Add64(b2, a1, c0)
b3, c2 = bits.Add64(b3, a2, c1)
b4, c3 = bits.Add64(b4, a3, c2)
b5, c4 = bits.Add64(b5, a4, c3)
b6, c5 = bits.Add64(b6, a5, c4)
b7, _ = bits.Add64(b7, a6, c5)
red64(z, b0, b1, b2, b3, b4, b5, b6, b7)
}
func modpGeneric(x *Elt) {
x0 := binary.LittleEndian.Uint64(x[0*8 : 1*8])
x1 := binary.LittleEndian.Uint64(x[1*8 : 2*8])
x2 := binary.LittleEndian.Uint64(x[2*8 : 3*8])
x3 := binary.LittleEndian.Uint64(x[3*8 : 4*8])
// CX = C[255] ? 38 : 19
cx := uint64(19) << (x3 >> 63)
// PUT BIT 255 IN CARRY FLAG AND CLEAR
x3 &^= 1 << 63
x0, c0 := bits.Add64(x0, cx, 0)
x1, c1 := bits.Add64(x1, 0, c0)
x2, c2 := bits.Add64(x2, 0, c1)
x3, _ = bits.Add64(x3, 0, c2)
// TEST FOR BIT 255 AGAIN; ONLY TRIGGERED ON OVERFLOW MODULO 2^255-19
// cx = C[255] ? 0 : 19
cx = uint64(19) &^ (-(x3 >> 63))
// CLEAR BIT 255
x3 &^= 1 << 63
x0, c0 = bits.Sub64(x0, cx, 0)
x1, c1 = bits.Sub64(x1, 0, c0)
x2, c2 = bits.Sub64(x2, 0, c1)
x3, _ = bits.Sub64(x3, 0, c2)
binary.LittleEndian.PutUint64(x[0*8:1*8], x0)
binary.LittleEndian.PutUint64(x[1*8:2*8], x1)
binary.LittleEndian.PutUint64(x[2*8:3*8], x2)
binary.LittleEndian.PutUint64(x[3*8:4*8], x3)
}
func red64(z *Elt, x0, x1, x2, x3, x4, x5, x6, x7 uint64) {
h0, l0 := bits.Mul64(x4, 38)
h1, l1 := bits.Mul64(x5, 38)
h2, l2 := bits.Mul64(x6, 38)
h3, l3 := bits.Mul64(x7, 38)
l1, c0 := bits.Add64(h0, l1, 0)
l2, c1 := bits.Add64(h1, l2, c0)
l3, c2 := bits.Add64(h2, l3, c1)
l4, _ := bits.Add64(h3, 0, c2)
l0, c0 = bits.Add64(l0, x0, 0)
l1, c1 = bits.Add64(l1, x1, c0)
l2, c2 = bits.Add64(l2, x2, c1)
l3, c3 := bits.Add64(l3, x3, c2)
l4, _ = bits.Add64(l4, 0, c3)
_, l4 = bits.Mul64(l4, 38)
l0, c0 = bits.Add64(l0, l4, 0)
z1, c1 := bits.Add64(l1, 0, c0)
z2, c2 := bits.Add64(l2, 0, c1)
z3, c3 := bits.Add64(l3, 0, c2)
z0, _ := bits.Add64(l0, (-c3)&38, 0)
binary.LittleEndian.PutUint64(z[0*8:1*8], z0)
binary.LittleEndian.PutUint64(z[1*8:2*8], z1)
binary.LittleEndian.PutUint64(z[2*8:3*8], z2)
binary.LittleEndian.PutUint64(z[3*8:4*8], z3)
}

View File

@ -0,0 +1,13 @@
//go:build !amd64 || purego
// +build !amd64 purego
package fp25519
func cmov(x, y *Elt, n uint) { cmovGeneric(x, y, n) }
func cswap(x, y *Elt, n uint) { cswapGeneric(x, y, n) }
func add(z, x, y *Elt) { addGeneric(z, x, y) }
func sub(z, x, y *Elt) { subGeneric(z, x, y) }
func addsub(x, y *Elt) { addsubGeneric(x, y) }
func mul(z, x, y *Elt) { mulGeneric(z, x, y) }
func sqr(z, x *Elt) { sqrGeneric(z, x) }
func modp(z *Elt) { modpGeneric(z) }

164
vendor/github.com/cloudflare/circl/math/fp448/fp.go generated vendored Normal file
View File

@ -0,0 +1,164 @@
// Package fp448 provides prime field arithmetic over GF(2^448-2^224-1).
package fp448
import (
"errors"
"github.com/cloudflare/circl/internal/conv"
)
// Size in bytes of an element.
const Size = 56
// Elt is a prime field element.
type Elt [Size]byte
func (e Elt) String() string { return conv.BytesLe2Hex(e[:]) }
// p is the prime modulus 2^448-2^224-1.
var p = Elt{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
}
// P returns the prime modulus 2^448-2^224-1.
func P() Elt { return p }
// ToBytes stores in b the little-endian byte representation of x.
func ToBytes(b []byte, x *Elt) error {
if len(b) != Size {
return errors.New("wrong size")
}
Modp(x)
copy(b, x[:])
return nil
}
// IsZero returns true if x is equal to 0.
func IsZero(x *Elt) bool { Modp(x); return *x == Elt{} }
// IsOne returns true if x is equal to 1.
func IsOne(x *Elt) bool { Modp(x); return *x == Elt{1} }
// SetOne assigns x=1.
func SetOne(x *Elt) { *x = Elt{1} }
// One returns the 1 element.
func One() (x Elt) { x = Elt{1}; return }
// Neg calculates z = -x.
func Neg(z, x *Elt) { Sub(z, &p, x) }
// Modp ensures that z is between [0,p-1].
func Modp(z *Elt) { Sub(z, z, &p) }
// InvSqrt calculates z = sqrt(x/y) iff x/y is a quadratic-residue. If so,
// isQR = true; otherwise, isQR = false, since x/y is a quadratic non-residue,
// and z = sqrt(-x/y).
func InvSqrt(z, x, y *Elt) (isQR bool) {
// First note that x^(2(k+1)) = x^(p-1)/2 * x = legendre(x) * x
// so that's x if x is a quadratic residue and -x otherwise.
// Next, y^(6k+3) = y^(4k+2) * y^(2k+1) = y^(p-1) * y^((p-1)/2) = legendre(y).
// So the z we compute satisfies z^2 y = x^(2(k+1)) y^(6k+3) = legendre(x)*legendre(y).
// Thus if x and y are quadratic residues, then z is indeed sqrt(x/y).
t0, t1 := &Elt{}, &Elt{}
Mul(t0, x, y) // x*y
Sqr(t1, y) // y^2
Mul(t1, t0, t1) // x*y^3
powPminus3div4(z, t1) // (x*y^3)^k
Mul(z, z, t0) // z = x*y*(x*y^3)^k = x^(k+1) * y^(3k+1)
// Check if x/y is a quadratic residue
Sqr(t0, z) // z^2
Mul(t0, t0, y) // y*z^2
Sub(t0, t0, x) // y*z^2-x
return IsZero(t0)
}
// Inv calculates z = 1/x mod p.
func Inv(z, x *Elt) {
// Calculates z = x^(4k+1) = x^(p-3+1) = x^(p-2) = x^-1, where k = (p-3)/4.
t := &Elt{}
powPminus3div4(t, x) // t = x^k
Sqr(t, t) // t = x^2k
Sqr(t, t) // t = x^4k
Mul(z, t, x) // z = x^(4k+1)
}
// powPminus3div4 calculates z = x^k mod p, where k = (p-3)/4.
func powPminus3div4(z, x *Elt) {
x0, x1 := &Elt{}, &Elt{}
Sqr(z, x)
Mul(z, z, x)
Sqr(x0, z)
Mul(x0, x0, x)
Sqr(z, x0)
Sqr(z, z)
Sqr(z, z)
Mul(z, z, x0)
Sqr(x1, z)
for i := 0; i < 5; i++ {
Sqr(x1, x1)
}
Mul(x1, x1, z)
Sqr(z, x1)
for i := 0; i < 11; i++ {
Sqr(z, z)
}
Mul(z, z, x1)
Sqr(z, z)
Sqr(z, z)
Sqr(z, z)
Mul(z, z, x0)
Sqr(x1, z)
for i := 0; i < 26; i++ {
Sqr(x1, x1)
}
Mul(x1, x1, z)
Sqr(z, x1)
for i := 0; i < 53; i++ {
Sqr(z, z)
}
Mul(z, z, x1)
Sqr(z, z)
Sqr(z, z)
Sqr(z, z)
Mul(z, z, x0)
Sqr(x1, z)
for i := 0; i < 110; i++ {
Sqr(x1, x1)
}
Mul(x1, x1, z)
Sqr(z, x1)
Mul(z, z, x)
for i := 0; i < 223; i++ {
Sqr(z, z)
}
Mul(z, z, x1)
}
// Cmov assigns y to x if n is 1.
func Cmov(x, y *Elt, n uint) { cmov(x, y, n) }
// Cswap interchanges x and y if n is 1.
func Cswap(x, y *Elt, n uint) { cswap(x, y, n) }
// Add calculates z = x+y mod p.
func Add(z, x, y *Elt) { add(z, x, y) }
// Sub calculates z = x-y mod p.
func Sub(z, x, y *Elt) { sub(z, x, y) }
// AddSub calculates (x,y) = (x+y mod p, x-y mod p).
func AddSub(x, y *Elt) { addsub(x, y) }
// Mul calculates z = x*y mod p.
func Mul(z, x, y *Elt) { mul(z, x, y) }
// Sqr calculates z = x^2 mod p.
func Sqr(z, x *Elt) { sqr(z, x) }

View File

@ -0,0 +1,43 @@
//go:build amd64 && !purego
// +build amd64,!purego
package fp448
import (
"golang.org/x/sys/cpu"
)
var hasBmi2Adx = cpu.X86.HasBMI2 && cpu.X86.HasADX
var _ = hasBmi2Adx
func cmov(x, y *Elt, n uint) { cmovAmd64(x, y, n) }
func cswap(x, y *Elt, n uint) { cswapAmd64(x, y, n) }
func add(z, x, y *Elt) { addAmd64(z, x, y) }
func sub(z, x, y *Elt) { subAmd64(z, x, y) }
func addsub(x, y *Elt) { addsubAmd64(x, y) }
func mul(z, x, y *Elt) { mulAmd64(z, x, y) }
func sqr(z, x *Elt) { sqrAmd64(z, x) }
/* Functions defined in fp_amd64.s */
//go:noescape
func cmovAmd64(x, y *Elt, n uint)
//go:noescape
func cswapAmd64(x, y *Elt, n uint)
//go:noescape
func addAmd64(z, x, y *Elt)
//go:noescape
func subAmd64(z, x, y *Elt)
//go:noescape
func addsubAmd64(x, y *Elt)
//go:noescape
func mulAmd64(z, x, y *Elt)
//go:noescape
func sqrAmd64(z, x *Elt)

