Bump github.com/hashicorp/terraform-plugin-sdk/v2 from 2.26.1 to 2.27.0

Bumps [github.com/hashicorp/terraform-plugin-sdk/v2](https://github.com/hashicorp/terraform-plugin-sdk) from 2.26.1 to 2.27.0.
- [Release notes](https://github.com/hashicorp/terraform-plugin-sdk/releases)
- [Changelog](https://github.com/hashicorp/terraform-plugin-sdk/blob/main/CHANGELOG.md)
- [Commits](https://github.com/hashicorp/terraform-plugin-sdk/compare/v2.26.1...v2.27.0)

---
updated-dependencies:
- dependency-name: github.com/hashicorp/terraform-plugin-sdk/v2
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
This commit is contained in:
dependabot[bot]
2023-07-03 20:21:30 +00:00
committed by GitHub
parent b2403e2569
commit 910ccdb092
722 changed files with 31260 additions and 8125 deletions

View File

@ -0,0 +1,71 @@
package goldilocks
import fp "github.com/cloudflare/circl/math/fp448"
var (
// genX is the x-coordinate of the generator of Goldilocks curve.
genX = fp.Elt{
0x5e, 0xc0, 0x0c, 0xc7, 0x2b, 0xa8, 0x26, 0x26,
0x8e, 0x93, 0x00, 0x8b, 0xe1, 0x80, 0x3b, 0x43,
0x11, 0x65, 0xb6, 0x2a, 0xf7, 0x1a, 0xae, 0x12,
0x64, 0xa4, 0xd3, 0xa3, 0x24, 0xe3, 0x6d, 0xea,
0x67, 0x17, 0x0f, 0x47, 0x70, 0x65, 0x14, 0x9e,
0xda, 0x36, 0xbf, 0x22, 0xa6, 0x15, 0x1d, 0x22,
0xed, 0x0d, 0xed, 0x6b, 0xc6, 0x70, 0x19, 0x4f,
}
// genY is the y-coordinate of the generator of Goldilocks curve.
genY = fp.Elt{
0x14, 0xfa, 0x30, 0xf2, 0x5b, 0x79, 0x08, 0x98,
0xad, 0xc8, 0xd7, 0x4e, 0x2c, 0x13, 0xbd, 0xfd,
0xc4, 0x39, 0x7c, 0xe6, 0x1c, 0xff, 0xd3, 0x3a,
0xd7, 0xc2, 0xa0, 0x05, 0x1e, 0x9c, 0x78, 0x87,
0x40, 0x98, 0xa3, 0x6c, 0x73, 0x73, 0xea, 0x4b,
0x62, 0xc7, 0xc9, 0x56, 0x37, 0x20, 0x76, 0x88,
0x24, 0xbc, 0xb6, 0x6e, 0x71, 0x46, 0x3f, 0x69,
}
// paramD is -39081 in Fp.
paramD = fp.Elt{
0x56, 0x67, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
}
// order is 2^446-0x8335dc163bb124b65129c96fde933d8d723a70aadc873d6d54a7bb0d,
// which is the number of points in the prime subgroup.
order = Scalar{
0xf3, 0x44, 0x58, 0xab, 0x92, 0xc2, 0x78, 0x23,
0x55, 0x8f, 0xc5, 0x8d, 0x72, 0xc2, 0x6c, 0x21,
0x90, 0x36, 0xd6, 0xae, 0x49, 0xdb, 0x4e, 0xc4,
0xe9, 0x23, 0xca, 0x7c, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x3f,
}
// residue448 is 2^448 mod order.
residue448 = [4]uint64{
0x721cf5b5529eec34, 0x7a4cf635c8e9c2ab, 0xeec492d944a725bf, 0x20cd77058,
}
// invFour is 1/4 mod order.
invFour = Scalar{
0x3d, 0x11, 0xd6, 0xaa, 0xa4, 0x30, 0xde, 0x48,
0xd5, 0x63, 0x71, 0xa3, 0x9c, 0x30, 0x5b, 0x08,
0xa4, 0x8d, 0xb5, 0x6b, 0xd2, 0xb6, 0x13, 0x71,
0xfa, 0x88, 0x32, 0xdf, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x0f,
}
// paramDTwist is -39082 in Fp. The D parameter of the twist curve.
paramDTwist = fp.Elt{
0x55, 0x67, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
}
)