View File

@ -0,0 +1,591 @@
// This code was imported from https://github.com/armfazh/rfc7748_precomputed
// CHECK_BMI2ADX triggers bmi2adx if supported,
// otherwise it fallbacks to legacy code.
#define CHECK_BMI2ADX(label, legacy, bmi2adx) \
CMPB ·hasBmi2Adx(SB), $0 \
JE label \
bmi2adx \
RET \
label: \
legacy \
RET
// cselect is a conditional move
// if b=1: it copies y into x;
// if b=0: x remains with the same value;
// if b<> 0,1: undefined.
// Uses: AX, DX, FLAGS
// Instr: x86_64, cmov
#define cselect(x,y,b) \
TESTQ b, b \
MOVQ 0+x, AX; MOVQ 0+y, DX; CMOVQNE DX, AX; MOVQ AX, 0+x; \
MOVQ 8+x, AX; MOVQ 8+y, DX; CMOVQNE DX, AX; MOVQ AX, 8+x; \
MOVQ 16+x, AX; MOVQ 16+y, DX; CMOVQNE DX, AX; MOVQ AX, 16+x; \
MOVQ 24+x, AX; MOVQ 24+y, DX; CMOVQNE DX, AX; MOVQ AX, 24+x; \
MOVQ 32+x, AX; MOVQ 32+y, DX; CMOVQNE DX, AX; MOVQ AX, 32+x; \
MOVQ 40+x, AX; MOVQ 40+y, DX; CMOVQNE DX, AX; MOVQ AX, 40+x; \
MOVQ 48+x, AX; MOVQ 48+y, DX; CMOVQNE DX, AX; MOVQ AX, 48+x;
// cswap is a conditional swap
// if b=1: x,y <- y,x;
// if b=0: x,y remain with the same values;
// if b<> 0,1: undefined.
// Uses: AX, DX, R8, FLAGS
// Instr: x86_64, cmov
#define cswap(x,y,b) \
TESTQ b, b \
MOVQ 0+x, AX; MOVQ AX, R8; MOVQ 0+y, DX; CMOVQNE DX, AX; CMOVQNE R8, DX; MOVQ AX, 0+x; MOVQ DX, 0+y; \
MOVQ 8+x, AX; MOVQ AX, R8; MOVQ 8+y, DX; CMOVQNE DX, AX; CMOVQNE R8, DX; MOVQ AX, 8+x; MOVQ DX, 8+y; \
MOVQ 16+x, AX; MOVQ AX, R8; MOVQ 16+y, DX; CMOVQNE DX, AX; CMOVQNE R8, DX; MOVQ AX, 16+x; MOVQ DX, 16+y; \
MOVQ 24+x, AX; MOVQ AX, R8; MOVQ 24+y, DX; CMOVQNE DX, AX; CMOVQNE R8, DX; MOVQ AX, 24+x; MOVQ DX, 24+y; \
MOVQ 32+x, AX; MOVQ AX, R8; MOVQ 32+y, DX; CMOVQNE DX, AX; CMOVQNE R8, DX; MOVQ AX, 32+x; MOVQ DX, 32+y; \
MOVQ 40+x, AX; MOVQ AX, R8; MOVQ 40+y, DX; CMOVQNE DX, AX; CMOVQNE R8, DX; MOVQ AX, 40+x; MOVQ DX, 40+y; \
MOVQ 48+x, AX; MOVQ AX, R8; MOVQ 48+y, DX; CMOVQNE DX, AX; CMOVQNE R8, DX; MOVQ AX, 48+x; MOVQ DX, 48+y;
// additionLeg adds x and y and stores in z
// Uses: AX, DX, R8-R14, FLAGS
// Instr: x86_64
#define additionLeg(z,x,y) \
MOVQ 0+x, R8; ADDQ 0+y, R8; \
MOVQ 8+x, R9; ADCQ 8+y, R9; \
MOVQ 16+x, R10; ADCQ 16+y, R10; \
MOVQ 24+x, R11; ADCQ 24+y, R11; \
MOVQ 32+x, R12; ADCQ 32+y, R12; \
MOVQ 40+x, R13; ADCQ 40+y, R13; \
MOVQ 48+x, R14; ADCQ 48+y, R14; \
MOVQ $0, AX; ADCQ $0, AX; \
MOVQ AX, DX; \
SHLQ $32, DX; \
ADDQ AX, R8; MOVQ $0, AX; \
ADCQ $0, R9; \
ADCQ $0, R10; \
ADCQ DX, R11; \
ADCQ $0, R12; \
ADCQ $0, R13; \
ADCQ $0, R14; \
ADCQ $0, AX; \
MOVQ AX, DX; \
SHLQ $32, DX; \
ADDQ AX, R8; MOVQ R8, 0+z; \
ADCQ $0, R9; MOVQ R9, 8+z; \
ADCQ $0, R10; MOVQ R10, 16+z; \
ADCQ DX, R11; MOVQ R11, 24+z; \
ADCQ $0, R12; MOVQ R12, 32+z; \
ADCQ $0, R13; MOVQ R13, 40+z; \
ADCQ $0, R14; MOVQ R14, 48+z;
// additionAdx adds x and y and stores in z
// Uses: AX, DX, R8-R15, FLAGS
// Instr: x86_64, adx
#define additionAdx(z,x,y) \
MOVL $32, R15; \
XORL DX, DX; \
MOVQ 0+x, R8; ADCXQ 0+y, R8; \
MOVQ 8+x, R9; ADCXQ 8+y, R9; \
MOVQ 16+x, R10; ADCXQ 16+y, R10; \
MOVQ 24+x, R11; ADCXQ 24+y, R11; \
MOVQ 32+x, R12; ADCXQ 32+y, R12; \
MOVQ 40+x, R13; ADCXQ 40+y, R13; \
MOVQ 48+x, R14; ADCXQ 48+y, R14; \
;;;;;;;;;;;;;;; ADCXQ DX, DX; \
XORL AX, AX; \
ADCXQ DX, R8; SHLXQ R15, DX, DX; \
ADCXQ AX, R9; \
ADCXQ AX, R10; \
ADCXQ DX, R11; \
ADCXQ AX, R12; \
ADCXQ AX, R13; \
ADCXQ AX, R14; \
ADCXQ AX, AX; \
XORL DX, DX; \
ADCXQ AX, R8; MOVQ R8, 0+z; SHLXQ R15, AX, AX; \
ADCXQ DX, R9; MOVQ R9, 8+z; \
ADCXQ DX, R10; MOVQ R10, 16+z; \
ADCXQ AX, R11; MOVQ R11, 24+z; \
ADCXQ DX, R12; MOVQ R12, 32+z; \
ADCXQ DX, R13; MOVQ R13, 40+z; \
ADCXQ DX, R14; MOVQ R14, 48+z;
// subtraction subtracts y from x and stores in z
// Uses: AX, DX, R8-R14, FLAGS
// Instr: x86_64
#define subtraction(z,x,y) \
MOVQ 0+x, R8; SUBQ 0+y, R8; \
MOVQ 8+x, R9; SBBQ 8+y, R9; \
MOVQ 16+x, R10; SBBQ 16+y, R10; \
MOVQ 24+x, R11; SBBQ 24+y, R11; \
MOVQ 32+x, R12; SBBQ 32+y, R12; \
MOVQ 40+x, R13; SBBQ 40+y, R13; \
MOVQ 48+x, R14; SBBQ 48+y, R14; \
MOVQ $0, AX; SETCS AX; \
MOVQ AX, DX; \
SHLQ $32, DX; \
SUBQ AX, R8; MOVQ $0, AX; \
SBBQ $0, R9; \
SBBQ $0, R10; \
SBBQ DX, R11; \
SBBQ $0, R12; \
SBBQ $0, R13; \
SBBQ $0, R14; \
SETCS AX; \
MOVQ AX, DX; \
SHLQ $32, DX; \
SUBQ AX, R8; MOVQ R8, 0+z; \
SBBQ $0, R9; MOVQ R9, 8+z; \
SBBQ $0, R10; MOVQ R10, 16+z; \
SBBQ DX, R11; MOVQ R11, 24+z; \
SBBQ $0, R12; MOVQ R12, 32+z; \
SBBQ $0, R13; MOVQ R13, 40+z; \
SBBQ $0, R14; MOVQ R14, 48+z;
// maddBmi2Adx multiplies x and y and accumulates in z
// Uses: AX, DX, R15, FLAGS
// Instr: x86_64, bmi2, adx
#define maddBmi2Adx(z,x,y,i,r0,r1,r2,r3,r4,r5,r6) \
MOVQ i+y, DX; XORL AX, AX; \
MULXQ 0+x, AX, R8; ADOXQ AX, r0; ADCXQ R8, r1; MOVQ r0,i+z; \
MULXQ 8+x, AX, r0; ADOXQ AX, r1; ADCXQ r0, r2; MOVQ $0, R8; \
MULXQ 16+x, AX, r0; ADOXQ AX, r2; ADCXQ r0, r3; \
MULXQ 24+x, AX, r0; ADOXQ AX, r3; ADCXQ r0, r4; \
MULXQ 32+x, AX, r0; ADOXQ AX, r4; ADCXQ r0, r5; \
MULXQ 40+x, AX, r0; ADOXQ AX, r5; ADCXQ r0, r6; \
MULXQ 48+x, AX, r0; ADOXQ AX, r6; ADCXQ R8, r0; \
;;;;;;;;;;;;;;;;;;; ADOXQ R8, r0;
// integerMulAdx multiplies x and y and stores in z
// Uses: AX, DX, R8-R15, FLAGS
// Instr: x86_64, bmi2, adx
#define integerMulAdx(z,x,y) \
MOVL $0,R15; \
MOVQ 0+y, DX; XORL AX, AX; MOVQ $0, R8; \
MULXQ 0+x, AX, R9; MOVQ AX, 0+z; \
MULXQ 8+x, AX, R10; ADCXQ AX, R9; \
MULXQ 16+x, AX, R11; ADCXQ AX, R10; \
MULXQ 24+x, AX, R12; ADCXQ AX, R11; \
MULXQ 32+x, AX, R13; ADCXQ AX, R12; \
MULXQ 40+x, AX, R14; ADCXQ AX, R13; \
MULXQ 48+x, AX, R15; ADCXQ AX, R14; \
;;;;;;;;;;;;;;;;;;;; ADCXQ R8, R15; \
maddBmi2Adx(z,x,y, 8, R9,R10,R11,R12,R13,R14,R15) \
maddBmi2Adx(z,x,y,16,R10,R11,R12,R13,R14,R15, R9) \
maddBmi2Adx(z,x,y,24,R11,R12,R13,R14,R15, R9,R10) \
maddBmi2Adx(z,x,y,32,R12,R13,R14,R15, R9,R10,R11) \
maddBmi2Adx(z,x,y,40,R13,R14,R15, R9,R10,R11,R12) \
maddBmi2Adx(z,x,y,48,R14,R15, R9,R10,R11,R12,R13) \
MOVQ R15, 56+z; \
MOVQ R9, 64+z; \
MOVQ R10, 72+z; \
MOVQ R11, 80+z; \
MOVQ R12, 88+z; \
MOVQ R13, 96+z; \
MOVQ R14, 104+z;
// maddLegacy multiplies x and y and accumulates in z
// Uses: AX, DX, R15, FLAGS
// Instr: x86_64
#define maddLegacy(z,x,y,i) \
MOVQ i+y, R15; \
MOVQ 0+x, AX; MULQ R15; MOVQ AX, R8; ;;;;;;;;;;;; MOVQ DX, R9; \
MOVQ 8+x, AX; MULQ R15; ADDQ AX, R9; ADCQ $0, DX; MOVQ DX, R10; \
MOVQ 16+x, AX; MULQ R15; ADDQ AX, R10; ADCQ $0, DX; MOVQ DX, R11; \
MOVQ 24+x, AX; MULQ R15; ADDQ AX, R11; ADCQ $0, DX; MOVQ DX, R12; \
MOVQ 32+x, AX; MULQ R15; ADDQ AX, R12; ADCQ $0, DX; MOVQ DX, R13; \
MOVQ 40+x, AX; MULQ R15; ADDQ AX, R13; ADCQ $0, DX; MOVQ DX, R14; \
MOVQ 48+x, AX; MULQ R15; ADDQ AX, R14; ADCQ $0, DX; \
ADDQ 0+i+z, R8; MOVQ R8, 0+i+z; \
ADCQ 8+i+z, R9; MOVQ R9, 8+i+z; \
ADCQ 16+i+z, R10; MOVQ R10, 16+i+z; \
ADCQ 24+i+z, R11; MOVQ R11, 24+i+z; \
ADCQ 32+i+z, R12; MOVQ R12, 32+i+z; \
ADCQ 40+i+z, R13; MOVQ R13, 40+i+z; \
ADCQ 48+i+z, R14; MOVQ R14, 48+i+z; \
ADCQ $0, DX; MOVQ DX, 56+i+z;
// integerMulLeg multiplies x and y and stores in z
// Uses: AX, DX, R8-R15, FLAGS
// Instr: x86_64
#define integerMulLeg(z,x,y) \
MOVQ 0+y, R15; \
MOVQ 0+x, AX; MULQ R15; MOVQ AX, 0+z; ;;;;;;;;;;;; MOVQ DX, R8; \
MOVQ 8+x, AX; MULQ R15; ADDQ AX, R8; ADCQ $0, DX; MOVQ DX, R9; MOVQ R8, 8+z; \
MOVQ 16+x, AX; MULQ R15; ADDQ AX, R9; ADCQ $0, DX; MOVQ DX, R10; MOVQ R9, 16+z; \
MOVQ 24+x, AX; MULQ R15; ADDQ AX, R10; ADCQ $0, DX; MOVQ DX, R11; MOVQ R10, 24+z; \
MOVQ 32+x, AX; MULQ R15; ADDQ AX, R11; ADCQ $0, DX; MOVQ DX, R12; MOVQ R11, 32+z; \
MOVQ 40+x, AX; MULQ R15; ADDQ AX, R12; ADCQ $0, DX; MOVQ DX, R13; MOVQ R12, 40+z; \
MOVQ 48+x, AX; MULQ R15; ADDQ AX, R13; ADCQ $0, DX; MOVQ DX,56+z; MOVQ R13, 48+z; \
maddLegacy(z,x,y, 8) \
maddLegacy(z,x,y,16) \
maddLegacy(z,x,y,24) \
maddLegacy(z,x,y,32) \
maddLegacy(z,x,y,40) \
maddLegacy(z,x,y,48)
// integerSqrLeg squares x and stores in z
// Uses: AX, CX, DX, R8-R15, FLAGS
// Instr: x86_64
#define integerSqrLeg(z,x) \
XORL R15, R15; \
MOVQ 0+x, CX; \
MOVQ CX, AX; MULQ CX; MOVQ AX, 0+z; MOVQ DX, R8; \
ADDQ CX, CX; ADCQ $0, R15; \
MOVQ 8+x, AX; MULQ CX; ADDQ AX, R8; ADCQ $0, DX; MOVQ DX, R9; MOVQ R8, 8+z; \
MOVQ 16+x, AX; MULQ CX; ADDQ AX, R9; ADCQ $0, DX; MOVQ DX, R10; \
MOVQ 24+x, AX; MULQ CX; ADDQ AX, R10; ADCQ $0, DX; MOVQ DX, R11; \
MOVQ 32+x, AX; MULQ CX; ADDQ AX, R11; ADCQ $0, DX; MOVQ DX, R12; \
MOVQ 40+x, AX; MULQ CX; ADDQ AX, R12; ADCQ $0, DX; MOVQ DX, R13; \
MOVQ 48+x, AX; MULQ CX; ADDQ AX, R13; ADCQ $0, DX; MOVQ DX, R14; \
\
MOVQ 8+x, CX; \
MOVQ CX, AX; ADDQ R15, CX; MOVQ $0, R15; ADCQ $0, R15; \
;;;;;;;;;;;;;; MULQ CX; ADDQ AX, R9; ADCQ $0, DX; MOVQ R9,16+z; \
MOVQ R15, AX; NEGQ AX; ANDQ 8+x, AX; ADDQ AX, DX; ADCQ $0, R11; MOVQ DX, R8; \
ADDQ 8+x, CX; ADCQ $0, R15; \
MOVQ 16+x, AX; MULQ CX; ADDQ AX, R10; ADCQ $0, DX; ADDQ R8, R10; ADCQ $0, DX; MOVQ DX, R8; MOVQ R10, 24+z; \
MOVQ 24+x, AX; MULQ CX; ADDQ AX, R11; ADCQ $0, DX; ADDQ R8, R11; ADCQ $0, DX; MOVQ DX, R8; \
MOVQ 32+x, AX; MULQ CX; ADDQ AX, R12; ADCQ $0, DX; ADDQ R8, R12; ADCQ $0, DX; MOVQ DX, R8; \
MOVQ 40+x, AX; MULQ CX; ADDQ AX, R13; ADCQ $0, DX; ADDQ R8, R13; ADCQ $0, DX; MOVQ DX, R8; \
MOVQ 48+x, AX; MULQ CX; ADDQ AX, R14; ADCQ $0, DX; ADDQ R8, R14; ADCQ $0, DX; MOVQ DX, R9; \
\
MOVQ 16+x, CX; \
MOVQ CX, AX; ADDQ R15, CX; MOVQ $0, R15; ADCQ $0, R15; \
;;;;;;;;;;;;;; MULQ CX; ADDQ AX, R11; ADCQ $0, DX; MOVQ R11, 32+z; \
MOVQ R15, AX; NEGQ AX; ANDQ 16+x,AX; ADDQ AX, DX; ADCQ $0, R13; MOVQ DX, R8; \
ADDQ 16+x, CX; ADCQ $0, R15; \
MOVQ 24+x, AX; MULQ CX; ADDQ AX, R12; ADCQ $0, DX; ADDQ R8, R12; ADCQ $0, DX; MOVQ DX, R8; MOVQ R12, 40+z; \
MOVQ 32+x, AX; MULQ CX; ADDQ AX, R13; ADCQ $0, DX; ADDQ R8, R13; ADCQ $0, DX; MOVQ DX, R8; \
MOVQ 40+x, AX; MULQ CX; ADDQ AX, R14; ADCQ $0, DX; ADDQ R8, R14; ADCQ $0, DX; MOVQ DX, R8; \
MOVQ 48+x, AX; MULQ CX; ADDQ AX, R9; ADCQ $0, DX; ADDQ R8, R9; ADCQ $0, DX; MOVQ DX,R10; \
\
MOVQ 24+x, CX; \
MOVQ CX, AX; ADDQ R15, CX; MOVQ $0, R15; ADCQ $0, R15; \
;;;;;;;;;;;;;; MULQ CX; ADDQ AX, R13; ADCQ $0, DX; MOVQ R13, 48+z; \
MOVQ R15, AX; NEGQ AX; ANDQ 24+x,AX; ADDQ AX, DX; ADCQ $0, R9; MOVQ DX, R8; \
ADDQ 24+x, CX; ADCQ $0, R15; \
MOVQ 32+x, AX; MULQ CX; ADDQ AX, R14; ADCQ $0, DX; ADDQ R8, R14; ADCQ $0, DX; MOVQ DX, R8; MOVQ R14, 56+z; \
MOVQ 40+x, AX; MULQ CX; ADDQ AX, R9; ADCQ $0, DX; ADDQ R8, R9; ADCQ $0, DX; MOVQ DX, R8; \
MOVQ 48+x, AX; MULQ CX; ADDQ AX, R10; ADCQ $0, DX; ADDQ R8, R10; ADCQ $0, DX; MOVQ DX,R11; \
\
MOVQ 32+x, CX; \
MOVQ CX, AX; ADDQ R15, CX; MOVQ $0, R15; ADCQ $0, R15; \
;;;;;;;;;;;;;; MULQ CX; ADDQ AX, R9; ADCQ $0, DX; MOVQ R9, 64+z; \
MOVQ R15, AX; NEGQ AX; ANDQ 32+x,AX; ADDQ AX, DX; ADCQ $0, R11; MOVQ DX, R8; \
ADDQ 32+x, CX; ADCQ $0, R15; \
MOVQ 40+x, AX; MULQ CX; ADDQ AX, R10; ADCQ $0, DX; ADDQ R8, R10; ADCQ $0, DX; MOVQ DX, R8; MOVQ R10, 72+z; \
MOVQ 48+x, AX; MULQ CX; ADDQ AX, R11; ADCQ $0, DX; ADDQ R8, R11; ADCQ $0, DX; MOVQ DX,R12; \
\
XORL R13, R13; \
XORL R14, R14; \
MOVQ 40+x, CX; \
MOVQ CX, AX; ADDQ R15, CX; MOVQ $0, R15; ADCQ $0, R15; \
;;;;;;;;;;;;;; MULQ CX; ADDQ AX, R11; ADCQ $0, DX; MOVQ R11, 80+z; \
MOVQ R15, AX; NEGQ AX; ANDQ 40+x,AX; ADDQ AX, DX; ADCQ $0, R13; MOVQ DX, R8; \
ADDQ 40+x, CX; ADCQ $0, R15; \
MOVQ 48+x, AX; MULQ CX; ADDQ AX, R12; ADCQ $0, DX; ADDQ R8, R12; ADCQ $0, DX; MOVQ DX, R8; MOVQ R12, 88+z; \
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ADDQ R8, R13; ADCQ $0,R14; \
\
XORL R9, R9; \
MOVQ 48+x, CX; \
MOVQ CX, AX; ADDQ R15, CX; MOVQ $0, R15; ADCQ $0, R15; \
;;;;;;;;;;;;;; MULQ CX; ADDQ AX, R13; ADCQ $0, DX; MOVQ R13, 96+z; \
MOVQ R15, AX; NEGQ AX; ANDQ 48+x,AX; ADDQ AX, DX; ADCQ $0, R9; MOVQ DX, R8; \
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ADDQ R8,R14; ADCQ $0, R9; MOVQ R14, 104+z;
// integerSqrAdx squares x and stores in z
// Uses: AX, CX, DX, R8-R15, FLAGS
// Instr: x86_64, bmi2, adx
#define integerSqrAdx(z,x) \
XORL R15, R15; \
MOVQ 0+x, DX; \
;;;;;;;;;;;;;; MULXQ DX, AX, R8; MOVQ AX, 0+z; \
ADDQ DX, DX; ADCQ $0, R15; CLC; \
MULXQ 8+x, AX, R9; ADCXQ AX, R8; MOVQ R8, 8+z; \
MULXQ 16+x, AX, R10; ADCXQ AX, R9; MOVQ $0, R8;\
MULXQ 24+x, AX, R11; ADCXQ AX, R10; \
MULXQ 32+x, AX, R12; ADCXQ AX, R11; \
MULXQ 40+x, AX, R13; ADCXQ AX, R12; \
MULXQ 48+x, AX, R14; ADCXQ AX, R13; \
;;;;;;;;;;;;;;;;;;;; ADCXQ R8, R14; \
\
MOVQ 8+x, DX; \
MOVQ DX, AX; ADDQ R15, DX; MOVQ $0, R15; ADCQ $0, R15; \
MULXQ AX, AX, CX; \
MOVQ R15, R8; NEGQ R8; ANDQ 8+x, R8; \
ADDQ AX, R9; MOVQ R9, 16+z; \
ADCQ CX, R8; \
ADCQ $0, R11; \
ADDQ 8+x, DX; \
ADCQ $0, R15; \
XORL R9, R9; ;;;;;;;;;;;;;;;;;;;;; ADOXQ R8, R10; \
MULXQ 16+x, AX, CX; ADCXQ AX, R10; ADOXQ CX, R11; MOVQ R10, 24+z; \
MULXQ 24+x, AX, CX; ADCXQ AX, R11; ADOXQ CX, R12; MOVQ $0, R10; \
MULXQ 32+x, AX, CX; ADCXQ AX, R12; ADOXQ CX, R13; \
MULXQ 40+x, AX, CX; ADCXQ AX, R13; ADOXQ CX, R14; \
MULXQ 48+x, AX, CX; ADCXQ AX, R14; ADOXQ CX, R9; \
;;;;;;;;;;;;;;;;;;; ADCXQ R10, R9; \
\
MOVQ 16+x, DX; \
MOVQ DX, AX; ADDQ R15, DX; MOVQ $0, R15; ADCQ $0, R15; \
MULXQ AX, AX, CX; \
MOVQ R15, R8; NEGQ R8; ANDQ 16+x, R8; \
ADDQ AX, R11; MOVQ R11, 32+z; \
ADCQ CX, R8; \
ADCQ $0, R13; \
ADDQ 16+x, DX; \
ADCQ $0, R15; \
XORL R11, R11; ;;;;;;;;;;;;;;;;;;; ADOXQ R8, R12; \
MULXQ 24+x, AX, CX; ADCXQ AX, R12; ADOXQ CX, R13; MOVQ R12, 40+z; \
MULXQ 32+x, AX, CX; ADCXQ AX, R13; ADOXQ CX, R14; MOVQ $0, R12; \
MULXQ 40+x, AX, CX; ADCXQ AX, R14; ADOXQ CX, R9; \
MULXQ 48+x, AX, CX; ADCXQ AX, R9; ADOXQ CX, R10; \
;;;;;;;;;;;;;;;;;;; ADCXQ R11,R10; \
\
MOVQ 24+x, DX; \
MOVQ DX, AX; ADDQ R15, DX; MOVQ $0, R15; ADCQ $0, R15; \
MULXQ AX, AX, CX; \
MOVQ R15, R8; NEGQ R8; ANDQ 24+x, R8; \
ADDQ AX, R13; MOVQ R13, 48+z; \
ADCQ CX, R8; \
ADCQ $0, R9; \
ADDQ 24+x, DX; \
ADCQ $0, R15; \
XORL R13, R13; ;;;;;;;;;;;;;;;;;;; ADOXQ R8, R14; \
MULXQ 32+x, AX, CX; ADCXQ AX, R14; ADOXQ CX, R9; MOVQ R14, 56+z; \
MULXQ 40+x, AX, CX; ADCXQ AX, R9; ADOXQ CX, R10; MOVQ $0, R14; \
MULXQ 48+x, AX, CX; ADCXQ AX, R10; ADOXQ CX, R11; \
;;;;;;;;;;;;;;;;;;; ADCXQ R12,R11; \
\
MOVQ 32+x, DX; \
MOVQ DX, AX; ADDQ R15, DX; MOVQ $0, R15; ADCQ $0, R15; \
MULXQ AX, AX, CX; \
MOVQ R15, R8; NEGQ R8; ANDQ 32+x, R8; \
ADDQ AX, R9; MOVQ R9, 64+z; \
ADCQ CX, R8; \
ADCQ $0, R11; \
ADDQ 32+x, DX; \
ADCQ $0, R15; \
XORL R9, R9; ;;;;;;;;;;;;;;;;;;;;; ADOXQ R8, R10; \
MULXQ 40+x, AX, CX; ADCXQ AX, R10; ADOXQ CX, R11; MOVQ R10, 72+z; \
MULXQ 48+x, AX, CX; ADCXQ AX, R11; ADOXQ CX, R12; \
;;;;;;;;;;;;;;;;;;; ADCXQ R13,R12; \
\
MOVQ 40+x, DX; \
MOVQ DX, AX; ADDQ R15, DX; MOVQ $0, R15; ADCQ $0, R15; \
MULXQ AX, AX, CX; \
MOVQ R15, R8; NEGQ R8; ANDQ 40+x, R8; \
ADDQ AX, R11; MOVQ R11, 80+z; \
ADCQ CX, R8; \
ADCQ $0, R13; \
ADDQ 40+x, DX; \
ADCQ $0, R15; \
XORL R11, R11; ;;;;;;;;;;;;;;;;;;; ADOXQ R8, R12; \
MULXQ 48+x, AX, CX; ADCXQ AX, R12; ADOXQ CX, R13; MOVQ R12, 88+z; \
;;;;;;;;;;;;;;;;;;; ADCXQ R14,R13; \
\
MOVQ 48+x, DX; \
MOVQ DX, AX; ADDQ R15, DX; MOVQ $0, R15; ADCQ $0, R15; \
MULXQ AX, AX, CX; \
MOVQ R15, R8; NEGQ R8; ANDQ 48+x, R8; \
XORL R10, R10; ;;;;;;;;;;;;;; ADOXQ CX, R14; \
;;;;;;;;;;;;;; ADCXQ AX, R13; ;;;;;;;;;;;;;; MOVQ R13, 96+z; \
;;;;;;;;;;;;;; ADCXQ R8, R14; MOVQ R14, 104+z;
// reduceFromDoubleLeg finds a z=x modulo p such that z<2^448 and stores in z
// Uses: AX, R8-R15, FLAGS
// Instr: x86_64
#define reduceFromDoubleLeg(z,x) \
/* ( ,2C13,2C12,2C11,2C10|C10,C9,C8, C7) + (C6,...,C0) */ \
/* (r14, r13, r12, r11, r10,r9,r8,r15) */ \
MOVQ 80+x,AX; MOVQ AX,R10; \
MOVQ $0xFFFFFFFF00000000, R8; \
ANDQ R8,R10; \
\
MOVQ $0,R14; \
MOVQ 104+x,R13; SHLQ $1,R13,R14; \
MOVQ 96+x,R12; SHLQ $1,R12,R13; \
MOVQ 88+x,R11; SHLQ $1,R11,R12; \
MOVQ 72+x, R9; SHLQ $1,R10,R11; \
MOVQ 64+x, R8; SHLQ $1,R10; \
MOVQ $0xFFFFFFFF,R15; ANDQ R15,AX; ORQ AX,R10; \
MOVQ 56+x,R15; \
\
ADDQ 0+x,R15; MOVQ R15, 0+z; MOVQ 56+x,R15; \
ADCQ 8+x, R8; MOVQ R8, 8+z; MOVQ 64+x, R8; \
ADCQ 16+x, R9; MOVQ R9,16+z; MOVQ 72+x, R9; \
ADCQ 24+x,R10; MOVQ R10,24+z; MOVQ 80+x,R10; \
ADCQ 32+x,R11; MOVQ R11,32+z; MOVQ 88+x,R11; \
ADCQ 40+x,R12; MOVQ R12,40+z; MOVQ 96+x,R12; \
ADCQ 48+x,R13; MOVQ R13,48+z; MOVQ 104+x,R13; \
ADCQ $0,R14; \
/* (c10c9,c9c8,c8c7,c7c13,c13c12,c12c11,c11c10) + (c6,...,c0) */ \
/* ( r9, r8, r15, r13, r12, r11, r10) */ \
MOVQ R10, AX; \
SHRQ $32,R11,R10; \
SHRQ $32,R12,R11; \
SHRQ $32,R13,R12; \
SHRQ $32,R15,R13; \
SHRQ $32, R8,R15; \
SHRQ $32, R9, R8; \
SHRQ $32, AX, R9; \
\
ADDQ 0+z,R10; \
ADCQ 8+z,R11; \
ADCQ 16+z,R12; \
ADCQ 24+z,R13; \
ADCQ 32+z,R15; \
ADCQ 40+z, R8; \
ADCQ 48+z, R9; \
ADCQ $0,R14; \
/* ( c7) + (c6,...,c0) */ \
/* (r14) */ \
MOVQ R14, AX; SHLQ $32, AX; \
ADDQ R14,R10; MOVQ $0,R14; \
ADCQ $0,R11; \
ADCQ $0,R12; \
ADCQ AX,R13; \
ADCQ $0,R15; \
ADCQ $0, R8; \
ADCQ $0, R9; \
ADCQ $0,R14; \
/* ( c7) + (c6,...,c0) */ \
/* (r14) */ \
MOVQ R14, AX; SHLQ $32,AX; \
ADDQ R14,R10; MOVQ R10, 0+z; \
ADCQ $0,R11; MOVQ R11, 8+z; \
ADCQ $0,R12; MOVQ R12,16+z; \
ADCQ AX,R13; MOVQ R13,24+z; \
ADCQ $0,R15; MOVQ R15,32+z; \
ADCQ $0, R8; MOVQ R8,40+z; \
ADCQ $0, R9; MOVQ R9,48+z;
// reduceFromDoubleAdx finds a z=x modulo p such that z<2^448 and stores in z
// Uses: AX, R8-R15, FLAGS
// Instr: x86_64, adx
#define reduceFromDoubleAdx(z,x) \
/* ( ,2C13,2C12,2C11,2C10|C10,C9,C8, C7) + (C6,...,C0) */ \
/* (r14, r13, r12, r11, r10,r9,r8,r15) */ \
MOVQ 80+x,AX; MOVQ AX,R10; \
MOVQ $0xFFFFFFFF00000000, R8; \
ANDQ R8,R10; \
\
MOVQ $0,R14; \
MOVQ 104+x,R13; SHLQ $1,R13,R14; \
MOVQ 96+x,R12; SHLQ $1,R12,R13; \
MOVQ 88+x,R11; SHLQ $1,R11,R12; \
MOVQ 72+x, R9; SHLQ $1,R10,R11; \
MOVQ 64+x, R8; SHLQ $1,R10; \
MOVQ $0xFFFFFFFF,R15; ANDQ R15,AX; ORQ AX,R10; \
MOVQ 56+x,R15; \
\
XORL AX,AX; \
ADCXQ 0+x,R15; MOVQ R15, 0+z; MOVQ 56+x,R15; \
ADCXQ 8+x, R8; MOVQ R8, 8+z; MOVQ 64+x, R8; \
ADCXQ 16+x, R9; MOVQ R9,16+z; MOVQ 72+x, R9; \
ADCXQ 24+x,R10; MOVQ R10,24+z; MOVQ 80+x,R10; \
ADCXQ 32+x,R11; MOVQ R11,32+z; MOVQ 88+x,R11; \
ADCXQ 40+x,R12; MOVQ R12,40+z; MOVQ 96+x,R12; \
ADCXQ 48+x,R13; MOVQ R13,48+z; MOVQ 104+x,R13; \
ADCXQ AX,R14; \
/* (c10c9,c9c8,c8c7,c7c13,c13c12,c12c11,c11c10) + (c6,...,c0) */ \
/* ( r9, r8, r15, r13, r12, r11, r10) */ \
MOVQ R10, AX; \
SHRQ $32,R11,R10; \
SHRQ $32,R12,R11; \
SHRQ $32,R13,R12; \
SHRQ $32,R15,R13; \
SHRQ $32, R8,R15; \
SHRQ $32, R9, R8; \
SHRQ $32, AX, R9; \
\
XORL AX,AX; \
ADCXQ 0+z,R10; \
ADCXQ 8+z,R11; \
ADCXQ 16+z,R12; \
ADCXQ 24+z,R13; \
ADCXQ 32+z,R15; \
ADCXQ 40+z, R8; \
ADCXQ 48+z, R9; \
ADCXQ AX,R14; \
/* ( c7) + (c6,...,c0) */ \
/* (r14) */ \
MOVQ R14, AX; SHLQ $32, AX; \
CLC; \
ADCXQ R14,R10; MOVQ $0,R14; \
ADCXQ R14,R11; \
ADCXQ R14,R12; \
ADCXQ AX,R13; \
ADCXQ R14,R15; \
ADCXQ R14, R8; \
ADCXQ R14, R9; \
ADCXQ R14,R14; \
/* ( c7) + (c6,...,c0) */ \
/* (r14) */ \
MOVQ R14, AX; SHLQ $32, AX; \
CLC; \
ADCXQ R14,R10; MOVQ R10, 0+z; MOVQ $0,R14; \
ADCXQ R14,R11; MOVQ R11, 8+z; \
ADCXQ R14,R12; MOVQ R12,16+z; \
ADCXQ AX,R13; MOVQ R13,24+z; \
ADCXQ R14,R15; MOVQ R15,32+z; \
ADCXQ R14, R8; MOVQ R8,40+z; \
ADCXQ R14, R9; MOVQ R9,48+z;
// addSub calculates two operations: x,y = x+y,x-y
// Uses: AX, DX, R8-R15, FLAGS
#define addSub(x,y) \
MOVQ 0+x, R8; ADDQ 0+y, R8; \
MOVQ 8+x, R9; ADCQ 8+y, R9; \
MOVQ 16+x, R10; ADCQ 16+y, R10; \
MOVQ 24+x, R11; ADCQ 24+y, R11; \
MOVQ 32+x, R12; ADCQ 32+y, R12; \
MOVQ 40+x, R13; ADCQ 40+y, R13; \
MOVQ 48+x, R14; ADCQ 48+y, R14; \
MOVQ $0, AX; ADCQ $0, AX; \
MOVQ AX, DX; \
SHLQ $32, DX; \
ADDQ AX, R8; MOVQ $0, AX; \
ADCQ $0, R9; \
ADCQ $0, R10; \
ADCQ DX, R11; \
ADCQ $0, R12; \
ADCQ $0, R13; \
ADCQ $0, R14; \
ADCQ $0, AX; \
MOVQ AX, DX; \
SHLQ $32, DX; \
ADDQ AX, R8; MOVQ 0+x,AX; MOVQ R8, 0+x; MOVQ AX, R8; \
ADCQ $0, R9; MOVQ 8+x,AX; MOVQ R9, 8+x; MOVQ AX, R9; \
ADCQ $0, R10; MOVQ 16+x,AX; MOVQ R10, 16+x; MOVQ AX, R10; \
ADCQ DX, R11; MOVQ 24+x,AX; MOVQ R11, 24+x; MOVQ AX, R11; \
ADCQ $0, R12; MOVQ 32+x,AX; MOVQ R12, 32+x; MOVQ AX, R12; \
ADCQ $0, R13; MOVQ 40+x,AX; MOVQ R13, 40+x; MOVQ AX, R13; \
ADCQ $0, R14; MOVQ 48+x,AX; MOVQ R14, 48+x; MOVQ AX, R14; \
SUBQ 0+y, R8; \
SBBQ 8+y, R9; \
SBBQ 16+y, R10; \
SBBQ 24+y, R11; \
SBBQ 32+y, R12; \
SBBQ 40+y, R13; \
SBBQ 48+y, R14; \
MOVQ $0, AX; SETCS AX; \
MOVQ AX, DX; \
SHLQ $32, DX; \
SUBQ AX, R8; MOVQ $0, AX; \
SBBQ $0, R9; \
SBBQ $0, R10; \
SBBQ DX, R11; \
SBBQ $0, R12; \
SBBQ $0, R13; \
SBBQ $0, R14; \
SETCS AX; \
MOVQ AX, DX; \
SHLQ $32, DX; \
SUBQ AX, R8; MOVQ R8, 0+y; \
SBBQ $0, R9; MOVQ R9, 8+y; \
SBBQ $0, R10; MOVQ R10, 16+y; \
SBBQ DX, R11; MOVQ R11, 24+y; \
SBBQ $0, R12; MOVQ R12, 32+y; \
SBBQ $0, R13; MOVQ R13, 40+y; \
SBBQ $0, R14; MOVQ R14, 48+y;