View File

@ -0,0 +1,80 @@
// Package goldilocks provides elliptic curve operations over the goldilocks curve.
package goldilocks
import fp "github.com/cloudflare/circl/math/fp448"
// Curve is the Goldilocks curve x^2+y^2=z^2-39081x^2y^2.
type Curve struct{}
// Identity returns the identity point.
func (Curve) Identity() *Point {
return &Point{
y: fp.One(),
z: fp.One(),
}
}
// IsOnCurve returns true if the point lies on the curve.
func (Curve) IsOnCurve(P *Point) bool {
x2, y2, t, t2, z2 := &fp.Elt{}, &fp.Elt{}, &fp.Elt{}, &fp.Elt{}, &fp.Elt{}
rhs, lhs := &fp.Elt{}, &fp.Elt{}
fp.Mul(t, &P.ta, &P.tb) // t = ta*tb
fp.Sqr(x2, &P.x) // x^2
fp.Sqr(y2, &P.y) // y^2
fp.Sqr(z2, &P.z) // z^2
fp.Sqr(t2, t) // t^2
fp.Add(lhs, x2, y2) // x^2 + y^2
fp.Mul(rhs, t2, &paramD) // dt^2
fp.Add(rhs, rhs, z2) // z^2 + dt^2
fp.Sub(lhs, lhs, rhs) // x^2 + y^2 - (z^2 + dt^2)
eq0 := fp.IsZero(lhs)
fp.Mul(lhs, &P.x, &P.y) // xy
fp.Mul(rhs, t, &P.z) // tz
fp.Sub(lhs, lhs, rhs) // xy - tz
eq1 := fp.IsZero(lhs)
return eq0 && eq1
}
// Generator returns the generator point.
func (Curve) Generator() *Point {
return &Point{
x: genX,
y: genY,
z: fp.One(),
ta: genX,
tb: genY,
}
}
// Order returns the number of points in the prime subgroup.
func (Curve) Order() Scalar { return order }
// Double returns 2P.
func (Curve) Double(P *Point) *Point { R := *P; R.Double(); return &R }
// Add returns P+Q.
func (Curve) Add(P, Q *Point) *Point { R := *P; R.Add(Q); return &R }
// ScalarMult returns kP. This function runs in constant time.
func (e Curve) ScalarMult(k *Scalar, P *Point) *Point {
k4 := &Scalar{}
k4.divBy4(k)
return e.pull(twistCurve{}.ScalarMult(k4, e.push(P)))
}
// ScalarBaseMult returns kG where G is the generator point. This function runs in constant time.
func (e Curve) ScalarBaseMult(k *Scalar) *Point {
k4 := &Scalar{}
k4.divBy4(k)
return e.pull(twistCurve{}.ScalarBaseMult(k4))
}
// CombinedMult returns mG+nP, where G is the generator point. This function is non-constant time.
func (e Curve) CombinedMult(m, n *Scalar, P *Point) *Point {
m4 := &Scalar{}
n4 := &Scalar{}
m4.divBy4(m)
n4.divBy4(n)
return e.pull(twistCurve{}.CombinedMult(m4, n4, twistCurve{}.pull(P)))
}

View File

@ -0,0 +1,52 @@
package goldilocks
import fp "github.com/cloudflare/circl/math/fp448"
func (Curve) pull(P *twistPoint) *Point { return twistCurve{}.push(P) }
func (twistCurve) pull(P *Point) *twistPoint { return Curve{}.push(P) }
// push sends a point on the Goldilocks curve to a point on the twist curve.
func (Curve) push(P *Point) *twistPoint {
Q := &twistPoint{}
Px, Py, Pz := &P.x, &P.y, &P.z
a, b, c, d, e, f, g, h := &Q.x, &Q.y, &Q.z, &fp.Elt{}, &Q.ta, &Q.x, &Q.y, &Q.tb
fp.Add(e, Px, Py) // x+y
fp.Sqr(a, Px) // A = x^2
fp.Sqr(b, Py) // B = y^2
fp.Sqr(c, Pz) // z^2
fp.Add(c, c, c) // C = 2*z^2
*d = *a // D = A
fp.Sqr(e, e) // (x+y)^2
fp.Sub(e, e, a) // (x+y)^2-A
fp.Sub(e, e, b) // E = (x+y)^2-A-B
fp.Add(h, b, d) // H = B+D
fp.Sub(g, b, d) // G = B-D
fp.Sub(f, c, h) // F = C-H
fp.Mul(&Q.z, f, g) // Z = F * G
fp.Mul(&Q.x, e, f) // X = E * F
fp.Mul(&Q.y, g, h) // Y = G * H, // T = E * H
return Q
}
// push sends a point on the twist curve to a point on the Goldilocks curve.
func (twistCurve) push(P *twistPoint) *Point {
Q := &Point{}
Px, Py, Pz := &P.x, &P.y, &P.z
a, b, c, d, e, f, g, h := &Q.x, &Q.y, &Q.z, &fp.Elt{}, &Q.ta, &Q.x, &Q.y, &Q.tb
fp.Add(e, Px, Py) // x+y
fp.Sqr(a, Px) // A = x^2
fp.Sqr(b, Py) // B = y^2
fp.Sqr(c, Pz) // z^2
fp.Add(c, c, c) // C = 2*z^2
fp.Neg(d, a) // D = -A
fp.Sqr(e, e) // (x+y)^2
fp.Sub(e, e, a) // (x+y)^2-A
fp.Sub(e, e, b) // E = (x+y)^2-A-B
fp.Add(h, b, d) // H = B+D
fp.Sub(g, b, d) // G = B-D
fp.Sub(f, c, h) // F = C-H
fp.Mul(&Q.z, f, g) // Z = F * G
fp.Mul(&Q.x, e, f) // X = E * F
fp.Mul(&Q.y, g, h) // Y = G * H, // T = E * H
return Q
}