View File

@ -0,0 +1,74 @@
// +build amd64
#include "textflag.h"
#include "fp_amd64.h"
// func cmovAmd64(x, y *Elt, n uint)
TEXT ·cmovAmd64(SB),NOSPLIT,$0-24
MOVQ x+0(FP), DI
MOVQ y+8(FP), SI
MOVQ n+16(FP), BX
cselect(0(DI),0(SI),BX)
RET
// func cswapAmd64(x, y *Elt, n uint)
TEXT ·cswapAmd64(SB),NOSPLIT,$0-24
MOVQ x+0(FP), DI
MOVQ y+8(FP), SI
MOVQ n+16(FP), BX
cswap(0(DI),0(SI),BX)
RET
// func subAmd64(z, x, y *Elt)
TEXT ·subAmd64(SB),NOSPLIT,$0-24
MOVQ z+0(FP), DI
MOVQ x+8(FP), SI
MOVQ y+16(FP), BX
subtraction(0(DI),0(SI),0(BX))
RET
// func addsubAmd64(x, y *Elt)
TEXT ·addsubAmd64(SB),NOSPLIT,$0-16
MOVQ x+0(FP), DI
MOVQ y+8(FP), SI
addSub(0(DI),0(SI))
RET
#define addLegacy \
additionLeg(0(DI),0(SI),0(BX))
#define addBmi2Adx \
additionAdx(0(DI),0(SI),0(BX))
#define mulLegacy \
integerMulLeg(0(SP),0(SI),0(BX)) \
reduceFromDoubleLeg(0(DI),0(SP))
#define mulBmi2Adx \
integerMulAdx(0(SP),0(SI),0(BX)) \
reduceFromDoubleAdx(0(DI),0(SP))
#define sqrLegacy \
integerSqrLeg(0(SP),0(SI)) \
reduceFromDoubleLeg(0(DI),0(SP))
#define sqrBmi2Adx \
integerSqrAdx(0(SP),0(SI)) \
reduceFromDoubleAdx(0(DI),0(SP))
// func addAmd64(z, x, y *Elt)
TEXT ·addAmd64(SB),NOSPLIT,$0-24
MOVQ z+0(FP), DI
MOVQ x+8(FP), SI
MOVQ y+16(FP), BX
CHECK_BMI2ADX(LADD, addLegacy, addBmi2Adx)
// func mulAmd64(z, x, y *Elt)
TEXT ·mulAmd64(SB),NOSPLIT,$112-24
MOVQ z+0(FP), DI
MOVQ x+8(FP), SI
MOVQ y+16(FP), BX
CHECK_BMI2ADX(LMUL, mulLegacy, mulBmi2Adx)
// func sqrAmd64(z, x *Elt)
TEXT ·sqrAmd64(SB),NOSPLIT,$112-16
MOVQ z+0(FP), DI
MOVQ x+8(FP), SI
CHECK_BMI2ADX(LSQR, sqrLegacy, sqrBmi2Adx)

View File

@ -0,0 +1,339 @@
package fp448
import (
"encoding/binary"
"math/bits"
)
func cmovGeneric(x, y *Elt, n uint) {
m := -uint64(n & 0x1)
x0 := binary.LittleEndian.Uint64(x[0*8 : 1*8])
x1 := binary.LittleEndian.Uint64(x[1*8 : 2*8])
x2 := binary.LittleEndian.Uint64(x[2*8 : 3*8])
x3 := binary.LittleEndian.Uint64(x[3*8 : 4*8])
x4 := binary.LittleEndian.Uint64(x[4*8 : 5*8])
x5 := binary.LittleEndian.Uint64(x[5*8 : 6*8])
x6 := binary.LittleEndian.Uint64(x[6*8 : 7*8])
y0 := binary.LittleEndian.Uint64(y[0*8 : 1*8])
y1 := binary.LittleEndian.Uint64(y[1*8 : 2*8])
y2 := binary.LittleEndian.Uint64(y[2*8 : 3*8])
y3 := binary.LittleEndian.Uint64(y[3*8 : 4*8])
y4 := binary.LittleEndian.Uint64(y[4*8 : 5*8])
y5 := binary.LittleEndian.Uint64(y[5*8 : 6*8])
y6 := binary.LittleEndian.Uint64(y[6*8 : 7*8])
x0 = (x0 &^ m) | (y0 & m)
x1 = (x1 &^ m) | (y1 & m)
x2 = (x2 &^ m) | (y2 & m)
x3 = (x3 &^ m) | (y3 & m)
x4 = (x4 &^ m) | (y4 & m)
x5 = (x5 &^ m) | (y5 & m)
x6 = (x6 &^ m) | (y6 & m)
binary.LittleEndian.PutUint64(x[0*8:1*8], x0)
binary.LittleEndian.PutUint64(x[1*8:2*8], x1)
binary.LittleEndian.PutUint64(x[2*8:3*8], x2)
binary.LittleEndian.PutUint64(x[3*8:4*8], x3)
binary.LittleEndian.PutUint64(x[4*8:5*8], x4)
binary.LittleEndian.PutUint64(x[5*8:6*8], x5)
binary.LittleEndian.PutUint64(x[6*8:7*8], x6)
}
func cswapGeneric(x, y *Elt, n uint) {
m := -uint64(n & 0x1)
x0 := binary.LittleEndian.Uint64(x[0*8 : 1*8])
x1 := binary.LittleEndian.Uint64(x[1*8 : 2*8])
x2 := binary.LittleEndian.Uint64(x[2*8 : 3*8])
x3 := binary.LittleEndian.Uint64(x[3*8 : 4*8])
x4 := binary.LittleEndian.Uint64(x[4*8 : 5*8])
x5 := binary.LittleEndian.Uint64(x[5*8 : 6*8])
x6 := binary.LittleEndian.Uint64(x[6*8 : 7*8])
y0 := binary.LittleEndian.Uint64(y[0*8 : 1*8])
y1 := binary.LittleEndian.Uint64(y[1*8 : 2*8])
y2 := binary.LittleEndian.Uint64(y[2*8 : 3*8])
y3 := binary.LittleEndian.Uint64(y[3*8 : 4*8])
y4 := binary.LittleEndian.Uint64(y[4*8 : 5*8])
y5 := binary.LittleEndian.Uint64(y[5*8 : 6*8])
y6 := binary.LittleEndian.Uint64(y[6*8 : 7*8])
t0 := m & (x0 ^ y0)
t1 := m & (x1 ^ y1)
t2 := m & (x2 ^ y2)
t3 := m & (x3 ^ y3)
t4 := m & (x4 ^ y4)
t5 := m & (x5 ^ y5)
t6 := m & (x6 ^ y6)
x0 ^= t0
x1 ^= t1
x2 ^= t2
x3 ^= t3
x4 ^= t4
x5 ^= t5
x6 ^= t6
y0 ^= t0
y1 ^= t1
y2 ^= t2
y3 ^= t3
y4 ^= t4
y5 ^= t5
y6 ^= t6
binary.LittleEndian.PutUint64(x[0*8:1*8], x0)
binary.LittleEndian.PutUint64(x[1*8:2*8], x1)
binary.LittleEndian.PutUint64(x[2*8:3*8], x2)
binary.LittleEndian.PutUint64(x[3*8:4*8], x3)
binary.LittleEndian.PutUint64(x[4*8:5*8], x4)
binary.LittleEndian.PutUint64(x[5*8:6*8], x5)
binary.LittleEndian.PutUint64(x[6*8:7*8], x6)
binary.LittleEndian.PutUint64(y[0*8:1*8], y0)
binary.LittleEndian.PutUint64(y[1*8:2*8], y1)
binary.LittleEndian.PutUint64(y[2*8:3*8], y2)
binary.LittleEndian.PutUint64(y[3*8:4*8], y3)
binary.LittleEndian.PutUint64(y[4*8:5*8], y4)
binary.LittleEndian.PutUint64(y[5*8:6*8], y5)
binary.LittleEndian.PutUint64(y[6*8:7*8], y6)
}
func addGeneric(z, x, y *Elt) {
x0 := binary.LittleEndian.Uint64(x[0*8 : 1*8])
x1 := binary.LittleEndian.Uint64(x[1*8 : 2*8])
x2 := binary.LittleEndian.Uint64(x[2*8 : 3*8])
x3 := binary.LittleEndian.Uint64(x[3*8 : 4*8])
x4 := binary.LittleEndian.Uint64(x[4*8 : 5*8])
x5 := binary.LittleEndian.Uint64(x[5*8 : 6*8])
x6 := binary.LittleEndian.Uint64(x[6*8 : 7*8])
y0 := binary.LittleEndian.Uint64(y[0*8 : 1*8])
y1 := binary.LittleEndian.Uint64(y[1*8 : 2*8])
y2 := binary.LittleEndian.Uint64(y[2*8 : 3*8])
y3 := binary.LittleEndian.Uint64(y[3*8 : 4*8])
y4 := binary.LittleEndian.Uint64(y[4*8 : 5*8])
y5 := binary.LittleEndian.Uint64(y[5*8 : 6*8])
y6 := binary.LittleEndian.Uint64(y[6*8 : 7*8])
z0, c0 := bits.Add64(x0, y0, 0)
z1, c1 := bits.Add64(x1, y1, c0)
z2, c2 := bits.Add64(x2, y2, c1)
z3, c3 := bits.Add64(x3, y3, c2)
z4, c4 := bits.Add64(x4, y4, c3)
z5, c5 := bits.Add64(x5, y5, c4)
z6, z7 := bits.Add64(x6, y6, c5)
z0, c0 = bits.Add64(z0, z7, 0)
z1, c1 = bits.Add64(z1, 0, c0)
z2, c2 = bits.Add64(z2, 0, c1)
z3, c3 = bits.Add64(z3, z7<<32, c2)
z4, c4 = bits.Add64(z4, 0, c3)
z5, c5 = bits.Add64(z5, 0, c4)
z6, z7 = bits.Add64(z6, 0, c5)
z0, c0 = bits.Add64(z0, z7, 0)
z1, c1 = bits.Add64(z1, 0, c0)
z2, c2 = bits.Add64(z2, 0, c1)
z3, c3 = bits.Add64(z3, z7<<32, c2)
z4, c4 = bits.Add64(z4, 0, c3)
z5, c5 = bits.Add64(z5, 0, c4)
z6, _ = bits.Add64(z6, 0, c5)
binary.LittleEndian.PutUint64(z[0*8:1*8], z0)
binary.LittleEndian.PutUint64(z[1*8:2*8], z1)
binary.LittleEndian.PutUint64(z[2*8:3*8], z2)
binary.LittleEndian.PutUint64(z[3*8:4*8], z3)
binary.LittleEndian.PutUint64(z[4*8:5*8], z4)
binary.LittleEndian.PutUint64(z[5*8:6*8], z5)
binary.LittleEndian.PutUint64(z[6*8:7*8], z6)
}
func subGeneric(z, x, y *Elt) {
x0 := binary.LittleEndian.Uint64(x[0*8 : 1*8])
x1 := binary.LittleEndian.Uint64(x[1*8 : 2*8])
x2 := binary.LittleEndian.Uint64(x[2*8 : 3*8])
x3 := binary.LittleEndian.Uint64(x[3*8 : 4*8])
x4 := binary.LittleEndian.Uint64(x[4*8 : 5*8])
x5 := binary.LittleEndian.Uint64(x[5*8 : 6*8])
x6 := binary.LittleEndian.Uint64(x[6*8 : 7*8])
y0 := binary.LittleEndian.Uint64(y[0*8 : 1*8])
y1 := binary.LittleEndian.Uint64(y[1*8 : 2*8])
y2 := binary.LittleEndian.Uint64(y[2*8 : 3*8])
y3 := binary.LittleEndian.Uint64(y[3*8 : 4*8])
y4 := binary.LittleEndian.Uint64(y[4*8 : 5*8])
y5 := binary.LittleEndian.Uint64(y[5*8 : 6*8])
y6 := binary.LittleEndian.Uint64(y[6*8 : 7*8])
z0, c0 := bits.Sub64(x0, y0, 0)
z1, c1 := bits.Sub64(x1, y1, c0)
z2, c2 := bits.Sub64(x2, y2, c1)
z3, c3 := bits.Sub64(x3, y3, c2)
z4, c4 := bits.Sub64(x4, y4, c3)
z5, c5 := bits.Sub64(x5, y5, c4)
z6, z7 := bits.Sub64(x6, y6, c5)
z0, c0 = bits.Sub64(z0, z7, 0)
z1, c1 = bits.Sub64(z1, 0, c0)
z2, c2 = bits.Sub64(z2, 0, c1)
z3, c3 = bits.Sub64(z3, z7<<32, c2)
z4, c4 = bits.Sub64(z4, 0, c3)
z5, c5 = bits.Sub64(z5, 0, c4)
z6, z7 = bits.Sub64(z6, 0, c5)
z0, c0 = bits.Sub64(z0, z7, 0)
z1, c1 = bits.Sub64(z1, 0, c0)
z2, c2 = bits.Sub64(z2, 0, c1)
z3, c3 = bits.Sub64(z3, z7<<32, c2)
z4, c4 = bits.Sub64(z4, 0, c3)
z5, c5 = bits.Sub64(z5, 0, c4)
z6, _ = bits.Sub64(z6, 0, c5)
binary.LittleEndian.PutUint64(z[0*8:1*8], z0)
binary.LittleEndian.PutUint64(z[1*8:2*8], z1)
binary.LittleEndian.PutUint64(z[2*8:3*8], z2)
binary.LittleEndian.PutUint64(z[3*8:4*8], z3)
binary.LittleEndian.PutUint64(z[4*8:5*8], z4)
binary.LittleEndian.PutUint64(z[5*8:6*8], z5)
binary.LittleEndian.PutUint64(z[6*8:7*8], z6)
}
func addsubGeneric(x, y *Elt) {
z := &Elt{}
addGeneric(z, x, y)
subGeneric(y, x, y)
*x = *z
}
func mulGeneric(z, x, y *Elt) {
x0 := binary.LittleEndian.Uint64(x[0*8 : 1*8])
x1 := binary.LittleEndian.Uint64(x[1*8 : 2*8])
x2 := binary.LittleEndian.Uint64(x[2*8 : 3*8])
x3 := binary.LittleEndian.Uint64(x[3*8 : 4*8])
x4 := binary.LittleEndian.Uint64(x[4*8 : 5*8])
x5 := binary.LittleEndian.Uint64(x[5*8 : 6*8])
x6 := binary.LittleEndian.Uint64(x[6*8 : 7*8])
y0 := binary.LittleEndian.Uint64(y[0*8 : 1*8])
y1 := binary.LittleEndian.Uint64(y[1*8 : 2*8])
y2 := binary.LittleEndian.Uint64(y[2*8 : 3*8])
y3 := binary.LittleEndian.Uint64(y[3*8 : 4*8])
y4 := binary.LittleEndian.Uint64(y[4*8 : 5*8])
y5 := binary.LittleEndian.Uint64(y[5*8 : 6*8])
y6 := binary.LittleEndian.Uint64(y[6*8 : 7*8])
yy := [7]uint64{y0, y1, y2, y3, y4, y5, y6}
zz := [7]uint64{}
yi := yy[0]
h0, l0 := bits.Mul64(x0, yi)
h1, l1 := bits.Mul64(x1, yi)
h2, l2 := bits.Mul64(x2, yi)
h3, l3 := bits.Mul64(x3, yi)
h4, l4 := bits.Mul64(x4, yi)
h5, l5 := bits.Mul64(x5, yi)
h6, l6 := bits.Mul64(x6, yi)
zz[0] = l0
a0, c0 := bits.Add64(h0, l1, 0)
a1, c1 := bits.Add64(h1, l2, c0)
a2, c2 := bits.Add64(h2, l3, c1)
a3, c3 := bits.Add64(h3, l4, c2)
a4, c4 := bits.Add64(h4, l5, c3)
a5, c5 := bits.Add64(h5, l6, c4)
a6, _ := bits.Add64(h6, 0, c5)
for i := 1; i < 7; i++ {
yi = yy[i]
h0, l0 = bits.Mul64(x0, yi)
h1, l1 = bits.Mul64(x1, yi)
h2, l2 = bits.Mul64(x2, yi)
h3, l3 = bits.Mul64(x3, yi)
h4, l4 = bits.Mul64(x4, yi)
h5, l5 = bits.Mul64(x5, yi)
h6, l6 = bits.Mul64(x6, yi)
zz[i], c0 = bits.Add64(a0, l0, 0)
a0, c1 = bits.Add64(a1, l1, c0)
a1, c2 = bits.Add64(a2, l2, c1)
a2, c3 = bits.Add64(a3, l3, c2)
a3, c4 = bits.Add64(a4, l4, c3)
a4, c5 = bits.Add64(a5, l5, c4)
a5, a6 = bits.Add64(a6, l6, c5)
a0, c0 = bits.Add64(a0, h0, 0)
a1, c1 = bits.Add64(a1, h1, c0)
a2, c2 = bits.Add64(a2, h2, c1)
a3, c3 = bits.Add64(a3, h3, c2)
a4, c4 = bits.Add64(a4, h4, c3)
a5, c5 = bits.Add64(a5, h5, c4)
a6, _ = bits.Add64(a6, h6, c5)
}
red64(z, &zz, &[7]uint64{a0, a1, a2, a3, a4, a5, a6})
}
func sqrGeneric(z, x *Elt) { mulGeneric(z, x, x) }
func red64(z *Elt, l, h *[7]uint64) {
/* (2C13, 2C12, 2C11, 2C10|C10, C9, C8, C7) + (C6,...,C0) */
h0 := h[0]
h1 := h[1]
h2 := h[2]
h3 := ((h[3] & (0xFFFFFFFF << 32)) << 1) | (h[3] & 0xFFFFFFFF)
h4 := (h[3] >> 63) | (h[4] << 1)
h5 := (h[4] >> 63) | (h[5] << 1)
h6 := (h[5] >> 63) | (h[6] << 1)
h7 := (h[6] >> 63)
l0, c0 := bits.Add64(h0, l[0], 0)
l1, c1 := bits.Add64(h1, l[1], c0)
l2, c2 := bits.Add64(h2, l[2], c1)
l3, c3 := bits.Add64(h3, l[3], c2)
l4, c4 := bits.Add64(h4, l[4], c3)
l5, c5 := bits.Add64(h5, l[5], c4)
l6, c6 := bits.Add64(h6, l[6], c5)
l7, _ := bits.Add64(h7, 0, c6)
/* (C10C9, C9C8,C8C7,C7C13,C13C12,C12C11,C11C10) + (C6,...,C0) */
h0 = (h[3] >> 32) | (h[4] << 32)
h1 = (h[4] >> 32) | (h[5] << 32)
h2 = (h[5] >> 32) | (h[6] << 32)
h3 = (h[6] >> 32) | (h[0] << 32)
h4 = (h[0] >> 32) | (h[1] << 32)
h5 = (h[1] >> 32) | (h[2] << 32)
h6 = (h[2] >> 32) | (h[3] << 32)
l0, c0 = bits.Add64(l0, h0, 0)
l1, c1 = bits.Add64(l1, h1, c0)
l2, c2 = bits.Add64(l2, h2, c1)
l3, c3 = bits.Add64(l3, h3, c2)
l4, c4 = bits.Add64(l4, h4, c3)
l5, c5 = bits.Add64(l5, h5, c4)
l6, c6 = bits.Add64(l6, h6, c5)
l7, _ = bits.Add64(l7, 0, c6)
/* (C7) + (C6,...,C0) */
l0, c0 = bits.Add64(l0, l7, 0)
l1, c1 = bits.Add64(l1, 0, c0)
l2, c2 = bits.Add64(l2, 0, c1)
l3, c3 = bits.Add64(l3, l7<<32, c2)
l4, c4 = bits.Add64(l4, 0, c3)
l5, c5 = bits.Add64(l5, 0, c4)
l6, l7 = bits.Add64(l6, 0, c5)
/* (C7) + (C6,...,C0) */
l0, c0 = bits.Add64(l0, l7, 0)
l1, c1 = bits.Add64(l1, 0, c0)
l2, c2 = bits.Add64(l2, 0, c1)
l3, c3 = bits.Add64(l3, l7<<32, c2)
l4, c4 = bits.Add64(l4, 0, c3)
l5, c5 = bits.Add64(l5, 0, c4)
l6, _ = bits.Add64(l6, 0, c5)
binary.LittleEndian.PutUint64(z[0*8:1*8], l0)
binary.LittleEndian.PutUint64(z[1*8:2*8], l1)
binary.LittleEndian.PutUint64(z[2*8:3*8], l2)
binary.LittleEndian.PutUint64(z[3*8:4*8], l3)
binary.LittleEndian.PutUint64(z[4*8:5*8], l4)
binary.LittleEndian.PutUint64(z[5*8:6*8], l5)
binary.LittleEndian.PutUint64(z[6*8:7*8], l6)
}

View File

@ -0,0 +1,12 @@
//go:build !amd64 || purego
// +build !amd64 purego
package fp448
func cmov(x, y *Elt, n uint) { cmovGeneric(x, y, n) }
func cswap(x, y *Elt, n uint) { cswapGeneric(x, y, n) }
func add(z, x, y *Elt) { addGeneric(z, x, y) }
func sub(z, x, y *Elt) { subGeneric(z, x, y) }
func addsub(x, y *Elt) { addsubGeneric(x, y) }
func mul(z, x, y *Elt) { mulGeneric(z, x, y) }
func sqr(z, x *Elt) { sqrGeneric(z, x) }

View File

@ -0,0 +1,75 @@
//go:build gofuzz
// +build gofuzz
// How to run the fuzzer:
//
// $ go get -u github.com/dvyukov/go-fuzz/go-fuzz
// $ go get -u github.com/dvyukov/go-fuzz/go-fuzz-build
// $ go-fuzz-build -libfuzzer -func FuzzReduction -o lib.a
// $ clang -fsanitize=fuzzer lib.a -o fu.exe
// $ ./fu.exe
package fp448
import (
"encoding/binary"
"fmt"
"math/big"
"github.com/cloudflare/circl/internal/conv"
)
// FuzzReduction is a fuzzer target for red64 function, which reduces t
// (112 bits) to a number t' (56 bits) congruent modulo p448.
func FuzzReduction(data []byte) int {
if len(data) != 2*Size {
return -1
}
var got, want Elt
var lo, hi [7]uint64
a := data[:Size]
b := data[Size:]
lo[0] = binary.LittleEndian.Uint64(a[0*8 : 1*8])
lo[1] = binary.LittleEndian.Uint64(a[1*8 : 2*8])
lo[2] = binary.LittleEndian.Uint64(a[2*8 : 3*8])
lo[3] = binary.LittleEndian.Uint64(a[3*8 : 4*8])
lo[4] = binary.LittleEndian.Uint64(a[4*8 : 5*8])
lo[5] = binary.LittleEndian.Uint64(a[5*8 : 6*8])
lo[6] = binary.LittleEndian.Uint64(a[6*8 : 7*8])
hi[0] = binary.LittleEndian.Uint64(b[0*8 : 1*8])
hi[1] = binary.LittleEndian.Uint64(b[1*8 : 2*8])
hi[2] = binary.LittleEndian.Uint64(b[2*8 : 3*8])
hi[3] = binary.LittleEndian.Uint64(b[3*8 : 4*8])
hi[4] = binary.LittleEndian.Uint64(b[4*8 : 5*8])
hi[5] = binary.LittleEndian.Uint64(b[5*8 : 6*8])
hi[6] = binary.LittleEndian.Uint64(b[6*8 : 7*8])
red64(&got, &lo, &hi)
t := conv.BytesLe2BigInt(data[:2*Size])
two448 := big.NewInt(1)
two448.Lsh(two448, 448) // 2^448
mask448 := big.NewInt(1)
mask448.Sub(two448, mask448) // 2^448-1
two224plus1 := big.NewInt(1)
two224plus1.Lsh(two224plus1, 224)
two224plus1.Add(two224plus1, big.NewInt(1)) // 2^224+1
var loBig, hiBig big.Int
for t.Cmp(two448) >= 0 {
loBig.And(t, mask448)
hiBig.Rsh(t, 448)
t.Mul(&hiBig, two224plus1)
t.Add(t, &loBig)
}
conv.BigInt2BytesLe(want[:], t)
if got != want {
fmt.Printf("in: %v\n", conv.BytesLe2BigInt(data[:2*Size]))
fmt.Printf("got: %v\n", got)
fmt.Printf("want: %v\n", want)
panic("error found")
}
return 1
}