View File

@ -0,0 +1,171 @@
package goldilocks
import (
"errors"
"fmt"
fp "github.com/cloudflare/circl/math/fp448"
)
// Point is a point on the Goldilocks Curve.
type Point struct{ x, y, z, ta, tb fp.Elt }
func (P Point) String() string {
return fmt.Sprintf("x: %v\ny: %v\nz: %v\nta: %v\ntb: %v", P.x, P.y, P.z, P.ta, P.tb)
}
// FromAffine creates a point from affine coordinates.
func FromAffine(x, y *fp.Elt) (*Point, error) {
P := &Point{
x: *x,
y: *y,
z: fp.One(),
ta: *x,
tb: *y,
}
if !(Curve{}).IsOnCurve(P) {
return P, errors.New("point not on curve")
}
return P, nil
}
// isLessThan returns true if 0 <= x < y, and assumes that slices are of the
// same length and are interpreted in little-endian order.
func isLessThan(x, y []byte) bool {
i := len(x) - 1
for i > 0 && x[i] == y[i] {
i--
}
return x[i] < y[i]
}
// FromBytes returns a point from the input buffer.
func FromBytes(in []byte) (*Point, error) {
if len(in) < fp.Size+1 {
return nil, errors.New("wrong input length")
}
err := errors.New("invalid decoding")
P := &Point{}
signX := in[fp.Size] >> 7
copy(P.y[:], in[:fp.Size])
p := fp.P()
if !isLessThan(P.y[:], p[:]) {
return nil, err
}
u, v := &fp.Elt{}, &fp.Elt{}
one := fp.One()
fp.Sqr(u, &P.y) // u = y^2
fp.Mul(v, u, &paramD) // v = dy^2
fp.Sub(u, u, &one) // u = y^2-1
fp.Sub(v, v, &one) // v = dy^2-1
isQR := fp.InvSqrt(&P.x, u, v) // x = sqrt(u/v)
if !isQR {
return nil, err
}
fp.Modp(&P.x) // x = x mod p
if fp.IsZero(&P.x) && signX == 1 {
return nil, err
}
if signX != (P.x[0] & 1) {
fp.Neg(&P.x, &P.x)
}
P.ta = P.x
P.tb = P.y
P.z = fp.One()
return P, nil
}
// IsIdentity returns true is P is the identity Point.
func (P *Point) IsIdentity() bool {
return fp.IsZero(&P.x) && !fp.IsZero(&P.y) && !fp.IsZero(&P.z) && P.y == P.z
}
// IsEqual returns true if P is equivalent to Q.
func (P *Point) IsEqual(Q *Point) bool {
l, r := &fp.Elt{}, &fp.Elt{}
fp.Mul(l, &P.x, &Q.z)
fp.Mul(r, &Q.x, &P.z)
fp.Sub(l, l, r)
b := fp.IsZero(l)
fp.Mul(l, &P.y, &Q.z)
fp.Mul(r, &Q.y, &P.z)
fp.Sub(l, l, r)
b = b && fp.IsZero(l)
fp.Mul(l, &P.ta, &P.tb)
fp.Mul(l, l, &Q.z)
fp.Mul(r, &Q.ta, &Q.tb)
fp.Mul(r, r, &P.z)
fp.Sub(l, l, r)
b = b && fp.IsZero(l)
return b
}
// Neg obtains the inverse of the Point.
func (P *Point) Neg() { fp.Neg(&P.x, &P.x); fp.Neg(&P.ta, &P.ta) }
// ToAffine returns the x,y affine coordinates of P.
func (P *Point) ToAffine() (x, y fp.Elt) {
fp.Inv(&P.z, &P.z) // 1/z
fp.Mul(&P.x, &P.x, &P.z) // x/z
fp.Mul(&P.y, &P.y, &P.z) // y/z
fp.Modp(&P.x)
fp.Modp(&P.y)
fp.SetOne(&P.z)
P.ta = P.x
P.tb = P.y
return P.x, P.y
}
// ToBytes stores P into a slice of bytes.
func (P *Point) ToBytes(out []byte) error {
if len(out) < fp.Size+1 {
return errors.New("invalid decoding")
}
x, y := P.ToAffine()
out[fp.Size] = (x[0] & 1) << 7
return fp.ToBytes(out[:fp.Size], &y)
}
// MarshalBinary encodes the receiver into a binary form and returns the result.
func (P *Point) MarshalBinary() (data []byte, err error) {
data = make([]byte, fp.Size+1)
err = P.ToBytes(data[:fp.Size+1])
return data, err
}
// UnmarshalBinary must be able to decode the form generated by MarshalBinary.
func (P *Point) UnmarshalBinary(data []byte) error { Q, err := FromBytes(data); *P = *Q; return err }
// Double sets P = 2Q.
func (P *Point) Double() { P.Add(P) }
// Add sets P =P+Q..
func (P *Point) Add(Q *Point) {
// This is formula (5) from "Twisted Edwards Curves Revisited" by
// Hisil H., Wong K.KH., Carter G., Dawson E. (2008)
// https://doi.org/10.1007/978-3-540-89255-7_20
x1, y1, z1, ta1, tb1 := &P.x, &P.y, &P.z, &P.ta, &P.tb
x2, y2, z2, ta2, tb2 := &Q.x, &Q.y, &Q.z, &Q.ta, &Q.tb
x3, y3, z3, E, H := &P.x, &P.y, &P.z, &P.ta, &P.tb
A, B, C, D := &fp.Elt{}, &fp.Elt{}, &fp.Elt{}, &fp.Elt{}
t1, t2, F, G := C, D, &fp.Elt{}, &fp.Elt{}
fp.Mul(t1, ta1, tb1) // t1 = ta1*tb1
fp.Mul(t2, ta2, tb2) // t2 = ta2*tb2
fp.Mul(A, x1, x2) // A = x1*x2
fp.Mul(B, y1, y2) // B = y1*y2
fp.Mul(C, t1, t2) // t1*t2
fp.Mul(C, C, &paramD) // C = d*t1*t2
fp.Mul(D, z1, z2) // D = z1*z2
fp.Add(F, x1, y1) // x1+y1
fp.Add(E, x2, y2) // x2+y2
fp.Mul(E, E, F) // (x1+y1)*(x2+y2)
fp.Sub(E, E, A) // (x1+y1)*(x2+y2)-A
fp.Sub(E, E, B) // E = (x1+y1)*(x2+y2)-A-B
fp.Sub(F, D, C) // F = D-C
fp.Add(G, D, C) // G = D+C
fp.Sub(H, B, A) // H = B-A
fp.Mul(z3, F, G) // Z = F * G
fp.Mul(x3, E, F) // X = E * F
fp.Mul(y3, G, H) // Y = G * H, T = E * H
}

View File

@ -0,0 +1,203 @@
package goldilocks
import (
"encoding/binary"
"math/bits"
)
// ScalarSize is the size (in bytes) of scalars.
const ScalarSize = 56 // 448 / 8
// _N is the number of 64-bit words to store scalars.
const _N = 7 // 448 / 64
// Scalar represents a positive integer stored in little-endian order.
type Scalar [ScalarSize]byte
type scalar64 [_N]uint64
func (z *scalar64) fromScalar(x *Scalar) {
z[0] = binary.LittleEndian.Uint64(x[0*8 : 1*8])
z[1] = binary.LittleEndian.Uint64(x[1*8 : 2*8])
z[2] = binary.LittleEndian.Uint64(x[2*8 : 3*8])
z[3] = binary.LittleEndian.Uint64(x[3*8 : 4*8])
z[4] = binary.LittleEndian.Uint64(x[4*8 : 5*8])
z[5] = binary.LittleEndian.Uint64(x[5*8 : 6*8])
z[6] = binary.LittleEndian.Uint64(x[6*8 : 7*8])
}
func (z *scalar64) toScalar(x *Scalar) {
binary.LittleEndian.PutUint64(x[0*8:1*8], z[0])
binary.LittleEndian.PutUint64(x[1*8:2*8], z[1])
binary.LittleEndian.PutUint64(x[2*8:3*8], z[2])
binary.LittleEndian.PutUint64(x[3*8:4*8], z[3])
binary.LittleEndian.PutUint64(x[4*8:5*8], z[4])
binary.LittleEndian.PutUint64(x[5*8:6*8], z[5])
binary.LittleEndian.PutUint64(x[6*8:7*8], z[6])
}
// add calculates z = x + y. Assumes len(z) > max(len(x),len(y)).
func add(z, x, y []uint64) uint64 {
l, L, zz := len(x), len(y), y
if l > L {
l, L, zz = L, l, x
}
c := uint64(0)
for i := 0; i < l; i++ {
z[i], c = bits.Add64(x[i], y[i], c)
}
for i := l; i < L; i++ {
z[i], c = bits.Add64(zz[i], 0, c)
}
return c
}
// sub calculates z = x - y. Assumes len(z) > max(len(x),len(y)).
func sub(z, x, y []uint64) uint64 {
l, L, zz := len(x), len(y), y
if l > L {
l, L, zz = L, l, x
}
c := uint64(0)
for i := 0; i < l; i++ {
z[i], c = bits.Sub64(x[i], y[i], c)
}
for i := l; i < L; i++ {
z[i], c = bits.Sub64(zz[i], 0, c)
}
return c
}
// mulWord calculates z = x * y. Assumes len(z) >= len(x)+1.
func mulWord(z, x []uint64, y uint64) {
for i := range z {
z[i] = 0
}
carry := uint64(0)
for i := range x {
hi, lo := bits.Mul64(x[i], y)
lo, cc := bits.Add64(lo, z[i], 0)
hi, _ = bits.Add64(hi, 0, cc)
z[i], cc = bits.Add64(lo, carry, 0)
carry, _ = bits.Add64(hi, 0, cc)
}
z[len(x)] = carry
}
// Cmov moves x into z if b=1.
func (z *scalar64) Cmov(b uint64, x *scalar64) {
m := uint64(0) - b
for i := range z {
z[i] = (z[i] &^ m) | (x[i] & m)
}
}
// leftShift shifts to the left the words of z returning the more significant word.
func (z *scalar64) leftShift(low uint64) uint64 {
high := z[_N-1]
for i := _N - 1; i > 0; i-- {
z[i] = z[i-1]