View File

@ -0,0 +1,122 @@
// Package mlsbset provides a constant-time exponentiation method with precomputation.
//
// References: "Efficient and secure algorithms for GLV-based scalar
// multiplication and their implementation on GLVGLS curves" by (Faz-Hernandez et al.)
// - https://doi.org/10.1007/s13389-014-0085-7
// - https://eprint.iacr.org/2013/158
package mlsbset
import (
"errors"
"fmt"
"math/big"
"github.com/cloudflare/circl/internal/conv"
)
// EltG is a group element.
type EltG interface{}
// EltP is a precomputed group element.
type EltP interface{}
// Group defines the operations required by MLSBSet exponentiation method.
type Group interface {
Identity() EltG // Returns the identity of the group.
Sqr(x EltG) // Calculates x = x^2.
Mul(x EltG, y EltP) // Calculates x = x*y.
NewEltP() EltP // Returns an arbitrary precomputed element.
ExtendedEltP() EltP // Returns the precomputed element x^(2^(w*d)).
Lookup(a EltP, v uint, s, u int32) // Sets a = s*T[v][u].
}
// Params contains the parameters of the encoding.
type Params struct {
T uint // T is the maximum size (in bits) of exponents.
V uint // V is the number of tables.
W uint // W is the window size.
E uint // E is the number of digits per table.
D uint // D is the number of digits in total.
L uint // L is the length of the code.
}
// Encoder allows to convert integers into valid powers.
type Encoder struct{ p Params }
// New produces an encoder of the MLSBSet algorithm.
func New(t, v, w uint) (Encoder, error) {
if !(t > 1 && v >= 1 && w >= 2) {
return Encoder{}, errors.New("t>1, v>=1, w>=2")
}
e := (t + w*v - 1) / (w * v)
d := e * v
l := d * w
return Encoder{Params{t, v, w, e, d, l}}, nil
}
// Encode converts an odd integer k into a valid power for exponentiation.
func (m Encoder) Encode(k []byte) (*Power, error) {
if len(k) == 0 {
return nil, errors.New("empty slice")
}
if !(len(k) <= int(m.p.L+7)>>3) {
return nil, errors.New("k too big")
}
if k[0]%2 == 0 {
return nil, errors.New("k must be odd")
}
ap := int((m.p.L+7)/8) - len(k)
k = append(k, make([]byte, ap)...)
s := m.signs(k)
b := make([]int32, m.p.L-m.p.D)
c := conv.BytesLe2BigInt(k)
c.Rsh(c, m.p.D)
var bi big.Int
for i := m.p.D; i < m.p.L; i++ {
c0 := int32(c.Bit(0))
b[i-m.p.D] = s[i%m.p.D] * c0
bi.SetInt64(int64(b[i-m.p.D] >> 1))
c.Rsh(c, 1)
c.Sub(c, &bi)
}
carry := int(c.Int64())
return &Power{m, s, b, carry}, nil
}
// signs calculates the set of signs.
func (m Encoder) signs(k []byte) []int32 {
s := make([]int32, m.p.D)
s[m.p.D-1] = 1
for i := uint(1); i < m.p.D; i++ {
ki := int32((k[i>>3] >> (i & 0x7)) & 0x1)
s[i-1] = 2*ki - 1
}
return s
}
// GetParams returns the complementary parameters of the encoding.
func (m Encoder) GetParams() Params { return m.p }
// tableSize returns the size of each table.
func (m Encoder) tableSize() uint { return 1 << (m.p.W - 1) }
// Elts returns the total number of elements that must be precomputed.
func (m Encoder) Elts() uint { return m.p.V * m.tableSize() }
// IsExtended returns true if the element x^(2^(wd)) must be calculated.
func (m Encoder) IsExtended() bool { q := m.p.T / (m.p.V * m.p.W); return m.p.T == q*m.p.V*m.p.W }
// Ops returns the number of squares and multiplications executed during an exponentiation.
func (m Encoder) Ops() (S uint, M uint) {
S = m.p.E
M = m.p.E * m.p.V
if m.IsExtended() {
M++
}
return
}
func (m Encoder) String() string {
return fmt.Sprintf("T: %v W: %v V: %v e: %v d: %v l: %v wv|t: %v",
m.p.T, m.p.W, m.p.V, m.p.E, m.p.D, m.p.L, m.IsExtended())
}

View File

@ -0,0 +1,64 @@
package mlsbset
import "fmt"
// Power is a valid exponent produced by the MLSBSet encoding algorithm.
type Power struct {
set Encoder // parameters of code.
s []int32 // set of signs.
b []int32 // set of digits.
c int // carry is {0,1}.
}
// Exp is calculates x^k, where x is a predetermined element of a group G.
func (p *Power) Exp(G Group) EltG {
a, b := G.Identity(), G.NewEltP()
for e := int(p.set.p.E - 1); e >= 0; e-- {
G.Sqr(a)
for v := uint(0); v < p.set.p.V; v++ {
sgnElt, idElt := p.Digit(v, uint(e))
G.Lookup(b, v, sgnElt, idElt)
G.Mul(a, b)
}
}
if p.set.IsExtended() && p.c == 1 {
G.Mul(a, G.ExtendedEltP())
}
return a
}
// Digit returns the (v,e)-th digit and its sign.
func (p *Power) Digit(v, e uint) (sgn, dig int32) {
sgn = p.bit(0, v, e)
dig = 0
for i := p.set.p.W - 1; i > 0; i-- {
dig = 2*dig + p.bit(i, v, e)
}
mask := dig >> 31
dig = (dig + mask) ^ mask
return sgn, dig
}
// bit returns the (w,v,e)-th bit of the code.
func (p *Power) bit(w, v, e uint) int32 {
if !(w < p.set.p.W &&
v < p.set.p.V &&
e < p.set.p.E) {
panic(fmt.Errorf("indexes outside (%v,%v,%v)", w, v, e))
}
if w == 0 {
return p.s[p.set.p.E*v+e]
}
return p.b[p.set.p.D*(w-1)+p.set.p.E*v+e]
}
func (p *Power) String() string {
dig := ""
for j := uint(0); j < p.set.p.V; j++ {
for i := uint(0); i < p.set.p.E; i++ {
s, d := p.Digit(j, i)
dig += fmt.Sprintf("(%2v,%2v) = %+2v %+2v\n", j, i, s, d)
}
}
return fmt.Sprintf("len: %v\ncarry: %v\ndigits:\n%v", len(p.b)+len(p.s), p.c, dig)
}

84
vendor/github.com/cloudflare/circl/math/wnaf.go generated vendored Normal file
View File

@ -0,0 +1,84 @@
// Package math provides some utility functions for big integers.
package math
import "math/big"
// SignedDigit obtains the signed-digit recoding of n and returns a list L of
// digits such that n = sum( L[i]*2^(i*(w-1)) ), and each L[i] is an odd number
// in the set {±1, ±3, ..., ±2^(w-1)-1}. The third parameter ensures that the
// output has ceil(l/(w-1)) digits.
//
// Restrictions:
// - n is odd and n > 0.
// - 1 < w < 32.
// - l >= bit length of n.
//
// References:
// - Alg.6 in "Exponent Recoding and Regular Exponentiation Algorithms"
// by Joye-Tunstall. http://doi.org/10.1007/978-3-642-02384-2_21
// - Alg.6 in "Selecting Elliptic Curves for Cryptography: An Efficiency and
// Security Analysis" by Bos et al. http://doi.org/10.1007/s13389-015-0097-y
func SignedDigit(n *big.Int, w, l uint) []int32 {
if n.Sign() <= 0 || n.Bit(0) == 0 {
panic("n must be non-zero, odd, and positive")
}
if w <= 1 || w >= 32 {
panic("Verify that 1 < w < 32")
}
if uint(n.BitLen()) > l {
panic("n is too big to fit in l digits")
}
lenN := (l + (w - 1) - 1) / (w - 1) // ceil(l/(w-1))
L := make([]int32, lenN+1)
var k, v big.Int
k.Set(n)
var i uint
for i = 0; i < lenN; i++ {
words := k.Bits()
value := int32(words[0] & ((1 << w) - 1))
value -= int32(1) << (w - 1)
L[i] = value
v.SetInt64(int64(value))
k.Sub(&k, &v)
k.Rsh(&k, w-1)
}
L[i] = int32(k.Int64())
return L
}
// OmegaNAF obtains the window-w Non-Adjacent Form of a positive number n and
// 1 < w < 32. The returned slice L holds n = sum( L[i]*2^i ).
//
// Reference:
// - Alg.9 "Efficient arithmetic on Koblitz curves" by Solinas.
// http://doi.org/10.1023/A:1008306223194
func OmegaNAF(n *big.Int, w uint) (L []int32) {
if n.Sign() < 0 {
panic("n must be positive")
}
if w <= 1 || w >= 32 {
panic("Verify that 1 < w < 32")
}
L = make([]int32, n.BitLen()+1)
var k, v big.Int
k.Set(n)
i := 0
for ; k.Sign() > 0; i++ {
value := int32(0)
if k.Bit(0) == 1 {
words := k.Bits()
value = int32(words[0] & ((1 << w) - 1))
if value >= (int32(1) << (w - 1)) {
value -= int32(1) << w
}
v.SetInt64(int64(value))
k.Sub(&k, &v)
}
L[i] = value
k.Rsh(&k, 1)
}
return L[:i]
}

View File

@ -0,0 +1,453 @@
// Package ed25519 implements Ed25519 signature scheme as described in RFC-8032.
//
// This package provides optimized implementations of the three signature
// variants and maintaining closer compatiblilty with crypto/ed25519.
//
// | Scheme Name | Sign Function | Verification | Context |
// |-------------|-------------------|---------------|-------------------|
// | Ed25519 | Sign | Verify | None |
// | Ed25519Ph | SignPh | VerifyPh | Yes, can be empty |
// | Ed25519Ctx | SignWithCtx | VerifyWithCtx | Yes, non-empty |
// | All above | (PrivateKey).Sign | VerifyAny | As above |
//
// Specific functions for sign and verify are defined. A generic signing
// function for all schemes is available through the crypto.Signer interface,
// which is implemented by the PrivateKey type. A correspond all-in-one
// verification method is provided by the VerifyAny function.
//
// Signing with Ed25519Ph or Ed25519Ctx requires a context string for domain
// separation. This parameter is passed using a SignerOptions struct defined
// in this package. While Ed25519Ph accepts an empty context, Ed25519Ctx
// enforces non-empty context strings.
//
// # Compatibility with crypto.ed25519
//
// These functions are compatible with the “Ed25519” function defined in
// RFC-8032. However, unlike RFC 8032's formulation, this package's private
// key representation includes a public key suffix to make multiple signing
// operations with the same key more efficient. This package refers to the
// RFC-8032 private key as the “seed”.
//
// References
//
// - RFC-8032: https://rfc-editor.org/rfc/rfc8032.txt
// - Ed25519: https://ed25519.cr.yp.to/
// - EdDSA: High-speed high-security signatures. https://doi.org/10.1007/s13389-012-0027-1
package ed25519
import (
"bytes"
"crypto"
cryptoRand "crypto/rand"
"crypto/sha512"
"crypto/subtle"
"errors"
"fmt"
"io"
"strconv"
"github.com/cloudflare/circl/sign"
)
const (
// ContextMaxSize is the maximum length (in bytes) allowed for context.
ContextMaxSize = 255
// PublicKeySize is the size, in bytes, of public keys as used in this package.
PublicKeySize = 32
// PrivateKeySize is the size, in bytes, of private keys as used in this package.
PrivateKeySize = 64
// SignatureSize is the size, in bytes, of signatures generated and verified by this package.
SignatureSize = 64
// SeedSize is the size, in bytes, of private key seeds. These are the private key representations used by RFC 8032.
SeedSize = 32
)
const (
paramB = 256 / 8 // Size of keys in bytes.
)
// SignerOptions implements crypto.SignerOpts and augments with parameters
// that are specific to the Ed25519 signature schemes.
type SignerOptions struct {
// Hash must be crypto.Hash(0) for Ed25519/Ed25519ctx, or crypto.SHA512
// for Ed25519ph.
crypto.Hash
// Context is an optional domain separation string for Ed25519ph and a
// must for Ed25519ctx. Its length must be less or equal than 255 bytes.
Context string
// Scheme is an identifier for choosing a signature scheme. The zero value
// is ED25519.
Scheme SchemeID
}
// SchemeID is an identifier for each signature scheme.
type SchemeID uint
const (
ED25519 SchemeID = iota
ED25519Ph
ED25519Ctx
)
// PrivateKey is the type of Ed25519 private keys. It implements crypto.Signer.
type PrivateKey []byte
// Equal reports whether priv and x have the same value.
func (priv PrivateKey) Equal(x crypto.PrivateKey) bool {
xx, ok := x.(PrivateKey)
return ok && subtle.ConstantTimeCompare(priv, xx) == 1
}
// Public returns the PublicKey corresponding to priv.
func (priv PrivateKey) Public() crypto.PublicKey {
publicKey := make(PublicKey, PublicKeySize)
copy(publicKey, priv[SeedSize:])
return publicKey
}
// Seed returns the private key seed corresponding to priv. It is provided for
// interoperability with RFC 8032. RFC 8032's private keys correspond to seeds
// in this package.
func (priv PrivateKey) Seed() []byte {
seed := make([]byte, SeedSize)
copy(seed, priv[:SeedSize])
return seed
}
func (priv PrivateKey) Scheme() sign.Scheme { return sch }
func (pub PublicKey) Scheme() sign.Scheme { return sch }
func (priv PrivateKey) MarshalBinary() (data []byte, err error) {
privateKey := make(PrivateKey, PrivateKeySize)
copy(privateKey, priv)
return privateKey, nil
}
func (pub PublicKey) MarshalBinary() (data []byte, err error) {
publicKey := make(PublicKey, PublicKeySize)
copy(publicKey, pub)
return publicKey, nil
}
// Equal reports whether pub and x have the same value.
func (pub PublicKey) Equal(x crypto.PublicKey) bool {
xx, ok := x.(PublicKey)
return ok && bytes.Equal(pub, xx)
}
// Sign creates a signature of a message with priv key.
// This function is compatible with crypto.ed25519 and also supports the
// three signature variants defined in RFC-8032, namely Ed25519 (or pure
// EdDSA), Ed25519Ph, and Ed25519Ctx.
// The opts.HashFunc() must return zero to specify either Ed25519 or Ed25519Ctx
// variant. This can be achieved by passing crypto.Hash(0) as the value for
// opts.
// The opts.HashFunc() must return SHA512 to specify the Ed25519Ph variant.
// This can be achieved by passing crypto.SHA512 as the value for opts.
// Use a SignerOptions struct (defined in this package) to pass a context
// string for signing.
func (priv PrivateKey) Sign(
rand io.Reader,
message []byte,
opts crypto.SignerOpts,
) (signature []byte, err error) {
var ctx string
var scheme SchemeID
if o, ok := opts.(SignerOptions); ok {
ctx = o.Context
scheme = o.Scheme
}
switch true {
case scheme == ED25519 && opts.HashFunc() == crypto.Hash(0):
return Sign(priv, message), nil
case scheme == ED25519Ph && opts.HashFunc() == crypto.SHA512:
return SignPh(priv, message, ctx), nil
case scheme == ED25519Ctx && opts.HashFunc() == crypto.Hash(0) && len(ctx) > 0:
return SignWithCtx(priv, message, ctx), nil
default:
return nil, errors.New("ed25519: bad hash algorithm")
}
}
// GenerateKey generates a public/private key pair using entropy from rand.
// If rand is nil, crypto/rand.Reader will be used.
func GenerateKey(rand io.Reader) (PublicKey, PrivateKey, error) {
if rand == nil {
rand = cryptoRand.Reader
}
seed := make([]byte, SeedSize)
if _, err := io.ReadFull(rand, seed); err != nil {
return nil, nil, err
}
privateKey := NewKeyFromSeed(seed)
publicKey := make(PublicKey, PublicKeySize)
copy(publicKey, privateKey[SeedSize:])
return publicKey, privateKey, nil
}
// NewKeyFromSeed calculates a private key from a seed. It will panic if
// len(seed) is not SeedSize. This function is provided for interoperability
// with RFC 8032. RFC 8032's private keys correspond to seeds in this
// package.
func NewKeyFromSeed(seed []byte) PrivateKey {
privateKey := make(PrivateKey, PrivateKeySize)
newKeyFromSeed(privateKey, seed)
return privateKey
}
func newKeyFromSeed(privateKey, seed []byte) {
if l := len(seed); l != SeedSize {
panic("ed25519: bad seed length: " + strconv.Itoa(l))
}
var P pointR1
k := sha512.Sum512(seed)
clamp(k[:])
reduceModOrder(k[:paramB], false)
P.fixedMult(k[:paramB])
copy(privateKey[:SeedSize], seed)
_ = P.ToBytes(privateKey[SeedSize:])
}
func signAll(signature []byte, privateKey PrivateKey, message, ctx []byte, preHash bool) {
if l := len(privateKey); l != PrivateKeySize {
panic("ed25519: bad private key length: " + strconv.Itoa(l))
}
H := sha512.New()
var PHM []byte
if preHash {
_, _ = H.Write(message)
PHM = H.Sum(nil)
H.Reset()
} else {
PHM = message
}
// 1. Hash the 32-byte private key using SHA-512.
_, _ = H.Write(privateKey[:SeedSize])
h := H.Sum(nil)
clamp(h[:])
prefix, s := h[paramB:], h[:paramB]
// 2. Compute SHA-512(dom2(F, C) || prefix || PH(M))
H.Reset()
writeDom(H, ctx, preHash)
_, _ = H.Write(prefix)
_, _ = H.Write(PHM)
r := H.Sum(nil)
reduceModOrder(r[:], true)
// 3. Compute the point [r]B.
var P pointR1
P.fixedMult(r[:paramB])
R := (&[paramB]byte{})[:]
if err := P.ToBytes(R); err != nil {
panic(err)
}
// 4. Compute SHA512(dom2(F, C) || R || A || PH(M)).
H.Reset()
writeDom(H, ctx, preHash)
_, _ = H.Write(R)
_, _ = H.Write(privateKey[SeedSize:])
_, _ = H.Write(PHM)
hRAM := H.Sum(nil)
reduceModOrder(hRAM[:], true)
// 5. Compute S = (r + k * s) mod order.
S := (&[paramB]byte{})[:]
calculateS(S, r[:paramB], hRAM[:paramB], s)
// 6. The signature is the concatenation of R and S.
copy(signature[:paramB], R[:])
copy(signature[paramB:], S[:])
}
// Sign signs the message with privateKey and returns a signature.
// This function supports the signature variant defined in RFC-8032: Ed25519,
// also known as the pure version of EdDSA.
// It will panic if len(privateKey) is not PrivateKeySize.
func Sign(privateKey PrivateKey, message []byte) []byte {
signature := make([]byte, SignatureSize)
signAll(signature, privateKey, message, []byte(""), false)
return signature
}
// SignPh creates a signature of a message with private key and context.
// This function supports the signature variant defined in RFC-8032: Ed25519ph,
// meaning it internally hashes the message using SHA-512, and optionally
// accepts a context string.
// It will panic if len(privateKey) is not PrivateKeySize.
// Context could be passed to this function, which length should be no more than
// ContextMaxSize=255. It can be empty.
func SignPh(privateKey PrivateKey, message []byte, ctx string) []byte {
if len(ctx) > ContextMaxSize {
panic(fmt.Errorf("ed25519: bad context length: %v", len(ctx)))
}
signature := make([]byte, SignatureSize)
signAll(signature, privateKey, message, []byte(ctx), true)
return signature
}
// SignWithCtx creates a signature of a message with private key and context.
// This function supports the signature variant defined in RFC-8032: Ed25519ctx,
// meaning it accepts a non-empty context string.
// It will panic if len(privateKey) is not PrivateKeySize.
// Context must be passed to this function, which length should be no more than
// ContextMaxSize=255 and cannot be empty.
func SignWithCtx(privateKey PrivateKey, message []byte, ctx string) []byte {
if len(ctx) == 0 || len(ctx) > ContextMaxSize {
panic(fmt.Errorf("ed25519: bad context length: %v > %v", len(ctx), ContextMaxSize))
}
signature := make([]byte, SignatureSize)
signAll(signature, privateKey, message, []byte(ctx), false)
return signature
}
func verify(public PublicKey, message, signature, ctx []byte, preHash bool) bool {
if len(public) != PublicKeySize ||
len(signature) != SignatureSize ||
!isLessThanOrder(signature[paramB:]) {
return false
}
var P pointR1
if ok := P.FromBytes(public); !ok {
return false
}
H := sha512.New()
var PHM []byte
if preHash {
_, _ = H.Write(message)
PHM = H.Sum(nil)
H.Reset()
} else {
PHM = message
}
R := signature[:paramB]
writeDom(H, ctx, preHash)
_, _ = H.Write(R)
_, _ = H.Write(public)
_, _ = H.Write(PHM)
hRAM := H.Sum(nil)
reduceModOrder(hRAM[:], true)
var Q pointR1
encR := (&[paramB]byte{})[:]
P.neg()
Q.doubleMult(&P, signature[paramB:], hRAM[:paramB])
_ = Q.ToBytes(encR)
return bytes.Equal(R, encR)
}
// VerifyAny returns true if the signature is valid. Failure cases are invalid
// signature, or when the public key cannot be decoded.
// This function supports all the three signature variants defined in RFC-8032,
// namely Ed25519 (or pure EdDSA), Ed25519Ph, and Ed25519Ctx.
// The opts.HashFunc() must return zero to specify either Ed25519 or Ed25519Ctx
// variant. This can be achieved by passing crypto.Hash(0) as the value for opts.
// The opts.HashFunc() must return SHA512 to specify the Ed25519Ph variant.
// This can be achieved by passing crypto.SHA512 as the value for opts.
// Use a SignerOptions struct to pass a context string for signing.
func VerifyAny(public PublicKey, message, signature []byte, opts crypto.SignerOpts) bool {
var ctx string
var scheme SchemeID
if o, ok := opts.(SignerOptions); ok {
ctx = o.Context
scheme = o.Scheme
}
switch true {
case scheme == ED25519 && opts.HashFunc() == crypto.Hash(0):
return Verify(public, message, signature)
case scheme == ED25519Ph && opts.HashFunc() == crypto.SHA512:
return VerifyPh(public, message, signature, ctx)
case scheme == ED25519Ctx && opts.HashFunc() == crypto.Hash(0) && len(ctx) > 0:
return VerifyWithCtx(public, message, signature, ctx)
default:
return false
}
}
// Verify returns true if the signature is valid. Failure cases are invalid
// signature, or when the public key cannot be decoded.
// This function supports the signature variant defined in RFC-8032: Ed25519,
// also known as the pure version of EdDSA.
func Verify(public PublicKey, message, signature []byte) bool {
return verify(public, message, signature, []byte(""), false)
}
// VerifyPh returns true if the signature is valid. Failure cases are invalid
// signature, or when the public key cannot be decoded.
// This function supports the signature variant defined in RFC-8032: Ed25519ph,
// meaning it internally hashes the message using SHA-512.
// Context could be passed to this function, which length should be no more than
// 255. It can be empty.
func VerifyPh(public PublicKey, message, signature []byte, ctx string) bool {
return verify(public, message, signature, []byte(ctx), true)
}
// VerifyWithCtx returns true if the signature is valid. Failure cases are invalid
// signature, or when the public key cannot be decoded, or when context is
// not provided.
// This function supports the signature variant defined in RFC-8032: Ed25519ctx,
// meaning it does not handle prehashed messages. Non-empty context string must be
// provided, and must not be more than 255 of length.
func VerifyWithCtx(public PublicKey, message, signature []byte, ctx string) bool {
if len(ctx) == 0 || len(ctx) > ContextMaxSize {
return false
}
return verify(public, message, signature, []byte(ctx), false)
}
func clamp(k []byte) {
k[0] &= 248
k[paramB-1] = (k[paramB-1] & 127) | 64
}
// isLessThanOrder returns true if 0 <= x < order.
func isLessThanOrder(x []byte) bool {
i := len(order) - 1
for i > 0 && x[i] == order[i] {
i--
}
return x[i] < order[i]
}
func writeDom(h io.Writer, ctx []byte, preHash bool) {
dom2 := "SigEd25519 no Ed25519 collisions"
if len(ctx) > 0 {
_, _ = h.Write([]byte(dom2))
if preHash {
_, _ = h.Write([]byte{byte(0x01), byte(len(ctx))})
} else {
_, _ = h.Write([]byte{byte(0x00), byte(len(ctx))})
}
_, _ = h.Write(ctx)
} else if preHash {
_, _ = h.Write([]byte(dom2))
_, _ = h.Write([]byte{0x01, 0x00})
}
}