}
z[0] = low
return high
}
// reduceOneWord calculates z = z + 2^448*x such that the result fits in a Scalar.
func (z *scalar64) reduceOneWord(x uint64) {
prod := (&scalar64{})[:]
mulWord(prod, residue448[:], x)
cc := add(z[:], z[:], prod)
mulWord(prod, residue448[:], cc)
add(z[:], z[:], prod)
}
// modOrder reduces z mod order.
func (z *scalar64) modOrder() {
var o64, x scalar64
o64.fromScalar(&order)
// Performs: while (z >= order) { z = z-order }
// At most 8 (eight) iterations reduce 3 bits by subtracting.
for i := 0; i < 8; i++ {
c := sub(x[:], z[:], o64[:]) // (c || x) = z-order
z.Cmov(1-c, &x) // if c != 0 { z = x }
}
}
// FromBytes stores z = x mod order, where x is a number stored in little-endian order.
func (z *Scalar) FromBytes(x []byte) {
n := len(x)
nCeil := (n + 7) >> 3
for i := range z {
z[i] = 0
}
if nCeil < _N {
copy(z[:], x)
return
}
copy(z[:], x[8*(nCeil-_N):])
var z64 scalar64
z64.fromScalar(z)
for i := nCeil - _N - 1; i >= 0; i-- {
low := binary.LittleEndian.Uint64(x[8*i:])
high := z64.leftShift(low)
z64.reduceOneWord(high)
}
z64.modOrder()
z64.toScalar(z)
}
// divBy4 calculates z = x/4 mod order.
func (z *Scalar) divBy4(x *Scalar) { z.Mul(x, &invFour) }
// Red reduces z mod order.
func (z *Scalar) Red() { var t scalar64; t.fromScalar(z); t.modOrder(); t.toScalar(z) }
// Neg calculates z = -z mod order.
func (z *Scalar) Neg() { z.Sub(&order, z) }
// Add calculates z = x+y mod order.
func (z *Scalar) Add(x, y *Scalar) {
var z64, x64, y64, t scalar64
x64.fromScalar(x)
y64.fromScalar(y)
c := add(z64[:], x64[:], y64[:])
add(t[:], z64[:], residue448[:])
z64.Cmov(c, &t)
z64.modOrder()
z64.toScalar(z)
}
// Sub calculates z = x-y mod order.
func (z *Scalar) Sub(x, y *Scalar) {
var z64, x64, y64, t scalar64
x64.fromScalar(x)
y64.fromScalar(y)
c := sub(z64[:], x64[:], y64[:])
sub(t[:], z64[:], residue448[:])
z64.Cmov(c, &t)
z64.modOrder()
z64.toScalar(z)
}
// Mul calculates z = x*y mod order.
func (z *Scalar) Mul(x, y *Scalar) {
var z64, x64, y64 scalar64
prod := (&[_N + 1]uint64{})[:]
x64.fromScalar(x)
y64.fromScalar(y)
mulWord(prod, x64[:], y64[_N-1])
copy(z64[:], prod[:_N])
z64.reduceOneWord(prod[_N])
for i := _N - 2; i >= 0; i-- {
h := z64.leftShift(0)
z64.reduceOneWord(h)
mulWord(prod, x64[:], y64[i])
c := add(z64[:], z64[:], prod[:_N])
z64.reduceOneWord(prod[_N] + c)
}
z64.modOrder()
z64.toScalar(z)
}
// IsZero returns true if z=0.
func (z *Scalar) IsZero() bool { z.Red(); return *z == Scalar{} }

View File

@ -0,0 +1,138 @@
package goldilocks
import (
"crypto/subtle"
"math/bits"
"github.com/cloudflare/circl/internal/conv"
"github.com/cloudflare/circl/math"
fp "github.com/cloudflare/circl/math/fp448"
)
// twistCurve is -x^2+y^2=1-39082x^2y^2 and is 4-isogeneous to Goldilocks.
type twistCurve struct{}
// Identity returns the identity point.
func (twistCurve) Identity() *twistPoint {
return &twistPoint{
y: fp.One(),
z: fp.One(),
}
}
// subYDiv16 update x = (x - y) / 16.
func subYDiv16(x *scalar64, y int64) {
s := uint64(y >> 63)
x0, b0 := bits.Sub64((*x)[0], uint64(y), 0)
x1, b1 := bits.Sub64((*x)[1], s, b0)
x2, b2 := bits.Sub64((*x)[2], s, b1)
x3, b3 := bits.Sub64((*x)[3], s, b2)
x4, b4 := bits.Sub64((*x)[4], s, b3)
x5, b5 := bits.Sub64((*x)[5], s, b4)
x6, _ := bits.Sub64((*x)[6], s, b5)
x[0] = (x0 >> 4) | (x1 << 60)
x[1] = (x1 >> 4) | (x2 << 60)
x[2] = (x2 >> 4) | (x3 << 60)
x[3] = (x3 >> 4) | (x4 << 60)
x[4] = (x4 >> 4) | (x5 << 60)
x[5] = (x5 >> 4) | (x6 << 60)
x[6] = (x6 >> 4)
}
func recodeScalar(d *[113]int8, k *Scalar) {
var k64 scalar64
k64.fromScalar(k)
for i := 0; i < 112; i++ {
d[i] = int8((k64[0] & 0x1f) - 16)
subYDiv16(&k64, int64(d[i]))
}
d[112] = int8(k64[0])
}
// ScalarMult returns kP.
func (e twistCurve) ScalarMult(k *Scalar, P *twistPoint) *twistPoint {
var TabP [8]preTwistPointProy
var S preTwistPointProy
var d [113]int8
var isZero int
if k.IsZero() {
isZero = 1
}
subtle.ConstantTimeCopy(isZero, k[:], order[:])
minusK := *k
isEven := 1 - int(k[0]&0x1)
minusK.Neg()
subtle.ConstantTimeCopy(isEven, k[:], minusK[:])
recodeScalar(&d, k)
P.oddMultiples(TabP[:])
Q := e.Identity()
for i := 112; i >= 0; i-- {
Q.Double()
Q.Double()
Q.Double()
Q.Double()
mask := d[i] >> 7
absDi := (d[i] + mask) ^ mask
inx := int32((absDi - 1) >> 1)
sig := int((d[i] >> 7) & 0x1)
for j := range TabP {
S.cmov(&TabP[j], uint(subtle.ConstantTimeEq(inx, int32(j))))
}
S.cneg(sig)
Q.mixAdd(&S)
}
Q.cneg(uint(isEven))
return Q
}
const (
omegaFix = 7
omegaVar = 5
)
// CombinedMult returns mG+nP.
func (e twistCurve) CombinedMult(m, n *Scalar, P *twistPoint) *twistPoint {
nafFix := math.OmegaNAF(conv.BytesLe2BigInt(m[:]), omegaFix)
nafVar := math.OmegaNAF(conv.BytesLe2BigInt(n[:]), omegaVar)
if len(nafFix) > len(nafVar) {
nafVar = append(nafVar, make([]int32, len(nafFix)-len(nafVar))...)
} else if len(nafFix) < len(nafVar) {
nafFix = append(nafFix, make([]int32, len(nafVar)-len(nafFix))...)
}
var TabQ [1 << (omegaVar - 2)]preTwistPointProy
P.oddMultiples(TabQ[:])
Q := e.Identity()
for i := len(nafFix) - 1; i >= 0; i-- {
Q.Double()
// Generator point
if nafFix[i] != 0 {
idxM := absolute(nafFix[i]) >> 1
R := tabVerif[idxM]
if nafFix[i] < 0 {
R.neg()
}
Q.mixAddZ1(&R)
}
// Variable input point
if nafVar[i] != 0 {
idxN := absolute(nafVar[i]) >> 1
S := TabQ[idxN]
if nafVar[i] < 0 {
S.neg()
}
Q.mixAdd(&S)
}
}
return Q
}
// absolute returns always a positive value.
func absolute(x int32) int32 {
mask := x >> 31
return (x + mask) ^ mask
}