View File

@ -0,0 +1,175 @@
package ed25519
import (
"encoding/binary"
"math/bits"
)
var order = [paramB]byte{
0xed, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58,
0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,
}
// isLessThan returns true if 0 <= x < y, and assumes that slices have the same length.
func isLessThan(x, y []byte) bool {
i := len(x) - 1
for i > 0 && x[i] == y[i] {
i--
}
return x[i] < y[i]
}
// reduceModOrder calculates k = k mod order of the curve.
func reduceModOrder(k []byte, is512Bit bool) {
var X [((2 * paramB) * 8) / 64]uint64
numWords := len(k) >> 3
for i := 0; i < numWords; i++ {
X[i] = binary.LittleEndian.Uint64(k[i*8 : (i+1)*8])
}
red512(&X, is512Bit)
for i := 0; i < numWords; i++ {
binary.LittleEndian.PutUint64(k[i*8:(i+1)*8], X[i])
}
}
// red512 calculates x = x mod Order of the curve.
func red512(x *[8]uint64, full bool) {
// Implementation of Algs.(14.47)+(14.52) of Handbook of Applied
// Cryptography, by A. Menezes, P. van Oorschot, and S. Vanstone.
const (
ell0 = uint64(0x5812631a5cf5d3ed)
ell1 = uint64(0x14def9dea2f79cd6)
ell160 = uint64(0x812631a5cf5d3ed0)
ell161 = uint64(0x4def9dea2f79cd65)
ell162 = uint64(0x0000000000000001)
)
var c0, c1, c2, c3 uint64
r0, r1, r2, r3, r4 := x[0], x[1], x[2], x[3], uint64(0)
if full {
q0, q1, q2, q3 := x[4], x[5], x[6], x[7]
for i := 0; i < 3; i++ {
h0, s0 := bits.Mul64(q0, ell160)
h1, s1 := bits.Mul64(q1, ell160)
h2, s2 := bits.Mul64(q2, ell160)
h3, s3 := bits.Mul64(q3, ell160)
s1, c0 = bits.Add64(h0, s1, 0)
s2, c1 = bits.Add64(h1, s2, c0)
s3, c2 = bits.Add64(h2, s3, c1)
s4, _ := bits.Add64(h3, 0, c2)
h0, l0 := bits.Mul64(q0, ell161)
h1, l1 := bits.Mul64(q1, ell161)
h2, l2 := bits.Mul64(q2, ell161)
h3, l3 := bits.Mul64(q3, ell161)
l1, c0 = bits.Add64(h0, l1, 0)
l2, c1 = bits.Add64(h1, l2, c0)
l3, c2 = bits.Add64(h2, l3, c1)
l4, _ := bits.Add64(h3, 0, c2)
s1, c0 = bits.Add64(s1, l0, 0)
s2, c1 = bits.Add64(s2, l1, c0)
s3, c2 = bits.Add64(s3, l2, c1)
s4, c3 = bits.Add64(s4, l3, c2)
s5, s6 := bits.Add64(l4, 0, c3)
s2, c0 = bits.Add64(s2, q0, 0)
s3, c1 = bits.Add64(s3, q1, c0)
s4, c2 = bits.Add64(s4, q2, c1)
s5, c3 = bits.Add64(s5, q3, c2)
s6, s7 := bits.Add64(s6, 0, c3)
q := q0 | q1 | q2 | q3
m := -((q | -q) >> 63) // if q=0 then m=0...0 else m=1..1
s0 &= m
s1 &= m
s2 &= m
s3 &= m
q0, q1, q2, q3 = s4, s5, s6, s7
if (i+1)%2 == 0 {
r0, c0 = bits.Add64(r0, s0, 0)
r1, c1 = bits.Add64(r1, s1, c0)
r2, c2 = bits.Add64(r2, s2, c1)
r3, c3 = bits.Add64(r3, s3, c2)
r4, _ = bits.Add64(r4, 0, c3)
} else {
r0, c0 = bits.Sub64(r0, s0, 0)
r1, c1 = bits.Sub64(r1, s1, c0)
r2, c2 = bits.Sub64(r2, s2, c1)
r3, c3 = bits.Sub64(r3, s3, c2)
r4, _ = bits.Sub64(r4, 0, c3)
}
}
m := -(r4 >> 63)
r0, c0 = bits.Add64(r0, m&ell160, 0)
r1, c1 = bits.Add64(r1, m&ell161, c0)
r2, c2 = bits.Add64(r2, m&ell162, c1)
r3, c3 = bits.Add64(r3, 0, c2)
r4, _ = bits.Add64(r4, m&1, c3)
x[4], x[5], x[6], x[7] = 0, 0, 0, 0
}
q0 := (r4 << 4) | (r3 >> 60)
r3 &= (uint64(1) << 60) - 1
h0, s0 := bits.Mul64(ell0, q0)
h1, s1 := bits.Mul64(ell1, q0)
s1, c0 = bits.Add64(h0, s1, 0)
s2, _ := bits.Add64(h1, 0, c0)
r0, c0 = bits.Sub64(r0, s0, 0)
r1, c1 = bits.Sub64(r1, s1, c0)
r2, c2 = bits.Sub64(r2, s2, c1)
r3, _ = bits.Sub64(r3, 0, c2)
x[0], x[1], x[2], x[3] = r0, r1, r2, r3
}
// calculateS performs s = r+k*a mod Order of the curve.
func calculateS(s, r, k, a []byte) {
K := [4]uint64{
binary.LittleEndian.Uint64(k[0*8 : 1*8]),
binary.LittleEndian.Uint64(k[1*8 : 2*8]),
binary.LittleEndian.Uint64(k[2*8 : 3*8]),
binary.LittleEndian.Uint64(k[3*8 : 4*8]),
}
S := [8]uint64{
binary.LittleEndian.Uint64(r[0*8 : 1*8]),
binary.LittleEndian.Uint64(r[1*8 : 2*8]),
binary.LittleEndian.Uint64(r[2*8 : 3*8]),
binary.LittleEndian.Uint64(r[3*8 : 4*8]),
}
var c3 uint64
for i := range K {
ai := binary.LittleEndian.Uint64(a[i*8 : (i+1)*8])
h0, l0 := bits.Mul64(K[0], ai)
h1, l1 := bits.Mul64(K[1], ai)
h2, l2 := bits.Mul64(K[2], ai)
h3, l3 := bits.Mul64(K[3], ai)
l1, c0 := bits.Add64(h0, l1, 0)
l2, c1 := bits.Add64(h1, l2, c0)
l3, c2 := bits.Add64(h2, l3, c1)
l4, _ := bits.Add64(h3, 0, c2)
S[i+0], c0 = bits.Add64(S[i+0], l0, 0)
S[i+1], c1 = bits.Add64(S[i+1], l1, c0)
S[i+2], c2 = bits.Add64(S[i+2], l2, c1)
S[i+3], c3 = bits.Add64(S[i+3], l3, c2)
S[i+4], _ = bits.Add64(S[i+4], l4, c3)
}
red512(&S, true)
binary.LittleEndian.PutUint64(s[0*8:1*8], S[0])
binary.LittleEndian.PutUint64(s[1*8:2*8], S[1])
binary.LittleEndian.PutUint64(s[2*8:3*8], S[2])
binary.LittleEndian.PutUint64(s[3*8:4*8], S[3])
}

180
vendor/github.com/cloudflare/circl/sign/ed25519/mult.go generated vendored Normal file
View File

@ -0,0 +1,180 @@
package ed25519
import (
"crypto/subtle"
"encoding/binary"
"math/bits"
"github.com/cloudflare/circl/internal/conv"
"github.com/cloudflare/circl/math"
fp "github.com/cloudflare/circl/math/fp25519"
)
var paramD = fp.Elt{
0xa3, 0x78, 0x59, 0x13, 0xca, 0x4d, 0xeb, 0x75,
0xab, 0xd8, 0x41, 0x41, 0x4d, 0x0a, 0x70, 0x00,
0x98, 0xe8, 0x79, 0x77, 0x79, 0x40, 0xc7, 0x8c,
0x73, 0xfe, 0x6f, 0x2b, 0xee, 0x6c, 0x03, 0x52,
}
// mLSBRecoding parameters.
const (
fxT = 257
fxV = 2
fxW = 3
fx2w1 = 1 << (uint(fxW) - 1)
numWords64 = (paramB * 8 / 64)
)
// mLSBRecoding is the odd-only modified LSB-set.
//
// Reference:
//
// "Efficient and secure algorithms for GLV-based scalar multiplication and
// their implementation on GLVGLS curves" by (Faz-Hernandez et al.)
// http://doi.org/10.1007/s13389-014-0085-7.
func mLSBRecoding(L []int8, k []byte) {
const ee = (fxT + fxW*fxV - 1) / (fxW * fxV)
const dd = ee * fxV
const ll = dd * fxW
if len(L) == (ll + 1) {
var m [numWords64 + 1]uint64
for i := 0; i < numWords64; i++ {
m[i] = binary.LittleEndian.Uint64(k[8*i : 8*i+8])
}
condAddOrderN(&m)
L[dd-1] = 1
for i := 0; i < dd-1; i++ {
kip1 := (m[(i+1)/64] >> (uint(i+1) % 64)) & 0x1
L[i] = int8(kip1<<1) - 1
}
{ // right-shift by d
right := uint(dd % 64)
left := uint(64) - right
lim := ((numWords64+1)*64 - dd) / 64
j := dd / 64
for i := 0; i < lim; i++ {
m[i] = (m[i+j] >> right) | (m[i+j+1] << left)
}
m[lim] = m[lim+j] >> right
}
for i := dd; i < ll; i++ {
L[i] = L[i%dd] * int8(m[0]&0x1)
div2subY(m[:], int64(L[i]>>1), numWords64)
}
L[ll] = int8(m[0])
}
}
// absolute returns always a positive value.
func absolute(x int32) int32 {
mask := x >> 31
return (x + mask) ^ mask
}
// condAddOrderN updates x = x+order if x is even, otherwise x remains unchanged.
func condAddOrderN(x *[numWords64 + 1]uint64) {
isOdd := (x[0] & 0x1) - 1
c := uint64(0)
for i := 0; i < numWords64; i++ {
orderWord := binary.LittleEndian.Uint64(order[8*i : 8*i+8])
o := isOdd & orderWord
x0, c0 := bits.Add64(x[i], o, c)
x[i] = x0
c = c0
}
x[numWords64], _ = bits.Add64(x[numWords64], 0, c)
}
// div2subY update x = (x/2) - y.
func div2subY(x []uint64, y int64, l int) {
s := uint64(y >> 63)
for i := 0; i < l-1; i++ {
x[i] = (x[i] >> 1) | (x[i+1] << 63)
}
x[l-1] = (x[l-1] >> 1)
b := uint64(0)
x0, b0 := bits.Sub64(x[0], uint64(y), b)
x[0] = x0
b = b0
for i := 1; i < l-1; i++ {
x0, b0 := bits.Sub64(x[i], s, b)
x[i] = x0
b = b0
}
x[l-1], _ = bits.Sub64(x[l-1], s, b)
}
func (P *pointR1) fixedMult(scalar []byte) {
if len(scalar) != paramB {
panic("wrong scalar size")
}
const ee = (fxT + fxW*fxV - 1) / (fxW * fxV)
const dd = ee * fxV
const ll = dd * fxW
L := make([]int8, ll+1)
mLSBRecoding(L[:], scalar)
S := &pointR3{}
P.SetIdentity()
for ii := ee - 1; ii >= 0; ii-- {
P.double()
for j := 0; j < fxV; j++ {
dig := L[fxW*dd-j*ee+ii-ee]
for i := (fxW-1)*dd - j*ee + ii - ee; i >= (2*dd - j*ee + ii - ee); i = i - dd {
dig = 2*dig + L[i]
}
idx := absolute(int32(dig))
sig := L[dd-j*ee+ii-ee]
Tabj := &tabSign[fxV-j-1]
for k := 0; k < fx2w1; k++ {
S.cmov(&Tabj[k], subtle.ConstantTimeEq(int32(k), idx))
}
S.cneg(subtle.ConstantTimeEq(int32(sig), -1))
P.mixAdd(S)
}
}
}
const (
omegaFix = 7
omegaVar = 5
)
// doubleMult returns P=mG+nQ.
func (P *pointR1) doubleMult(Q *pointR1, m, n []byte) {
nafFix := math.OmegaNAF(conv.BytesLe2BigInt(m), omegaFix)
nafVar := math.OmegaNAF(conv.BytesLe2BigInt(n), omegaVar)
if len(nafFix) > len(nafVar) {
nafVar = append(nafVar, make([]int32, len(nafFix)-len(nafVar))...)
} else if len(nafFix) < len(nafVar) {
nafFix = append(nafFix, make([]int32, len(nafVar)-len(nafFix))...)
}
var TabQ [1 << (omegaVar - 2)]pointR2
Q.oddMultiples(TabQ[:])
P.SetIdentity()
for i := len(nafFix) - 1; i >= 0; i-- {
P.double()
// Generator point
if nafFix[i] != 0 {
idxM := absolute(nafFix[i]) >> 1
R := tabVerif[idxM]
if nafFix[i] < 0 {
R.neg()
}
P.mixAdd(&R)
}
// Variable input point
if nafVar[i] != 0 {
idxN := absolute(nafVar[i]) >> 1
S := TabQ[idxN]
if nafVar[i] < 0 {
S.neg()
}
P.add(&S)
}
}
}

View File

@ -0,0 +1,195 @@
package ed25519
import fp "github.com/cloudflare/circl/math/fp25519"
type (
pointR1 struct{ x, y, z, ta, tb fp.Elt }
pointR2 struct {
pointR3
z2 fp.Elt
}
)
type pointR3 struct{ addYX, subYX, dt2 fp.Elt }
func (P *pointR1) neg() {
fp.Neg(&P.x, &P.x)
fp.Neg(&P.ta, &P.ta)
}
func (P *pointR1) SetIdentity() {
P.x = fp.Elt{}
fp.SetOne(&P.y)
fp.SetOne(&P.z)
P.ta = fp.Elt{}
P.tb = fp.Elt{}
}
func (P *pointR1) toAffine() {
fp.Inv(&P.z, &P.z)
fp.Mul(&P.x, &P.x, &P.z)
fp.Mul(&P.y, &P.y, &P.z)
fp.Modp(&P.x)
fp.Modp(&P.y)
fp.SetOne(&P.z)
P.ta = P.x
P.tb = P.y
}
func (P *pointR1) ToBytes(k []byte) error {
P.toAffine()
var x [fp.Size]byte
err := fp.ToBytes(k[:fp.Size], &P.y)
if err != nil {
return err
}
err = fp.ToBytes(x[:], &P.x)
if err != nil {
return err
}
b := x[0] & 1
k[paramB-1] = k[paramB-1] | (b << 7)
return nil
}
func (P *pointR1) FromBytes(k []byte) bool {
if len(k) != paramB {
panic("wrong size")
}
signX := k[paramB-1] >> 7
copy(P.y[:], k[:fp.Size])
P.y[fp.Size-1] &= 0x7F
p := fp.P()
if !isLessThan(P.y[:], p[:]) {
return false
}
one, u, v := &fp.Elt{}, &fp.Elt{}, &fp.Elt{}
fp.SetOne(one)
fp.Sqr(u, &P.y) // u = y^2
fp.Mul(v, u, &paramD) // v = dy^2
fp.Sub(u, u, one) // u = y^2-1
fp.Add(v, v, one) // v = dy^2+1
isQR := fp.InvSqrt(&P.x, u, v) // x = sqrt(u/v)
if !isQR {
return false
}
fp.Modp(&P.x) // x = x mod p
if fp.IsZero(&P.x) && signX == 1 {
return false
}
if signX != (P.x[0] & 1) {
fp.Neg(&P.x, &P.x)
}
P.ta = P.x
P.tb = P.y
fp.SetOne(&P.z)
return true
}
// double calculates 2P for curves with A=-1.
func (P *pointR1) double() {
Px, Py, Pz, Pta, Ptb := &P.x, &P.y, &P.z, &P.ta, &P.tb
a, b, c, e, f, g, h := Px, Py, Pz, Pta, Px, Py, Ptb
fp.Add(e, Px, Py) // x+y
fp.Sqr(a, Px) // A = x^2
fp.Sqr(b, Py) // B = y^2
fp.Sqr(c, Pz) // z^2
fp.Add(c, c, c) // C = 2*z^2
fp.Add(h, a, b) // H = A+B
fp.Sqr(e, e) // (x+y)^2
fp.Sub(e, e, h) // E = (x+y)^2-A-B
fp.Sub(g, b, a) // G = B-A
fp.Sub(f, c, g) // F = C-G
fp.Mul(Pz, f, g) // Z = F * G
fp.Mul(Px, e, f) // X = E * F
fp.Mul(Py, g, h) // Y = G * H, T = E * H
}
func (P *pointR1) mixAdd(Q *pointR3) {
fp.Add(&P.z, &P.z, &P.z) // D = 2*z1
P.coreAddition(Q)
}
func (P *pointR1) add(Q *pointR2) {
fp.Mul(&P.z, &P.z, &Q.z2) // D = 2*z1*z2
P.coreAddition(&Q.pointR3)
}
// coreAddition calculates P=P+Q for curves with A=-1.
func (P *pointR1) coreAddition(Q *pointR3) {
Px, Py, Pz, Pta, Ptb := &P.x, &P.y, &P.z, &P.ta, &P.tb
addYX2, subYX2, dt2 := &Q.addYX, &Q.subYX, &Q.dt2
a, b, c, d, e, f, g, h := Px, Py, &fp.Elt{}, Pz, Pta, Px, Py, Ptb
fp.Mul(c, Pta, Ptb) // t1 = ta*tb
fp.Sub(h, Py, Px) // y1-x1
fp.Add(b, Py, Px) // y1+x1
fp.Mul(a, h, subYX2) // A = (y1-x1)*(y2-x2)
fp.Mul(b, b, addYX2) // B = (y1+x1)*(y2+x2)
fp.Mul(c, c, dt2) // C = 2*D*t1*t2
fp.Sub(e, b, a) // E = B-A
fp.Add(h, b, a) // H = B+A
fp.Sub(f, d, c) // F = D-C
fp.Add(g, d, c) // G = D+C
fp.Mul(Pz, f, g) // Z = F * G
fp.Mul(Px, e, f) // X = E * F
fp.Mul(Py, g, h) // Y = G * H, T = E * H
}
func (P *pointR1) oddMultiples(T []pointR2) {
var R pointR2
n := len(T)
T[0].fromR1(P)
_2P := *P
_2P.double()
R.fromR1(&_2P)
for i := 1; i < n; i++ {
P.add(&R)
T[i].fromR1(P)
}
}
func (P *pointR1) isEqual(Q *pointR1) bool {
l, r := &fp.Elt{}, &fp.Elt{}
fp.Mul(l, &P.x, &Q.z)
fp.Mul(r, &Q.x, &P.z)
fp.Sub(l, l, r)
b := fp.IsZero(l)
fp.Mul(l, &P.y, &Q.z)
fp.Mul(r, &Q.y, &P.z)
fp.Sub(l, l, r)
b = b && fp.IsZero(l)
fp.Mul(l, &P.ta, &P.tb)
fp.Mul(l, l, &Q.z)
fp.Mul(r, &Q.ta, &Q.tb)
fp.Mul(r, r, &P.z)
fp.Sub(l, l, r)
b = b && fp.IsZero(l)
return b
}
func (P *pointR3) neg() {
P.addYX, P.subYX = P.subYX, P.addYX
fp.Neg(&P.dt2, &P.dt2)
}
func (P *pointR2) fromR1(Q *pointR1) {
fp.Add(&P.addYX, &Q.y, &Q.x)
fp.Sub(&P.subYX, &Q.y, &Q.x)
fp.Mul(&P.dt2, &Q.ta, &Q.tb)
fp.Mul(&P.dt2, &P.dt2, &paramD)
fp.Add(&P.dt2, &P.dt2, &P.dt2)
fp.Add(&P.z2, &Q.z, &Q.z)
}
func (P *pointR3) cneg(b int) {
t := &fp.Elt{}
fp.Cswap(&P.addYX, &P.subYX, uint(b))
fp.Neg(t, &P.dt2)
fp.Cmov(&P.dt2, t, uint(b))
}
func (P *pointR3) cmov(Q *pointR3, b int) {
fp.Cmov(&P.addYX, &Q.addYX, uint(b))
fp.Cmov(&P.subYX, &Q.subYX, uint(b))
fp.Cmov(&P.dt2, &Q.dt2, uint(b))
}

View File

@ -0,0 +1,9 @@
//go:build go1.13
// +build go1.13
package ed25519
import cryptoEd25519 "crypto/ed25519"
// PublicKey is the type of Ed25519 public keys.
type PublicKey cryptoEd25519.PublicKey

View File

@ -0,0 +1,7 @@
//go:build !go1.13
// +build !go1.13
package ed25519
// PublicKey is the type of Ed25519 public keys.
type PublicKey []byte

View File

@ -0,0 +1,87 @@
package ed25519
import (
"crypto/rand"
"encoding/asn1"
"github.com/cloudflare/circl/sign"
)
var sch sign.Scheme = &scheme{}
// Scheme returns a signature interface.
func Scheme() sign.Scheme { return sch }
type scheme struct{}
func (*scheme) Name() string { return "Ed25519" }
func (*scheme) PublicKeySize() int { return PublicKeySize }
func (*scheme) PrivateKeySize() int { return PrivateKeySize }
func (*scheme) SignatureSize() int { return SignatureSize }
func (*scheme) SeedSize() int { return SeedSize }
func (*scheme) TLSIdentifier() uint { return 0x0807 }
func (*scheme) SupportsContext() bool { return false }
func (*scheme) Oid() asn1.ObjectIdentifier {
return asn1.ObjectIdentifier{1, 3, 101, 112}
}
func (*scheme) GenerateKey() (sign.PublicKey, sign.PrivateKey, error) {
return GenerateKey(rand.Reader)
}
func (*scheme) Sign(
sk sign.PrivateKey,
message []byte,
opts *sign.SignatureOpts,
) []byte {
priv, ok := sk.(PrivateKey)
if !ok {
panic(sign.ErrTypeMismatch)
}
if opts != nil && opts.Context != "" {
panic(sign.ErrContextNotSupported)
}
return Sign(priv, message)
}
func (*scheme) Verify(
pk sign.PublicKey,
message, signature []byte,
opts *sign.SignatureOpts,
) bool {
pub, ok := pk.(PublicKey)
if !ok {
panic(sign.ErrTypeMismatch)
}
if opts != nil {
if opts.Context != "" {
panic(sign.ErrContextNotSupported)
}
}
return Verify(pub, message, signature)
}
func (*scheme) DeriveKey(seed []byte) (sign.PublicKey, sign.PrivateKey) {
privateKey := NewKeyFromSeed(seed)
publicKey := make(PublicKey, PublicKeySize)
copy(publicKey, privateKey[SeedSize:])
return publicKey, privateKey
}
func (*scheme) UnmarshalBinaryPublicKey(buf []byte) (sign.PublicKey, error) {
if len(buf) < PublicKeySize {
return nil, sign.ErrPubKeySize
}
pub := make(PublicKey, PublicKeySize)
copy(pub, buf[:PublicKeySize])
return pub, nil
}
func (*scheme) UnmarshalBinaryPrivateKey(buf []byte) (sign.PrivateKey, error) {
if len(buf) < PrivateKeySize {
return nil, sign.ErrPrivKeySize
}
priv := make(PrivateKey, PrivateKeySize)
copy(priv, buf[:PrivateKeySize])
return priv, nil
}

View File

@ -0,0 +1,213 @@
package ed25519
import fp "github.com/cloudflare/circl/math/fp25519"
var tabSign = [fxV][fx2w1]pointR3{
{
pointR3{
addYX: fp.Elt{0x85, 0x3b, 0x8c, 0xf5, 0xc6, 0x93, 0xbc, 0x2f, 0x19, 0x0e, 0x8c, 0xfb, 0xc6, 0x2d, 0x93, 0xcf, 0xc2, 0x42, 0x3d, 0x64, 0x98, 0x48, 0x0b, 0x27, 0x65, 0xba, 0xd4, 0x33, 0x3a, 0x9d, 0xcf, 0x07},
subYX: fp.Elt{0x3e, 0x91, 0x40, 0xd7, 0x05, 0x39, 0x10, 0x9d, 0xb3, 0xbe, 0x40, 0xd1, 0x05, 0x9f, 0x39, 0xfd, 0x09, 0x8a, 0x8f, 0x68, 0x34, 0x84, 0xc1, 0xa5, 0x67, 0x12, 0xf8, 0x98, 0x92, 0x2f, 0xfd, 0x44},
dt2: fp.Elt{0x68, 0xaa, 0x7a, 0x87, 0x05, 0x12, 0xc9, 0xab, 0x9e, 0xc4, 0xaa, 0xcc, 0x23, 0xe8, 0xd9, 0x26, 0x8c, 0x59, 0x43, 0xdd, 0xcb, 0x7d, 0x1b, 0x5a, 0xa8, 0x65, 0x0c, 0x9f, 0x68, 0x7b, 0x11, 0x6f},
},
{
addYX: fp.Elt{0x7c, 0xb0, 0x9e, 0xe6, 0xc5, 0xbf, 0xfa, 0x13, 0x8e, 0x0d, 0x22, 0xde, 0xc8, 0xd1, 0xce, 0x52, 0x02, 0xd5, 0x62, 0x31, 0x71, 0x0e, 0x8e, 0x9d, 0xb0, 0xd6, 0x00, 0xa5, 0x5a, 0x0e, 0xce, 0x72},
subYX: fp.Elt{0x1a, 0x8e, 0x5c, 0xdc, 0xa4, 0xb3, 0x6c, 0x51, 0x18, 0xa0, 0x09, 0x80, 0x9a, 0x46, 0x33, 0xd5, 0xe0, 0x3c, 0x4d, 0x3b, 0xfc, 0x49, 0xa2, 0x43, 0x29, 0xe1, 0x29, 0xa9, 0x93, 0xea, 0x7c, 0x35},
dt2: fp.Elt{0x08, 0x46, 0x6f, 0x68, 0x7f, 0x0b, 0x7c, 0x9e, 0xad, 0xba, 0x07, 0x61, 0x74, 0x83, 0x2f, 0xfc, 0x26, 0xd6, 0x09, 0xb9, 0x00, 0x34, 0x36, 0x4f, 0x01, 0xf3, 0x48, 0xdb, 0x43, 0xba, 0x04, 0x44},
},
{
addYX: fp.Elt{0x4c, 0xda, 0x0d, 0x13, 0x66, 0xfd, 0x82, 0x84, 0x9f, 0x75, 0x5b, 0xa2, 0x17, 0xfe, 0x34, 0xbf, 0x1f, 0xcb, 0xba, 0x90, 0x55, 0x80, 0x83, 0xfd, 0x63, 0xb9, 0x18, 0xf8, 0x5b, 0x5d, 0x94, 0x1e},
subYX: fp.Elt{0xb9, 0xdb, 0x6c, 0x04, 0x88, 0x22, 0xd8, 0x79, 0x83, 0x2f, 0x8d, 0x65, 0x6b, 0xd2, 0xab, 0x1b, 0xdd, 0x65, 0xe5, 0x93, 0x63, 0xf8, 0xa2, 0xd8, 0x3c, 0xf1, 0x4b, 0xc5, 0x99, 0xd1, 0xf2, 0x12},
dt2: fp.Elt{0x05, 0x4c, 0xb8, 0x3b, 0xfe, 0xf5, 0x9f, 0x2e, 0xd1, 0xb2, 0xb8, 0xff, 0xfe, 0x6d, 0xd9, 0x37, 0xe0, 0xae, 0xb4, 0x5a, 0x51, 0x80, 0x7e, 0x9b, 0x1d, 0xd1, 0x8d, 0x8c, 0x56, 0xb1, 0x84, 0x35},
},
{
addYX: fp.Elt{0x39, 0x71, 0x43, 0x34, 0xe3, 0x42, 0x45, 0xa1, 0xf2, 0x68, 0x71, 0xa7, 0xe8, 0x23, 0xfd, 0x9f, 0x86, 0x48, 0xff, 0xe5, 0x96, 0x74, 0xcf, 0x05, 0x49, 0xe2, 0xb3, 0x6c, 0x17, 0x77, 0x2f, 0x6d},
subYX: fp.Elt{0x73, 0x3f, 0xc1, 0xc7, 0x6a, 0x66, 0xa1, 0x20, 0xdd, 0x11, 0xfb, 0x7a, 0x6e, 0xa8, 0x51, 0xb8, 0x3f, 0x9d, 0xa2, 0x97, 0x84, 0xb5, 0xc7, 0x90, 0x7c, 0xab, 0x48, 0xd6, 0x84, 0xa3, 0xd5, 0x1a},
dt2: fp.Elt{0x63, 0x27, 0x3c, 0x49, 0x4b, 0xfc, 0x22, 0xf2, 0x0b, 0x50, 0xc2, 0x0f, 0xb4, 0x1f, 0x31, 0x0c, 0x2f, 0x53, 0xab, 0xaa, 0x75, 0x6f, 0xe0, 0x69, 0x39, 0x56, 0xe0, 0x3b, 0xb7, 0xa8, 0xbf, 0x45},
},
},
{
{
addYX: fp.Elt{0x00, 0x45, 0xd9, 0x0d, 0x58, 0x03, 0xfc, 0x29, 0x93, 0xec, 0xbb, 0x6f, 0xa4, 0x7a, 0xd2, 0xec, 0xf8, 0xa7, 0xe2, 0xc2, 0x5f, 0x15, 0x0a, 0x13, 0xd5, 0xa1, 0x06, 0xb7, 0x1a, 0x15, 0x6b, 0x41},
subYX: fp.Elt{0x85, 0x8c, 0xb2, 0x17, 0xd6, 0x3b, 0x0a, 0xd3, 0xea, 0x3b, 0x77, 0x39, 0xb7, 0x77, 0xd3, 0xc5, 0xbf, 0x5c, 0x6a, 0x1e, 0x8c, 0xe7, 0xc6, 0xc6, 0xc4, 0xb7, 0x2a, 0x8b, 0xf7, 0xb8, 0x61, 0x0d},
dt2: fp.Elt{0xb0, 0x36, 0xc1, 0xe9, 0xef, 0xd7, 0xa8, 0x56, 0x20, 0x4b, 0xe4, 0x58, 0xcd, 0xe5, 0x07, 0xbd, 0xab, 0xe0, 0x57, 0x1b, 0xda, 0x2f, 0xe6, 0xaf, 0xd2, 0xe8, 0x77, 0x42, 0xf7, 0x2a, 0x1a, 0x19},
},
{
addYX: fp.Elt{0x6a, 0x6d, 0x6d, 0xd1, 0xfa, 0xf5, 0x03, 0x30, 0xbd, 0x6d, 0xc2, 0xc8, 0xf5, 0x38, 0x80, 0x4f, 0xb2, 0xbe, 0xa1, 0x76, 0x50, 0x1a, 0x73, 0xf2, 0x78, 0x2b, 0x8e, 0x3a, 0x1e, 0x34, 0x47, 0x7b},
subYX: fp.Elt{0xc3, 0x2c, 0x36, 0xdc, 0xc5, 0x45, 0xbc, 0xef, 0x1b, 0x64, 0xd6, 0x65, 0x28, 0xe9, 0xda, 0x84, 0x13, 0xbe, 0x27, 0x8e, 0x3f, 0x98, 0x2a, 0x37, 0xee, 0x78, 0x97, 0xd6, 0xc0, 0x6f, 0xb4, 0x53},
dt2: fp.Elt{0x58, 0x5d, 0xa7, 0xa3, 0x68, 0xbb, 0x20, 0x30, 0x2e, 0x03, 0xe9, 0xb1, 0xd4, 0x90, 0x72, 0xe3, 0x71, 0xb2, 0x36, 0x3e, 0x73, 0xa0, 0x2e, 0x3d, 0xd1, 0x85, 0x33, 0x62, 0x4e, 0xa7, 0x7b, 0x31},
},
{
addYX: fp.Elt{0xbf, 0xc4, 0x38, 0x53, 0xfb, 0x68, 0xa9, 0x77, 0xce, 0x55, 0xf9, 0x05, 0xcb, 0xeb, 0xfb, 0x8c, 0x46, 0xc2, 0x32, 0x7c, 0xf0, 0xdb, 0xd7, 0x2c, 0x62, 0x8e, 0xdd, 0x54, 0x75, 0xcf, 0x3f, 0x33},
subYX: fp.Elt{0x49, 0x50, 0x1f, 0x4e, 0x6e, 0x55, 0x55, 0xde, 0x8c, 0x4e, 0x77, 0x96, 0x38, 0x3b, 0xfe, 0xb6, 0x43, 0x3c, 0x86, 0x69, 0xc2, 0x72, 0x66, 0x1f, 0x6b, 0xf9, 0x87, 0xbc, 0x4f, 0x37, 0x3e, 0x3c},
dt2: fp.Elt{0xd2, 0x2f, 0x06, 0x6b, 0x08, 0x07, 0x69, 0x77, 0xc0, 0x94, 0xcc, 0xae, 0x43, 0x00, 0x59, 0x6e, 0xa3, 0x63, 0xa8, 0xdd, 0xfa, 0x24, 0x18, 0xd0, 0x35, 0xc7, 0x78, 0xf7, 0x0d, 0xd4, 0x5a, 0x1e},
},
{
addYX: fp.Elt{0x45, 0xc1, 0x17, 0x51, 0xf8, 0xed, 0x7e, 0xc7, 0xa9, 0x1a, 0x11, 0x6e, 0x2d, 0xef, 0x0b, 0xd5, 0x3f, 0x98, 0xb0, 0xa3, 0x9d, 0x65, 0xf1, 0xcd, 0x53, 0x4a, 0x8a, 0x18, 0x70, 0x0a, 0x7f, 0x23},
subYX: fp.Elt{0xdd, 0xef, 0xbe, 0x3a, 0x31, 0xe0, 0xbc, 0xbe, 0x6d, 0x5d, 0x79, 0x87, 0xd6, 0xbe, 0x68, 0xe3, 0x59, 0x76, 0x8c, 0x86, 0x0e, 0x7a, 0x92, 0x13, 0x14, 0x8f, 0x67, 0xb3, 0xcb, 0x1a, 0x76, 0x76},
dt2: fp.Elt{0x56, 0x7a, 0x1c, 0x9d, 0xca, 0x96, 0xf9, 0xf9, 0x03, 0x21, 0xd4, 0xe8, 0xb3, 0xd5, 0xe9, 0x52, 0xc8, 0x54, 0x1e, 0x1b, 0x13, 0xb6, 0xfd, 0x47, 0x7d, 0x02, 0x32, 0x33, 0x27, 0xe2, 0x1f, 0x19},
},
},
}
var tabVerif = [1 << (omegaFix - 2)]pointR3{
{ /* 1P */
addYX: fp.Elt{0x85, 0x3b, 0x8c, 0xf5, 0xc6, 0x93, 0xbc, 0x2f, 0x19, 0x0e, 0x8c, 0xfb, 0xc6, 0x2d, 0x93, 0xcf, 0xc2, 0x42, 0x3d, 0x64, 0x98, 0x48, 0x0b, 0x27, 0x65, 0xba, 0xd4, 0x33, 0x3a, 0x9d, 0xcf, 0x07},
subYX: fp.Elt{0x3e, 0x91, 0x40, 0xd7, 0x05, 0x39, 0x10, 0x9d, 0xb3, 0xbe, 0x40, 0xd1, 0x05, 0x9f, 0x39, 0xfd, 0x09, 0x8a, 0x8f, 0x68, 0x34, 0x84, 0xc1, 0xa5, 0x67, 0x12, 0xf8, 0x98, 0x92, 0x2f, 0xfd, 0x44},
dt2: fp.Elt{0x68, 0xaa, 0x7a, 0x87, 0x05, 0x12, 0xc9, 0xab, 0x9e, 0xc4, 0xaa, 0xcc, 0x23, 0xe8, 0xd9, 0x26, 0x8c, 0x59, 0x43, 0xdd, 0xcb, 0x7d, 0x1b, 0x5a, 0xa8, 0x65, 0x0c, 0x9f, 0x68, 0x7b, 0x11, 0x6f},
},
{ /* 3P */
addYX: fp.Elt{0x30, 0x97, 0xee, 0x4c, 0xa8, 0xb0, 0x25, 0xaf, 0x8a, 0x4b, 0x86, 0xe8, 0x30, 0x84, 0x5a, 0x02, 0x32, 0x67, 0x01, 0x9f, 0x02, 0x50, 0x1b, 0xc1, 0xf4, 0xf8, 0x80, 0x9a, 0x1b, 0x4e, 0x16, 0x7a},
subYX: fp.Elt{0x65, 0xd2, 0xfc, 0xa4, 0xe8, 0x1f, 0x61, 0x56, 0x7d, 0xba, 0xc1, 0xe5, 0xfd, 0x53, 0xd3, 0x3b, 0xbd, 0xd6, 0x4b, 0x21, 0x1a, 0xf3, 0x31, 0x81, 0x62, 0xda, 0x5b, 0x55, 0x87, 0x15, 0xb9, 0x2a},
dt2: fp.Elt{0x89, 0xd8, 0xd0, 0x0d, 0x3f, 0x93, 0xae, 0x14, 0x62, 0xda, 0x35, 0x1c, 0x22, 0x23, 0x94, 0x58, 0x4c, 0xdb, 0xf2, 0x8c, 0x45, 0xe5, 0x70, 0xd1, 0xc6, 0xb4, 0xb9, 0x12, 0xaf, 0x26, 0x28, 0x5a},
},
{ /* 5P */
addYX: fp.Elt{0x33, 0xbb, 0xa5, 0x08, 0x44, 0xbc, 0x12, 0xa2, 0x02, 0xed, 0x5e, 0xc7, 0xc3, 0x48, 0x50, 0x8d, 0x44, 0xec, 0xbf, 0x5a, 0x0c, 0xeb, 0x1b, 0xdd, 0xeb, 0x06, 0xe2, 0x46, 0xf1, 0xcc, 0x45, 0x29},
subYX: fp.Elt{0xba, 0xd6, 0x47, 0xa4, 0xc3, 0x82, 0x91, 0x7f, 0xb7, 0x29, 0x27, 0x4b, 0xd1, 0x14, 0x00, 0xd5, 0x87, 0xa0, 0x64, 0xb8, 0x1c, 0xf1, 0x3c, 0xe3, 0xf3, 0x55, 0x1b, 0xeb, 0x73, 0x7e, 0x4a, 0x15},
dt2: fp.Elt{0x85, 0x82, 0x2a, 0x81, 0xf1, 0xdb, 0xbb, 0xbc, 0xfc, 0xd1, 0xbd, 0xd0, 0x07, 0x08, 0x0e, 0x27, 0x2d, 0xa7, 0xbd, 0x1b, 0x0b, 0x67, 0x1b, 0xb4, 0x9a, 0xb6, 0x3b, 0x6b, 0x69, 0xbe, 0xaa, 0x43},
},
{ /* 7P */
addYX: fp.Elt{0xbf, 0xa3, 0x4e, 0x94, 0xd0, 0x5c, 0x1a, 0x6b, 0xd2, 0xc0, 0x9d, 0xb3, 0x3a, 0x35, 0x70, 0x74, 0x49, 0x2e, 0x54, 0x28, 0x82, 0x52, 0xb2, 0x71, 0x7e, 0x92, 0x3c, 0x28, 0x69, 0xea, 0x1b, 0x46},
subYX: fp.Elt{0xb1, 0x21, 0x32, 0xaa, 0x9a, 0x2c, 0x6f, 0xba, 0xa7, 0x23, 0xba, 0x3b, 0x53, 0x21, 0xa0, 0x6c, 0x3a, 0x2c, 0x19, 0x92, 0x4f, 0x76, 0xea, 0x9d, 0xe0, 0x17, 0x53, 0x2e, 0x5d, 0xdd, 0x6e, 0x1d},
dt2: fp.Elt{0xa2, 0xb3, 0xb8, 0x01, 0xc8, 0x6d, 0x83, 0xf1, 0x9a, 0xa4, 0x3e, 0x05, 0x47, 0x5f, 0x03, 0xb3, 0xf3, 0xad, 0x77, 0x58, 0xba, 0x41, 0x9c, 0x52, 0xa7, 0x90, 0x0f, 0x6a, 0x1c, 0xbb, 0x9f, 0x7a},
},
{ /* 9P */
addYX: fp.Elt{0x2f, 0x63, 0xa8, 0xa6, 0x8a, 0x67, 0x2e, 0x9b, 0xc5, 0x46, 0xbc, 0x51, 0x6f, 0x9e, 0x50, 0xa6, 0xb5, 0xf5, 0x86, 0xc6, 0xc9, 0x33, 0xb2, 0xce, 0x59, 0x7f, 0xdd, 0x8a, 0x33, 0xed, 0xb9, 0x34},
subYX: fp.Elt{0x64, 0x80, 0x9d, 0x03, 0x7e, 0x21, 0x6e, 0xf3, 0x9b, 0x41, 0x20, 0xf5, 0xb6, 0x81, 0xa0, 0x98, 0x44, 0xb0, 0x5e, 0xe7, 0x08, 0xc6, 0xcb, 0x96, 0x8f, 0x9c, 0xdc, 0xfa, 0x51, 0x5a, 0xc0, 0x49},
dt2: fp.Elt{0x1b, 0xaf, 0x45, 0x90, 0xbf, 0xe8, 0xb4, 0x06, 0x2f, 0xd2, 0x19, 0xa7, 0xe8, 0x83, 0xff, 0xe2, 0x16, 0xcf, 0xd4, 0x93, 0x29, 0xfc, 0xf6, 0xaa, 0x06, 0x8b, 0x00, 0x1b, 0x02, 0x72, 0xc1, 0x73},
},
{ /* 11P */
addYX: fp.Elt{0xde, 0x2a, 0x80, 0x8a, 0x84, 0x00, 0xbf, 0x2f, 0x27, 0x2e, 0x30, 0x02, 0xcf, 0xfe, 0xd9, 0xe5, 0x06, 0x34, 0x70, 0x17, 0x71, 0x84, 0x3e, 0x11, 0xaf, 0x8f, 0x6d, 0x54, 0xe2, 0xaa, 0x75, 0x42},
subYX: fp.Elt{0x48, 0x43, 0x86, 0x49, 0x02, 0x5b, 0x5f, 0x31, 0x81, 0x83, 0x08, 0x77, 0x69, 0xb3, 0xd6, 0x3e, 0x95, 0xeb, 0x8d, 0x6a, 0x55, 0x75, 0xa0, 0xa3, 0x7f, 0xc7, 0xd5, 0x29, 0x80, 0x59, 0xab, 0x18},
dt2: fp.Elt{0xe9, 0x89, 0x60, 0xfd, 0xc5, 0x2c, 0x2b, 0xd8, 0xa4, 0xe4, 0x82, 0x32, 0xa1, 0xb4, 0x1e, 0x03, 0x22, 0x86, 0x1a, 0xb5, 0x99, 0x11, 0x31, 0x44, 0x48, 0xf9, 0x3d, 0xb5, 0x22, 0x55, 0xc6, 0x3d},
},
{ /* 13P */
addYX: fp.Elt{0x6d, 0x7f, 0x00, 0xa2, 0x22, 0xc2, 0x70, 0xbf, 0xdb, 0xde, 0xbc, 0xb5, 0x9a, 0xb3, 0x84, 0xbf, 0x07, 0xba, 0x07, 0xfb, 0x12, 0x0e, 0x7a, 0x53, 0x41, 0xf2, 0x46, 0xc3, 0xee, 0xd7, 0x4f, 0x23},
subYX: fp.Elt{0x93, 0xbf, 0x7f, 0x32, 0x3b, 0x01, 0x6f, 0x50, 0x6b, 0x6f, 0x77, 0x9b, 0xc9, 0xeb, 0xfc, 0xae, 0x68, 0x59, 0xad, 0xaa, 0x32, 0xb2, 0x12, 0x9d, 0xa7, 0x24, 0x60, 0x17, 0x2d, 0x88, 0x67, 0x02},
dt2: fp.Elt{0x78, 0xa3, 0x2e, 0x73, 0x19, 0xa1, 0x60, 0x53, 0x71, 0xd4, 0x8d, 0xdf, 0xb1, 0xe6, 0x37, 0x24, 0x33, 0xe5, 0xa7, 0x91, 0xf8, 0x37, 0xef, 0xa2, 0x63, 0x78, 0x09, 0xaa, 0xfd, 0xa6, 0x7b, 0x49},
},
{ /* 15P */
addYX: fp.Elt{0xa0, 0xea, 0xcf, 0x13, 0x03, 0xcc, 0xce, 0x24, 0x6d, 0x24, 0x9c, 0x18, 0x8d, 0xc2, 0x48, 0x86, 0xd0, 0xd4, 0xf2, 0xc1, 0xfa, 0xbd, 0xbd, 0x2d, 0x2b, 0xe7, 0x2d, 0xf1, 0x17, 0x29, 0xe2, 0x61},
subYX: fp.Elt{0x0b, 0xcf, 0x8c, 0x46, 0x86, 0xcd, 0x0b, 0x04, 0xd6, 0x10, 0x99, 0x2a, 0xa4, 0x9b, 0x82, 0xd3, 0x92, 0x51, 0xb2, 0x07, 0x08, 0x30, 0x08, 0x75, 0xbf, 0x5e, 0xd0, 0x18, 0x42, 0xcd, 0xb5, 0x43},
dt2: fp.Elt{0x16, 0xb5, 0xd0, 0x9b, 0x2f, 0x76, 0x9a, 0x5d, 0xee, 0xde, 0x3f, 0x37, 0x4e, 0xaf, 0x38, 0xeb, 0x70, 0x42, 0xd6, 0x93, 0x7d, 0x5a, 0x2e, 0x03, 0x42, 0xd8, 0xe4, 0x0a, 0x21, 0x61, 0x1d, 0x51},
},
{ /* 17P */
addYX: fp.Elt{0x81, 0x9d, 0x0e, 0x95, 0xef, 0x76, 0xc6, 0x92, 0x4f, 0x04, 0xd7, 0xc0, 0xcd, 0x20, 0x46, 0xa5, 0x48, 0x12, 0x8f, 0x6f, 0x64, 0x36, 0x9b, 0xaa, 0xe3, 0x55, 0xb8, 0xdd, 0x24, 0x59, 0x32, 0x6d},
subYX: fp.Elt{0x87, 0xde, 0x20, 0x44, 0x48, 0x86, 0x13, 0x08, 0xb4, 0xed, 0x92, 0xb5, 0x16, 0xf0, 0x1c, 0x8a, 0x25, 0x2d, 0x94, 0x29, 0x27, 0x4e, 0xfa, 0x39, 0x10, 0x28, 0x48, 0xe2, 0x6f, 0xfe, 0xa7, 0x71},
dt2: fp.Elt{0x54, 0xc8, 0xc8, 0xa5, 0xb8, 0x82, 0x71, 0x6c, 0x03, 0x2a, 0x5f, 0xfe, 0x79, 0x14, 0xfd, 0x33, 0x0c, 0x8d, 0x77, 0x83, 0x18, 0x59, 0xcf, 0x72, 0xa9, 0xea, 0x9e, 0x55, 0xb6, 0xc4, 0x46, 0x47},
},
{ /* 19P */
addYX: fp.Elt{0x2b, 0x9a, 0xc6, 0x6d, 0x3c, 0x7b, 0x77, 0xd3, 0x17, 0xf6, 0x89, 0x6f, 0x27, 0xb2, 0xfa, 0xde, 0xb5, 0x16, 0x3a, 0xb5, 0xf7, 0x1c, 0x65, 0x45, 0xb7, 0x9f, 0xfe, 0x34, 0xde, 0x51, 0x9a, 0x5c},
subYX: fp.Elt{0x47, 0x11, 0x74, 0x64, 0xc8, 0x46, 0x85, 0x34, 0x49, 0xc8, 0xfc, 0x0e, 0xdd, 0xae, 0x35, 0x7d, 0x32, 0xa3, 0x72, 0x06, 0x76, 0x9a, 0x93, 0xff, 0xd6, 0xe6, 0xb5, 0x7d, 0x49, 0x63, 0x96, 0x21},
dt2: fp.Elt{0x67, 0x0e, 0xf1, 0x79, 0xcf, 0xf1, 0x10, 0xf5, 0x5b, 0x51, 0x58, 0xe6, 0xa1, 0xda, 0xdd, 0xff, 0x77, 0x22, 0x14, 0x10, 0x17, 0xa7, 0xc3, 0x09, 0xbb, 0x23, 0x82, 0x60, 0x3c, 0x50, 0x04, 0x48},
},
{ /* 21P */
addYX: fp.Elt{0xc7, 0x7f, 0xa3, 0x2c, 0xd0, 0x9e, 0x24, 0xc4, 0xab, 0xac, 0x15, 0xa6, 0xe3, 0xa0, 0x59, 0xa0, 0x23, 0x0e, 0x6e, 0xc9, 0xd7, 0x6e, 0xa9, 0x88, 0x6d, 0x69, 0x50, 0x16, 0xa5, 0x98, 0x33, 0x55},
subYX: fp.Elt{0x75, 0xd1, 0x36, 0x3a, 0xd2, 0x21, 0x68, 0x3b, 0x32, 0x9e, 0x9b, 0xe9, 0xa7, 0x0a, 0xb4, 0xbb, 0x47, 0x8a, 0x83, 0x20, 0xe4, 0x5c, 0x9e, 0x5d, 0x5e, 0x4c, 0xde, 0x58, 0x88, 0x09, 0x1e, 0x77},
dt2: fp.Elt{0xdf, 0x1e, 0x45, 0x78, 0xd2, 0xf5, 0x12, 0x9a, 0xcb, 0x9c, 0x89, 0x85, 0x79, 0x5d, 0xda, 0x3a, 0x08, 0x95, 0xa5, 0x9f, 0x2d, 0x4a, 0x7f, 0x47, 0x11, 0xa6, 0xf5, 0x8f, 0xd6, 0xd1, 0x5e, 0x5a},
},
{ /* 23P */
addYX: fp.Elt{0x83, 0x0e, 0x15, 0xfe, 0x2a, 0x12, 0x95, 0x11, 0xd8, 0x35, 0x4b, 0x7e, 0x25, 0x9a, 0x20, 0xcf, 0x20, 0x1e, 0x71, 0x1e, 0x29, 0xf8, 0x87, 0x73, 0xf0, 0x92, 0xbf, 0xd8, 0x97, 0xb8, 0xac, 0x44},
subYX: fp.Elt{0x59, 0x73, 0x52, 0x58, 0xc5, 0xe0, 0xe5, 0xba, 0x7e, 0x9d, 0xdb, 0xca, 0x19, 0x5c, 0x2e, 0x39, 0xe9, 0xab, 0x1c, 0xda, 0x1e, 0x3c, 0x65, 0x28, 0x44, 0xdc, 0xef, 0x5f, 0x13, 0x60, 0x9b, 0x01},
dt2: fp.Elt{0x83, 0x4b, 0x13, 0x5e, 0x14, 0x68, 0x60, 0x1e, 0x16, 0x4c, 0x30, 0x24, 0x4f, 0xe6, 0xf5, 0xc4, 0xd7, 0x3e, 0x1a, 0xfc, 0xa8, 0x88, 0x6e, 0x50, 0x92, 0x2f, 0xad, 0xe6, 0xfd, 0x49, 0x0c, 0x15},
},
{ /* 25P */
addYX: fp.Elt{0x38, 0x11, 0x47, 0x09, 0x95, 0xf2, 0x7b, 0x8e, 0x51, 0xa6, 0x75, 0x4f, 0x39, 0xef, 0x6f, 0x5d, 0xad, 0x08, 0xa7, 0x25, 0xc4, 0x79, 0xaf, 0x10, 0x22, 0x99, 0xb9, 0x5b, 0x07, 0x5a, 0x2b, 0x6b},
subYX: fp.Elt{0x68, 0xa8, 0xdc, 0x9c, 0x3c, 0x86, 0x49, 0xb8, 0xd0, 0x4a, 0x71, 0xb8, 0xdb, 0x44, 0x3f, 0xc8, 0x8d, 0x16, 0x36, 0x0c, 0x56, 0xe3, 0x3e, 0xfe, 0xc1, 0xfb, 0x05, 0x1e, 0x79, 0xd7, 0xa6, 0x78},
dt2: fp.Elt{0x76, 0xb9, 0xa0, 0x47, 0x4b, 0x70, 0xbf, 0x58, 0xd5, 0x48, 0x17, 0x74, 0x55, 0xb3, 0x01, 0xa6, 0x90, 0xf5, 0x42, 0xd5, 0xb1, 0x1f, 0x2b, 0xaa, 0x00, 0x5d, 0xd5, 0x4a, 0xfc, 0x7f, 0x5c, 0x72},
},
{ /* 27P */
addYX: fp.Elt{0xb2, 0x99, 0xcf, 0xd1, 0x15, 0x67, 0x42, 0xe4, 0x34, 0x0d, 0xa2, 0x02, 0x11, 0xd5, 0x52, 0x73, 0x9f, 0x10, 0x12, 0x8b, 0x7b, 0x15, 0xd1, 0x23, 0xa3, 0xf3, 0xb1, 0x7c, 0x27, 0xc9, 0x4c, 0x79},
subYX: fp.Elt{0xc0, 0x98, 0xd0, 0x1c, 0xf7, 0x2b, 0x80, 0x91, 0x66, 0x63, 0x5e, 0xed, 0xa4, 0x6c, 0x41, 0xfe, 0x4c, 0x99, 0x02, 0x49, 0x71, 0x5d, 0x58, 0xdf, 0xe7, 0xfa, 0x55, 0xf8, 0x25, 0x46, 0xd5, 0x4c},
dt2: fp.Elt{0x53, 0x50, 0xac, 0xc2, 0x26, 0xc4, 0xf6, 0x4a, 0x58, 0x72, 0xf6, 0x32, 0xad, 0xed, 0x9a, 0xbc, 0x21, 0x10, 0x31, 0x0a, 0xf1, 0x32, 0xd0, 0x2a, 0x85, 0x8e, 0xcc, 0x6f, 0x7b, 0x35, 0x08, 0x70},
},
{ /* 29P */
addYX: fp.Elt{0x01, 0x3f, 0x77, 0x38, 0x27, 0x67, 0x88, 0x0b, 0xfb, 0xcc, 0xfb, 0x95, 0xfa, 0xc8, 0xcc, 0xb8, 0xb6, 0x29, 0xad, 0xb9, 0xa3, 0xd5, 0x2d, 0x8d, 0x6a, 0x0f, 0xad, 0x51, 0x98, 0x7e, 0xef, 0x06},
subYX: fp.Elt{0x34, 0x4a, 0x58, 0x82, 0xbb, 0x9f, 0x1b, 0xd0, 0x2b, 0x79, 0xb4, 0xd2, 0x63, 0x64, 0xab, 0x47, 0x02, 0x62, 0x53, 0x48, 0x9c, 0x63, 0x31, 0xb6, 0x28, 0xd4, 0xd6, 0x69, 0x36, 0x2a, 0xa9, 0x13},
dt2: fp.Elt{0xe5, 0x7d, 0x57, 0xc0, 0x1c, 0x77, 0x93, 0xca, 0x5c, 0xdc, 0x35, 0x50, 0x1e, 0xe4, 0x40, 0x75, 0x71, 0xe0, 0x02, 0xd8, 0x01, 0x0f, 0x68, 0x24, 0x6a, 0xf8, 0x2a, 0x8a, 0xdf, 0x6d, 0x29, 0x3c},
},
{ /* 31P */
addYX: fp.Elt{0x13, 0xa7, 0x14, 0xd9, 0xf9, 0x15, 0xad, 0xae, 0x12, 0xf9, 0x8f, 0x8c, 0xf9, 0x7b, 0x2f, 0xa9, 0x30, 0xd7, 0x53, 0x9f, 0x17, 0x23, 0xf8, 0xaf, 0xba, 0x77, 0x0c, 0x49, 0x93, 0xd3, 0x99, 0x7a},
subYX: fp.Elt{0x41, 0x25, 0x1f, 0xbb, 0x2e, 0x4d, 0xeb, 0xfc, 0x1f, 0xb9, 0xad, 0x40, 0xc7, 0x10, 0x95, 0xb8, 0x05, 0xad, 0xa1, 0xd0, 0x7d, 0xa3, 0x71, 0xfc, 0x7b, 0x71, 0x47, 0x07, 0x70, 0x2c, 0x89, 0x0a},
dt2: fp.Elt{0xe8, 0xa3, 0xbd, 0x36, 0x24, 0xed, 0x52, 0x8f, 0x94, 0x07, 0xe8, 0x57, 0x41, 0xc8, 0xa8, 0x77, 0xe0, 0x9c, 0x2f, 0x26, 0x63, 0x65, 0xa9, 0xa5, 0xd2, 0xf7, 0x02, 0x83, 0xd2, 0x62, 0x67, 0x28},
},
{ /* 33P */
addYX: fp.Elt{0x25, 0x5b, 0xe3, 0x3c, 0x09, 0x36, 0x78, 0x4e, 0x97, 0xaa, 0x6b, 0xb2, 0x1d, 0x18, 0xe1, 0x82, 0x3f, 0xb8, 0xc7, 0xcb, 0xd3, 0x92, 0xc1, 0x0c, 0x3a, 0x9d, 0x9d, 0x6a, 0x04, 0xda, 0xf1, 0x32},
subYX: fp.Elt{0xbd, 0xf5, 0x2e, 0xce, 0x2b, 0x8e, 0x55, 0x7c, 0x63, 0xbc, 0x47, 0x67, 0xb4, 0x6c, 0x98, 0xe4, 0xb8, 0x89, 0xbb, 0x3b, 0x9f, 0x17, 0x4a, 0x15, 0x7a, 0x76, 0xf1, 0xd6, 0xa3, 0xf2, 0x86, 0x76},
dt2: fp.Elt{0x6a, 0x7c, 0x59, 0x6d, 0xa6, 0x12, 0x8d, 0xaa, 0x2b, 0x85, 0xd3, 0x04, 0x03, 0x93, 0x11, 0x8f, 0x22, 0xb0, 0x09, 0xc2, 0x73, 0xdc, 0x91, 0x3f, 0xa6, 0x28, 0xad, 0xa9, 0xf8, 0x05, 0x13, 0x56},
},
{ /* 35P */
addYX: fp.Elt{0xd1, 0xae, 0x92, 0xec, 0x8d, 0x97, 0x0c, 0x10, 0xe5, 0x73, 0x6d, 0x4d, 0x43, 0xd5, 0x43, 0xca, 0x48, 0xba, 0x47, 0xd8, 0x22, 0x1b, 0x13, 0x83, 0x2c, 0x4d, 0x5d, 0xe3, 0x53, 0xec, 0xaa},
subYX: fp.Elt{0xd5, 0xc0, 0xb0, 0xe7, 0x28, 0xcc, 0x22, 0x67, 0x53, 0x5c, 0x07, 0xdb, 0xbb, 0xe9, 0x9d, 0x70, 0x61, 0x0a, 0x01, 0xd7, 0xa7, 0x8d, 0xf6, 0xca, 0x6c, 0xcc, 0x57, 0x2c, 0xef, 0x1a, 0x0a, 0x03},
dt2: fp.Elt{0xaa, 0xd2, 0x3a, 0x00, 0x73, 0xf7, 0xb1, 0x7b, 0x08, 0x66, 0x21, 0x2b, 0x80, 0x29, 0x3f, 0x0b, 0x3e, 0xd2, 0x0e, 0x52, 0x86, 0xdc, 0x21, 0x78, 0x80, 0x54, 0x06, 0x24, 0x1c, 0x9c, 0xbe, 0x20},
},
{ /* 37P */
addYX: fp.Elt{0xa6, 0x73, 0x96, 0x24, 0xd8, 0x87, 0x53, 0xe1, 0x93, 0xe4, 0x46, 0xf5, 0x2d, 0xbc, 0x43, 0x59, 0xb5, 0x63, 0x6f, 0xc3, 0x81, 0x9a, 0x7f, 0x1c, 0xde, 0xc1, 0x0a, 0x1f, 0x36, 0xb3, 0x0a, 0x75},
subYX: fp.Elt{0x60, 0x5e, 0x02, 0xe2, 0x4a, 0xe4, 0xe0, 0x20, 0x38, 0xb9, 0xdc, 0xcb, 0x2f, 0x3b, 0x3b, 0xb0, 0x1c, 0x0d, 0x5a, 0xf9, 0x9c, 0x63, 0x5d, 0x10, 0x11, 0xe3, 0x67, 0x50, 0x54, 0x4c, 0x76, 0x69},
dt2: fp.Elt{0x37, 0x10, 0xf8, 0xa2, 0x83, 0x32, 0x8a, 0x1e, 0xf1, 0xcb, 0x7f, 0xbd, 0x23, 0xda, 0x2e, 0x6f, 0x63, 0x25, 0x2e, 0xac, 0x5b, 0xd1, 0x2f, 0xb7, 0x40, 0x50, 0x07, 0xb7, 0x3f, 0x6b, 0xf9, 0x54},
},
{ /* 39P */
addYX: fp.Elt{0x79, 0x92, 0x66, 0x29, 0x04, 0xf2, 0xad, 0x0f, 0x4a, 0x72, 0x7d, 0x7d, 0x04, 0xa2, 0xdd, 0x3a, 0xf1, 0x60, 0x57, 0x8c, 0x82, 0x94, 0x3d, 0x6f, 0x9e, 0x53, 0xb7, 0x2b, 0xc5, 0xe9, 0x7f, 0x3d},
subYX: fp.Elt{0xcd, 0x1e, 0xb1, 0x16, 0xc6, 0xaf, 0x7d, 0x17, 0x79, 0x64, 0x57, 0xfa, 0x9c, 0x4b, 0x76, 0x89, 0x85, 0xe7, 0xec, 0xe6, 0x10, 0xa1, 0xa8, 0xb7, 0xf0, 0xdb, 0x85, 0xbe, 0x9f, 0x83, 0xe6, 0x78},
dt2: fp.Elt{0x6b, 0x85, 0xb8, 0x37, 0xf7, 0x2d, 0x33, 0x70, 0x8a, 0x17, 0x1a, 0x04, 0x43, 0x5d, 0xd0, 0x75, 0x22, 0x9e, 0xe5, 0xa0, 0x4a, 0xf7, 0x0f, 0x32, 0x42, 0x82, 0x08, 0x50, 0xf3, 0x68, 0xf2, 0x70},
},
{ /* 41P */
addYX: fp.Elt{0x47, 0x5f, 0x80, 0xb1, 0x83, 0x45, 0x86, 0x66, 0x19, 0x7c, 0xdd, 0x60, 0xd1, 0xc5, 0x35, 0xf5, 0x06, 0xb0, 0x4c, 0x1e, 0xb7, 0x4e, 0x87, 0xe9, 0xd9, 0x89, 0xd8, 0xfa, 0x5c, 0x34, 0x0d, 0x7c},
subYX: fp.Elt{0x55, 0xf3, 0xdc, 0x70, 0x20, 0x11, 0x24, 0x23, 0x17, 0xe1, 0xfc, 0xe7, 0x7e, 0xc9, 0x0c, 0x38, 0x98, 0xb6, 0x52, 0x35, 0xed, 0xde, 0x1d, 0xb3, 0xb9, 0xc4, 0xb8, 0x39, 0xc0, 0x56, 0x4e, 0x40},
dt2: fp.Elt{0x8a, 0x33, 0x78, 0x8c, 0x4b, 0x1f, 0x1f, 0x59, 0xe1, 0xb5, 0xe0, 0x67, 0xb1, 0x6a, 0x36, 0xa0, 0x44, 0x3d, 0x5f, 0xb4, 0x52, 0x41, 0xbc, 0x5c, 0x77, 0xc7, 0xae, 0x2a, 0x76, 0x54, 0xd7, 0x20},
},
{ /* 43P */
addYX: fp.Elt{0x58, 0xb7, 0x3b, 0xc7, 0x6f, 0xc3, 0x8f, 0x5e, 0x9a, 0xbb, 0x3c, 0x36, 0xa5, 0x43, 0xe5, 0xac, 0x22, 0xc9, 0x3b, 0x90, 0x7d, 0x4a, 0x93, 0xa9, 0x62, 0xec, 0xce, 0xf3, 0x46, 0x1e, 0x8f, 0x2b},
subYX: fp.Elt{0x43, 0xf5, 0xb9, 0x35, 0xb1, 0xfe, 0x74, 0x9d, 0x6c, 0x95, 0x8c, 0xde, 0xf1, 0x7d, 0xb3, 0x84, 0xa9, 0x8b, 0x13, 0x57, 0x07, 0x2b, 0x32, 0xe9, 0xe1, 0x4c, 0x0b, 0x79, 0xa8, 0xad, 0xb8, 0x38},
dt2: fp.Elt{0x5d, 0xf9, 0x51, 0xdf, 0x9c, 0x4a, 0xc0, 0xb5, 0xac, 0xde, 0x1f, 0xcb, 0xae, 0x52, 0x39, 0x2b, 0xda, 0x66, 0x8b, 0x32, 0x8b, 0x6d, 0x10, 0x1d, 0x53, 0x19, 0xba, 0xce, 0x32, 0xeb, 0x9a, 0x04},
},
{ /* 45P */
addYX: fp.Elt{0x31, 0x79, 0xfc, 0x75, 0x0b, 0x7d, 0x50, 0xaa, 0xd3, 0x25, 0x67, 0x7a, 0x4b, 0x92, 0xef, 0x0f, 0x30, 0x39, 0x6b, 0x39, 0x2b, 0x54, 0x82, 0x1d, 0xfc, 0x74, 0xf6, 0x30, 0x75, 0xe1, 0x5e, 0x79},
subYX: fp.Elt{0x7e, 0xfe, 0xdc, 0x63, 0x3c, 0x7d, 0x76, 0xd7, 0x40, 0x6e, 0x85, 0x97, 0x48, 0x59, 0x9c, 0x20, 0x13, 0x7c, 0x4f, 0xe1, 0x61, 0x68, 0x67, 0xb6, 0xfc, 0x25, 0xd6, 0xc8, 0xe0, 0x65, 0xc6, 0x51},
dt2: fp.Elt{0x81, 0xbd, 0xec, 0x52, 0x0a, 0x5b, 0x4a, 0x25, 0xe7, 0xaf, 0x34, 0xe0, 0x6e, 0x1f, 0x41, 0x5d, 0x31, 0x4a, 0xee, 0xca, 0x0d, 0x4d, 0xa2, 0xe6, 0x77, 0x44, 0xc5, 0x9d, 0xf4, 0x9b, 0xd1, 0x6c},
},
{ /* 47P */
addYX: fp.Elt{0x86, 0xc3, 0xaf, 0x65, 0x21, 0x61, 0xfe, 0x1f, 0x10, 0x1b, 0xd5, 0xb8, 0x88, 0x2a, 0x2a, 0x08, 0xaa, 0x0b, 0x99, 0x20, 0x7e, 0x62, 0xf6, 0x76, 0xe7, 0x43, 0x9e, 0x42, 0xa7, 0xb3, 0x01, 0x5e},
subYX: fp.Elt{0xa3, 0x9c, 0x17, 0x52, 0x90, 0x61, 0x87, 0x7e, 0x85, 0x9f, 0x2c, 0x0b, 0x06, 0x0a, 0x1d, 0x57, 0x1e, 0x71, 0x99, 0x84, 0xa8, 0xba, 0xa2, 0x80, 0x38, 0xe6, 0xb2, 0x40, 0xdb, 0xf3, 0x20, 0x75},
dt2: fp.Elt{0xa1, 0x57, 0x93, 0xd3, 0xe3, 0x0b, 0xb5, 0x3d, 0xa5, 0x94, 0x9e, 0x59, 0xdd, 0x6c, 0x7b, 0x96, 0x6e, 0x1e, 0x31, 0xdf, 0x64, 0x9a, 0x30, 0x1a, 0x86, 0xc9, 0xf3, 0xce, 0x9c, 0x2c, 0x09, 0x71},
},
{ /* 49P */
addYX: fp.Elt{0xcf, 0x1d, 0x05, 0x74, 0xac, 0xd8, 0x6b, 0x85, 0x1e, 0xaa, 0xb7, 0x55, 0x08, 0xa4, 0xf6, 0x03, 0xeb, 0x3c, 0x74, 0xc9, 0xcb, 0xe7, 0x4a, 0x3a, 0xde, 0xab, 0x37, 0x71, 0xbb, 0xa5, 0x73, 0x41},
subYX: fp.Elt{0x8c, 0x91, 0x64, 0x03, 0x3f, 0x52, 0xd8, 0x53, 0x1c, 0x6b, 0xab, 0x3f, 0xf4, 0x04, 0xb4, 0xa2, 0xa4, 0xe5, 0x81, 0x66, 0x9e, 0x4a, 0x0b, 0x08, 0xa7, 0x7b, 0x25, 0xd0, 0x03, 0x5b, 0xa1, 0x0e},
dt2: fp.Elt{0x8a, 0x21, 0xf9, 0xf0, 0x31, 0x6e, 0xc5, 0x17, 0x08, 0x47, 0xfc, 0x1a, 0x2b, 0x6e, 0x69, 0x5a, 0x76, 0xf1, 0xb2, 0xf4, 0x68, 0x16, 0x93, 0xf7, 0x67, 0x3a, 0x4e, 0x4a, 0x61, 0x65, 0xc5, 0x5f},
},
{ /* 51P */
addYX: fp.Elt{0x8e, 0x98, 0x90, 0x77, 0xe6, 0xe1, 0x92, 0x48, 0x22, 0xd7, 0x5c, 0x1c, 0x0f, 0x95, 0xd5, 0x01, 0xed, 0x3e, 0x92, 0xe5, 0x9a, 0x81, 0xb0, 0xe3, 0x1b, 0x65, 0x46, 0x9d, 0x40, 0xc7, 0x14, 0x32},
subYX: fp.Elt{0xe5, 0x7a, 0x6d, 0xc4, 0x0d, 0x57, 0x6e, 0x13, 0x8f, 0xdc, 0xf8, 0x54, 0xcc, 0xaa, 0xd0, 0x0f, 0x86, 0xad, 0x0d, 0x31, 0x03, 0x9f, 0x54, 0x59, 0xa1, 0x4a, 0x45, 0x4c, 0x41, 0x1c, 0x71, 0x62},
dt2: fp.Elt{0x70, 0x17, 0x65, 0x06, 0x74, 0x82, 0x29, 0x13, 0x36, 0x94, 0x27, 0x8a, 0x66, 0xa0, 0xa4, 0x3b, 0x3c, 0x22, 0x5d, 0x18, 0xec, 0xb8, 0xb6, 0xd9, 0x3c, 0x83, 0xcb, 0x3e, 0x07, 0x94, 0xea, 0x5b},
},
{ /* 53P */
addYX: fp.Elt{0xf8, 0xd2, 0x43, 0xf3, 0x63, 0xce, 0x70, 0xb4, 0xf1, 0xe8, 0x43, 0x05, 0x8f, 0xba, 0x67, 0x00, 0x6f, 0x7b, 0x11, 0xa2, 0xa1, 0x51, 0xda, 0x35, 0x2f, 0xbd, 0xf1, 0x44, 0x59, 0x78, 0xd0, 0x4a},
subYX: fp.Elt{0xe4, 0x9b, 0xc8, 0x12, 0x09, 0xbf, 0x1d, 0x64, 0x9c, 0x57, 0x6e, 0x7d, 0x31, 0x8b, 0xf3, 0xac, 0x65, 0xb0, 0x97, 0xf6, 0x02, 0x9e, 0xfe, 0xab, 0xec, 0x1e, 0xf6, 0x48, 0xc1, 0xd5, 0xac, 0x3a},
dt2: fp.Elt{0x01, 0x83, 0x31, 0xc3, 0x34, 0x3b, 0x8e, 0x85, 0x26, 0x68, 0x31, 0x07, 0x47, 0xc0, 0x99, 0xdc, 0x8c, 0xa8, 0x9d, 0xd3, 0x2e, 0x5b, 0x08, 0x34, 0x3d, 0x85, 0x02, 0xd9, 0xb1, 0x0c, 0xff, 0x3a},
},
{ /* 55P */
addYX: fp.Elt{0x05, 0x35, 0xc5, 0xf4, 0x0b, 0x43, 0x26, 0x92, 0x83, 0x22, 0x1f, 0x26, 0x13, 0x9c, 0xe4, 0x68, 0xc6, 0x27, 0xd3, 0x8f, 0x78, 0x33, 0xef, 0x09, 0x7f, 0x9e, 0xd9, 0x2b, 0x73, 0x9f, 0xcf, 0x2c},
subYX: fp.Elt{0x5e, 0x40, 0x20, 0x3a, 0xeb, 0xc7, 0xc5, 0x87, 0xc9, 0x56, 0xad, 0xed, 0xef, 0x11, 0xe3, 0x8e, 0xf9, 0xd5, 0x29, 0xad, 0x48, 0x2e, 0x25, 0x29, 0x1d, 0x25, 0xcd, 0xf4, 0x86, 0x7e, 0x0e, 0x11},
dt2: fp.Elt{0xe4, 0xf5, 0x03, 0xd6, 0x9e, 0xd8, 0xc0, 0x57, 0x0c, 0x20, 0xb0, 0xf0, 0x28, 0x86, 0x88, 0x12, 0xb7, 0x3b, 0x2e, 0xa0, 0x09, 0x27, 0x17, 0x53, 0x37, 0x3a, 0x69, 0xb9, 0xe0, 0x57, 0xc5, 0x05},
},
{ /* 57P */
addYX: fp.Elt{0xb0, 0x0e, 0xc2, 0x89, 0xb0, 0xbb, 0x76, 0xf7, 0x5c, 0xd8, 0x0f, 0xfa, 0xf6, 0x5b, 0xf8, 0x61, 0xfb, 0x21, 0x44, 0x63, 0x4e, 0x3f, 0xb9, 0xb6, 0x05, 0x12, 0x86, 0x41, 0x08, 0xef, 0x9f, 0x28},
subYX: fp.Elt{0x6f, 0x7e, 0xc9, 0x1f, 0x31, 0xce, 0xf9, 0xd8, 0xae, 0xfd, 0xf9, 0x11, 0x30, 0x26, 0x3f, 0x7a, 0xdd, 0x25, 0xed, 0x8b, 0xa0, 0x7e, 0x5b, 0xe1, 0x5a, 0x87, 0xe9, 0x8f, 0x17, 0x4c, 0x15, 0x6e},
dt2: fp.Elt{0xbf, 0x9a, 0xd6, 0xfe, 0x36, 0x63, 0x61, 0xcf, 0x4f, 0xc9, 0x35, 0x83, 0xe7, 0xe4, 0x16, 0x9b, 0xe7, 0x7f, 0x3a, 0x75, 0x65, 0x97, 0x78, 0x13, 0x19, 0xa3, 0x5c, 0xa9, 0x42, 0xf6, 0xfb, 0x6a},
},
{ /* 59P */
addYX: fp.Elt{0xcc, 0xa8, 0x13, 0xf9, 0x70, 0x50, 0xe5, 0x5d, 0x61, 0xf5, 0x0c, 0x2b, 0x7b, 0x16, 0x1d, 0x7d, 0x89, 0xd4, 0xea, 0x90, 0xb6, 0x56, 0x29, 0xda, 0xd9, 0x1e, 0x80, 0xdb, 0xce, 0x93, 0xc0, 0x12},
subYX: fp.Elt{0xc1, 0xd2, 0xf5, 0x62, 0x0c, 0xde, 0xa8, 0x7d, 0x9a, 0x7b, 0x0e, 0xb0, 0xa4, 0x3d, 0xfc, 0x98, 0xe0, 0x70, 0xad, 0x0d, 0xda, 0x6a, 0xeb, 0x7d, 0xc4, 0x38, 0x50, 0xb9, 0x51, 0xb8, 0xb4, 0x0d},
dt2: fp.Elt{0x0f, 0x19, 0xb8, 0x08, 0x93, 0x7f, 0x14, 0xfc, 0x10, 0xe3, 0x1a, 0xa1, 0xa0, 0x9d, 0x96, 0x06, 0xfd, 0xd7, 0xc7, 0xda, 0x72, 0x55, 0xe7, 0xce, 0xe6, 0x5c, 0x63, 0xc6, 0x99, 0x87, 0xaa, 0x33},
},
{ /* 61P */
addYX: fp.Elt{0xb1, 0x6c, 0x15, 0xfc, 0x88, 0xf5, 0x48, 0x83, 0x27, 0x6d, 0x0a, 0x1a, 0x9b, 0xba, 0xa2, 0x6d, 0xb6, 0x5a, 0xca, 0x87, 0x5c, 0x2d, 0x26, 0xe2, 0xa6, 0x89, 0xd5, 0xc8, 0xc1, 0xd0, 0x2c, 0x21},
subYX: fp.Elt{0xf2, 0x5c, 0x08, 0xbd, 0x1e, 0xf5, 0x0f, 0xaf, 0x1f, 0x3f, 0xd3, 0x67, 0x89, 0x1a, 0xf5, 0x78, 0x3c, 0x03, 0x60, 0x50, 0xe1, 0xbf, 0xc2, 0x6e, 0x86, 0x1a, 0xe2, 0xe8, 0x29, 0x6f, 0x3c, 0x23},
dt2: fp.Elt{0x81, 0xc7, 0x18, 0x7f, 0x10, 0xd5, 0xf4, 0xd2, 0x28, 0x9d, 0x7e, 0x52, 0xf2, 0xcd, 0x2e, 0x12, 0x41, 0x33, 0x3d, 0x3d, 0x2a, 0x86, 0x0a, 0xa7, 0xe3, 0x4c, 0x91, 0x11, 0x89, 0x77, 0xb7, 0x1d},
},
{ /* 63P */
addYX: fp.Elt{0xb6, 0x1a, 0x70, 0xdd, 0x69, 0x47, 0x39, 0xb3, 0xa5, 0x8d, 0xcf, 0x19, 0xd4, 0xde, 0xb8, 0xe2, 0x52, 0xc8, 0x2a, 0xfd, 0x61, 0x41, 0xdf, 0x15, 0xbe, 0x24, 0x7d, 0x01, 0x8a, 0xca, 0xe2, 0x7a},
subYX: fp.Elt{0x6f, 0xc2, 0x6b, 0x7c, 0x39, 0x52, 0xf3, 0xdd, 0x13, 0x01, 0xd5, 0x53, 0xcc, 0xe2, 0x97, 0x7a, 0x30, 0xa3, 0x79, 0xbf, 0x3a, 0xf4, 0x74, 0x7c, 0xfc, 0xad, 0xe2, 0x26, 0xad, 0x97, 0xad, 0x31},
dt2: fp.Elt{0x62, 0xb9, 0x20, 0x09, 0xed, 0x17, 0xe8, 0xb7, 0x9d, 0xda, 0x19, 0x3f, 0xcc, 0x18, 0x85, 0x1e, 0x64, 0x0a, 0x56, 0x25, 0x4f, 0xc1, 0x91, 0xe4, 0x83, 0x2c, 0x62, 0xa6, 0x53, 0xfc, 0xd1, 0x1e},
},
}

411
vendor/github.com/cloudflare/circl/sign/ed448/ed448.go generated vendored Normal file
View File

@ -0,0 +1,411 @@
// Package ed448 implements Ed448 signature scheme as described in RFC-8032.
//
// This package implements two signature variants.
//
// | Scheme Name | Sign Function | Verification | Context |
// |-------------|-------------------|---------------|-------------------|
// | Ed448 | Sign | Verify | Yes, can be empty |
// | Ed448Ph | SignPh | VerifyPh | Yes, can be empty |
// | All above | (PrivateKey).Sign | VerifyAny | As above |
//
// Specific functions for sign and verify are defined. A generic signing
// function for all schemes is available through the crypto.Signer interface,
// which is implemented by the PrivateKey type. A correspond all-in-one
// verification method is provided by the VerifyAny function.
//
// Both schemes require a context string for domain separation. This parameter
// is passed using a SignerOptions struct defined in this package.
//
// References:
//
// - RFC8032: https://rfc-editor.org/rfc/rfc8032.txt
// - EdDSA for more curves: https://eprint.iacr.org/2015/677
// - High-speed high-security signatures: https://doi.org/10.1007/s13389-012-0027-1
package ed448
import (
"bytes"
"crypto"
cryptoRand "crypto/rand"
"crypto/subtle"
"errors"
"fmt"
"io"
"strconv"
"github.com/cloudflare/circl/ecc/goldilocks"
"github.com/cloudflare/circl/internal/sha3"
"github.com/cloudflare/circl/sign"
)
const (
// ContextMaxSize is the maximum length (in bytes) allowed for context.
ContextMaxSize = 255
// PublicKeySize is the length in bytes of Ed448 public keys.
PublicKeySize = 57
// PrivateKeySize is the length in bytes of Ed448 private keys.
PrivateKeySize = 114
// SignatureSize is the length in bytes of signatures.
SignatureSize = 114
// SeedSize is the size, in bytes, of private key seeds. These are the private key representations used by RFC 8032.
SeedSize = 57
)
const (
paramB = 456 / 8 // Size of keys in bytes.
hashSize = 2 * paramB // Size of the hash function's output.
)
// SignerOptions implements crypto.SignerOpts and augments with parameters
// that are specific to the Ed448 signature schemes.
type SignerOptions struct {
// Hash must be crypto.Hash(0) for both Ed448 and Ed448Ph.
crypto.Hash
// Context is an optional domain separation string for signing.
// Its length must be less or equal than 255 bytes.
Context string
// Scheme is an identifier for choosing a signature scheme.
Scheme SchemeID
}
// SchemeID is an identifier for each signature scheme.
type SchemeID uint
const (
ED448 SchemeID = iota
ED448Ph
)
// PublicKey is the type of Ed448 public keys.
type PublicKey []byte
// Equal reports whether pub and x have the same value.
func (pub PublicKey) Equal(x crypto.PublicKey) bool {
xx, ok := x.(PublicKey)
return ok && bytes.Equal(pub, xx)
}
// PrivateKey is the type of Ed448 private keys. It implements crypto.Signer.
type PrivateKey []byte
// Equal reports whether priv and x have the same value.
func (priv PrivateKey) Equal(x crypto.PrivateKey) bool {
xx, ok := x.(PrivateKey)
return ok && subtle.ConstantTimeCompare(priv, xx) == 1
}
// Public returns the PublicKey corresponding to priv.
func (priv PrivateKey) Public() crypto.PublicKey {
publicKey := make([]byte, PublicKeySize)
copy(publicKey, priv[SeedSize:])
return PublicKey(publicKey)
}
// Seed returns the private key seed corresponding to priv. It is provided for
// interoperability with RFC 8032. RFC 8032's private keys correspond to seeds
// in this package.
func (priv PrivateKey) Seed() []byte {
seed := make([]byte, SeedSize)
copy(seed, priv[:SeedSize])
return seed
}
func (priv PrivateKey) Scheme() sign.Scheme { return sch }
func (pub PublicKey) Scheme() sign.Scheme { return sch }
func (priv PrivateKey) MarshalBinary() (data []byte, err error) {
privateKey := make(PrivateKey, PrivateKeySize)
copy(privateKey, priv)
return privateKey, nil
}
func (pub PublicKey) MarshalBinary() (data []byte, err error) {
publicKey := make(PublicKey, PublicKeySize)
copy(publicKey, pub)
return publicKey, nil
}
// Sign creates a signature of a message given a key pair.
// This function supports all the two signature variants defined in RFC-8032,
// namely Ed448 (or pure EdDSA) and Ed448Ph.
// The opts.HashFunc() must return zero to the specify Ed448 variant. This can
// be achieved by passing crypto.Hash(0) as the value for opts.
// Use an Options struct to pass a bool indicating that the ed448Ph variant
// should be used.
// The struct can also be optionally used to pass a context string for signing.
func (priv PrivateKey) Sign(
rand io.Reader,
message []byte,
opts crypto.SignerOpts,
) (signature []byte, err error) {
var ctx string
var scheme SchemeID
if o, ok := opts.(SignerOptions); ok {
ctx = o.Context
scheme = o.Scheme
}
switch true {
case scheme == ED448 && opts.HashFunc() == crypto.Hash(0):
return Sign(priv, message, ctx), nil
case scheme == ED448Ph && opts.HashFunc() == crypto.Hash(0):
return SignPh(priv, message, ctx), nil
default:
return nil, errors.New("ed448: bad hash algorithm")
}
}
// GenerateKey generates a public/private key pair using entropy from rand.
// If rand is nil, crypto/rand.Reader will be used.
func GenerateKey(rand io.Reader) (PublicKey, PrivateKey, error) {
if rand == nil {
rand = cryptoRand.Reader
}
seed := make(PrivateKey, SeedSize)
if _, err := io.ReadFull(rand, seed); err != nil {
return nil, nil, err
}
privateKey := NewKeyFromSeed(seed)
publicKey := make([]byte, PublicKeySize)
copy(publicKey, privateKey[SeedSize:])
return publicKey, privateKey, nil
}
// NewKeyFromSeed calculates a private key from a seed. It will panic if
// len(seed) is not SeedSize. This function is provided for interoperability
// with RFC 8032. RFC 8032's private keys correspond to seeds in this
// package.
func NewKeyFromSeed(seed []byte) PrivateKey {
privateKey := make([]byte, PrivateKeySize)
newKeyFromSeed(privateKey, seed)
return privateKey
}
func newKeyFromSeed(privateKey, seed []byte) {
if l := len(seed); l != SeedSize {
panic("ed448: bad seed length: " + strconv.Itoa(l))
}
var h [hashSize]byte
H := sha3.NewShake256()
_, _ = H.Write(seed)
_, _ = H.Read(h[:])
s := &goldilocks.Scalar{}
deriveSecretScalar(s, h[:paramB])
copy(privateKey[:SeedSize], seed)
_ = goldilocks.Curve{}.ScalarBaseMult(s).ToBytes(privateKey[SeedSize:])
}
func signAll(signature []byte, privateKey PrivateKey, message, ctx []byte, preHash bool) {
if len(ctx) > ContextMaxSize {
panic(fmt.Errorf("ed448: bad context length: " + strconv.Itoa(len(ctx))))
}
H := sha3.NewShake256()
var PHM []byte
if preHash {
var h [64]byte
_, _ = H.Write(message)
_, _ = H.Read(h[:])
PHM = h[:]
H.Reset()
} else {
PHM = message
}
// 1. Hash the 57-byte private key using SHAKE256(x, 114).
var h [hashSize]byte
_, _ = H.Write(privateKey[:SeedSize])
_, _ = H.Read(h[:])
s := &goldilocks.Scalar{}
deriveSecretScalar(s, h[:paramB])
prefix := h[paramB:]
// 2. Compute SHAKE256(dom4(F, C) || prefix || PH(M), 114).
var rPM [hashSize]byte
H.Reset()
writeDom(&H, ctx, preHash)
_, _ = H.Write(prefix)
_, _ = H.Write(PHM)
_, _ = H.Read(rPM[:])
// 3. Compute the point [r]B.
r := &goldilocks.Scalar{}
r.FromBytes(rPM[:])
R := (&[paramB]byte{})[:]
if err := (goldilocks.Curve{}.ScalarBaseMult(r).ToBytes(R)); err != nil {
panic(err)
}
// 4. Compute SHAKE256(dom4(F, C) || R || A || PH(M), 114)
var hRAM [hashSize]byte
H.Reset()
writeDom(&H, ctx, preHash)
_, _ = H.Write(R)
_, _ = H.Write(privateKey[SeedSize:])
_, _ = H.Write(PHM)
_, _ = H.Read(hRAM[:])
// 5. Compute S = (r + k * s) mod order.
k := &goldilocks.Scalar{}
k.FromBytes(hRAM[:])
S := &goldilocks.Scalar{}
S.Mul(k, s)
S.Add(S, r)
// 6. The signature is the concatenation of R and S.
copy(signature[:paramB], R[:])
copy(signature[paramB:], S[:])
}
// Sign signs the message with privateKey and returns a signature.
// This function supports the signature variant defined in RFC-8032: Ed448,
// also known as the pure version of EdDSA.
// It will panic if len(privateKey) is not PrivateKeySize.
func Sign(priv PrivateKey, message []byte, ctx string) []byte {
signature := make([]byte, SignatureSize)
signAll(signature, priv, message, []byte(ctx), false)
return signature
}
// SignPh creates a signature of a message given a keypair.
// This function supports the signature variant defined in RFC-8032: Ed448ph,
// meaning it internally hashes the message using SHAKE-256.
// Context could be passed to this function, which length should be no more than
// 255. It can be empty.
func SignPh(priv PrivateKey, message []byte, ctx string) []byte {
signature := make([]byte, SignatureSize)
signAll(signature, priv, message, []byte(ctx), true)
return signature
}
func verify(public PublicKey, message, signature, ctx []byte, preHash bool) bool {
if len(public) != PublicKeySize ||
len(signature) != SignatureSize ||
len(ctx) > ContextMaxSize ||
!isLessThanOrder(signature[paramB:]) {
return false
}
P, err := goldilocks.FromBytes(public)
if err != nil {
return false
}
H := sha3.NewShake256()
var PHM []byte
if preHash {
var h [64]byte
_, _ = H.Write(message)
_, _ = H.Read(h[:])
PHM = h[:]
H.Reset()
} else {
PHM = message
}
var hRAM [hashSize]byte
R := signature[:paramB]
writeDom(&H, ctx, preHash)
_, _ = H.Write(R)
_, _ = H.Write(public)
_, _ = H.Write(PHM)
_, _ = H.Read(hRAM[:])
k := &goldilocks.Scalar{}
k.FromBytes(hRAM[:])
S := &goldilocks.Scalar{}
S.FromBytes(signature[paramB:])
encR := (&[paramB]byte{})[:]
P.Neg()
_ = goldilocks.Curve{}.CombinedMult(S, k, P).ToBytes(encR)
return bytes.Equal(R, encR)
}
// VerifyAny returns true if the signature is valid. Failure cases are invalid
// signature, or when the public key cannot be decoded.
// This function supports all the two signature variants defined in RFC-8032,
// namely Ed448 (or pure EdDSA) and Ed448Ph.
// The opts.HashFunc() must return zero, this can be achieved by passing
// crypto.Hash(0) as the value for opts.
// Use a SignerOptions struct to pass a context string for signing.
func VerifyAny(public PublicKey, message, signature []byte, opts crypto.SignerOpts) bool {
var ctx string
var scheme SchemeID
if o, ok := opts.(SignerOptions); ok {
ctx = o.Context
scheme = o.Scheme
}
switch true {
case scheme == ED448 && opts.HashFunc() == crypto.Hash(0):
return Verify(public, message, signature, ctx)
case scheme == ED448Ph && opts.HashFunc() == crypto.Hash(0):
return VerifyPh(public, message, signature, ctx)
default:
return false
}
}
// Verify returns true if the signature is valid. Failure cases are invalid
// signature, or when the public key cannot be decoded.
// This function supports the signature variant defined in RFC-8032: Ed448,
// also known as the pure version of EdDSA.
func Verify(public PublicKey, message, signature []byte, ctx string) bool {
return verify(public, message, signature, []byte(ctx), false)
}
// VerifyPh returns true if the signature is valid. Failure cases are invalid
// signature, or when the public key cannot be decoded.
// This function supports the signature variant defined in RFC-8032: Ed448ph,
// meaning it internally hashes the message using SHAKE-256.
// Context could be passed to this function, which length should be no more than
// 255. It can be empty.
func VerifyPh(public PublicKey, message, signature []byte, ctx string) bool {
return verify(public, message, signature, []byte(ctx), true)
}
func deriveSecretScalar(s *goldilocks.Scalar, h []byte) {
h[0] &= 0xFC // The two least significant bits of the first octet are cleared,
h[paramB-1] = 0x00 // all eight bits the last octet are cleared, and
h[paramB-2] |= 0x80 // the highest bit of the second to last octet is set.
s.FromBytes(h[:paramB])
}
// isLessThanOrder returns true if 0 <= x < order and if the last byte of x is zero.
func isLessThanOrder(x []byte) bool {
order := goldilocks.Curve{}.Order()
i := len(order) - 1
for i > 0 && x[i] == order[i] {
i--
}
return x[paramB-1] == 0 && x[i] < order[i]
}
func writeDom(h io.Writer, ctx []byte, preHash bool) {
dom4 := "SigEd448"
_, _ = h.Write([]byte(dom4))
if preHash {
_, _ = h.Write([]byte{byte(0x01), byte(len(ctx))})
} else {
_, _ = h.Write([]byte{byte(0x00), byte(len(ctx))})
}
_, _ = h.Write(ctx)
}

View File

@ -0,0 +1,87 @@
package ed448
import (
"crypto/rand"
"encoding/asn1"
"github.com/cloudflare/circl/sign"
)
var sch sign.Scheme = &scheme{}
// Scheme returns a signature interface.
func Scheme() sign.Scheme { return sch }
type scheme struct{}
func (*scheme) Name() string { return "Ed448" }
func (*scheme) PublicKeySize() int { return PublicKeySize }
func (*scheme) PrivateKeySize() int { return PrivateKeySize }
func (*scheme) SignatureSize() int { return SignatureSize }
func (*scheme) SeedSize() int { return SeedSize }
func (*scheme) TLSIdentifier() uint { return 0x0808 }
func (*scheme) SupportsContext() bool { return true }
func (*scheme) Oid() asn1.ObjectIdentifier {
return asn1.ObjectIdentifier{1, 3, 101, 113}
}
func (*scheme) GenerateKey() (sign.PublicKey, sign.PrivateKey, error) {
return GenerateKey(rand.Reader)
}
func (*scheme) Sign(
sk sign.PrivateKey,
message []byte,
opts *sign.SignatureOpts,
) []byte {
priv, ok := sk.(PrivateKey)
if !ok {
panic(sign.ErrTypeMismatch)
}
ctx := ""
if opts != nil {
ctx = opts.Context
}
return Sign(priv, message, ctx)
}
func (*scheme) Verify(
pk sign.PublicKey,
message, signature []byte,
opts *sign.SignatureOpts,
) bool {
pub, ok := pk.(PublicKey)
if !ok {
panic(sign.ErrTypeMismatch)
}
ctx := ""
if opts != nil {
ctx = opts.Context
}
return Verify(pub, message, signature, ctx)
}
func (*scheme) DeriveKey(seed []byte) (sign.PublicKey, sign.PrivateKey) {
privateKey := NewKeyFromSeed(seed)
publicKey := make(PublicKey, PublicKeySize)
copy(publicKey, privateKey[SeedSize:])
return publicKey, privateKey
}
func (*scheme) UnmarshalBinaryPublicKey(buf []byte) (sign.PublicKey, error) {
if len(buf) < PublicKeySize {
return nil, sign.ErrPubKeySize
}
pub := make(PublicKey, PublicKeySize)
copy(pub, buf[:PublicKeySize])
return pub, nil
}
func (*scheme) UnmarshalBinaryPrivateKey(buf []byte) (sign.PrivateKey, error) {
if len(buf) < PrivateKeySize {
return nil, sign.ErrPrivKeySize
}
priv := make(PrivateKey, PrivateKeySize)
copy(priv, buf[:PrivateKeySize])
return priv, nil
}

110
vendor/github.com/cloudflare/circl/sign/sign.go generated vendored Normal file
View File

@ -0,0 +1,110 @@
// Package sign provides unified interfaces for signature schemes.
//
// A register of schemes is available in the package
//
// github.com/cloudflare/circl/sign/schemes
package sign
import (
"crypto"
"encoding"
"errors"
)
type SignatureOpts struct {
// If non-empty, includes the given context in the signature if supported
// and will cause an error during signing otherwise.
Context string
}
// A public key is used to verify a signature set by the corresponding private
// key.
type PublicKey interface {
// Returns the signature scheme for this public key.
Scheme() Scheme
Equal(crypto.PublicKey) bool
encoding.BinaryMarshaler
crypto.PublicKey
}
// A private key allows one to create signatures.
type PrivateKey interface {
// Returns the signature scheme for this private key.
Scheme() Scheme
Equal(crypto.PrivateKey) bool
// For compatibility with Go standard library
crypto.Signer
crypto.PrivateKey
encoding.BinaryMarshaler
}
// A Scheme represents a specific instance of a signature scheme.
type Scheme interface {
// Name of the scheme.
Name() string
// GenerateKey creates a new key-pair.
GenerateKey() (PublicKey, PrivateKey, error)
// Creates a signature using the PrivateKey on the given message and
// returns the signature. opts are additional options which can be nil.
//
// Panics if key is nil or wrong type or opts context is not supported.
Sign(sk PrivateKey, message []byte, opts *SignatureOpts) []byte
// Checks whether the given signature is a valid signature set by
// the private key corresponding to the given public key on the
// given message. opts are additional options which can be nil.
//
// Panics if key is nil or wrong type or opts context is not supported.
Verify(pk PublicKey, message []byte, signature []byte, opts *SignatureOpts) bool
// Deterministically derives a keypair from a seed. If you're unsure,
// you're better off using GenerateKey().
//
// Panics if seed is not of length SeedSize().
DeriveKey(seed []byte) (PublicKey, PrivateKey)
// Unmarshals a PublicKey from the provided buffer.
UnmarshalBinaryPublicKey([]byte) (PublicKey, error)
// Unmarshals a PublicKey from the provided buffer.
UnmarshalBinaryPrivateKey([]byte) (PrivateKey, error)
// Size of binary marshalled public keys.
PublicKeySize() int
// Size of binary marshalled public keys.
PrivateKeySize() int
// Size of signatures.
SignatureSize() int
// Size of seeds.
SeedSize() int
// Returns whether contexts are supported.
SupportsContext() bool
}
var (
// ErrTypeMismatch is the error used if types of, for instance, private
// and public keys don't match.
ErrTypeMismatch = errors.New("types mismatch")
// ErrSeedSize is the error used if the provided seed is of the wrong
// size.
ErrSeedSize = errors.New("wrong seed size")
// ErrPubKeySize is the error used if the provided public key is of
// the wrong size.
ErrPubKeySize = errors.New("wrong size for public key")
// ErrPrivKeySize is the error used if the provided private key is of
// the wrong size.
ErrPrivKeySize = errors.New("wrong size for private key")
// ErrContextNotSupported is the error used if a context is not
// supported.
ErrContextNotSupported = errors.New("context not supported")
)