View File

@ -0,0 +1,135 @@
package goldilocks
import (
"fmt"
fp "github.com/cloudflare/circl/math/fp448"
)
type twistPoint struct{ x, y, z, ta, tb fp.Elt }
type preTwistPointAffine struct{ addYX, subYX, dt2 fp.Elt }
type preTwistPointProy struct {
preTwistPointAffine
z2 fp.Elt
}
func (P *twistPoint) String() string {
return fmt.Sprintf("x: %v\ny: %v\nz: %v\nta: %v\ntb: %v", P.x, P.y, P.z, P.ta, P.tb)
}
// cneg conditionally negates the point if b=1.
func (P *twistPoint) cneg(b uint) {
t := &fp.Elt{}
fp.Neg(t, &P.x)
fp.Cmov(&P.x, t, b)
fp.Neg(t, &P.ta)
fp.Cmov(&P.ta, t, b)
}
// Double updates P with 2P.
func (P *twistPoint) Double() {
// This is formula (7) from "Twisted Edwards Curves Revisited" by
// Hisil H., Wong K.KH., Carter G., Dawson E. (2008)
// https://doi.org/10.1007/978-3-540-89255-7_20
Px, Py, Pz, Pta, Ptb := &P.x, &P.y, &P.z, &P.ta, &P.tb
a, b, c, e, f, g, h := Px, Py, Pz, Pta, Px, Py, Ptb
fp.Add(e, Px, Py) // x+y
fp.Sqr(a, Px) // A = x^2
fp.Sqr(b, Py) // B = y^2
fp.Sqr(c, Pz) // z^2
fp.Add(c, c, c) // C = 2*z^2
fp.Add(h, a, b) // H = A+B
fp.Sqr(e, e) // (x+y)^2
fp.Sub(e, e, h) // E = (x+y)^2-A-B
fp.Sub(g, b, a) // G = B-A
fp.Sub(f, c, g) // F = C-G
fp.Mul(Pz, f, g) // Z = F * G
fp.Mul(Px, e, f) // X = E * F
fp.Mul(Py, g, h) // Y = G * H, T = E * H
}
// mixAdd calculates P= P+Q, where Q is a precomputed point with Z_Q = 1.
func (P *twistPoint) mixAddZ1(Q *preTwistPointAffine) {
fp.Add(&P.z, &P.z, &P.z) // D = 2*z1 (z2=1)
P.coreAddition(Q)
}
// coreAddition calculates P=P+Q for curves with A=-1.
func (P *twistPoint) coreAddition(Q *preTwistPointAffine) {
// This is the formula following (5) from "Twisted Edwards Curves Revisited" by
// Hisil H., Wong K.KH., Carter G., Dawson E. (2008)
// https://doi.org/10.1007/978-3-540-89255-7_20
Px, Py, Pz, Pta, Ptb := &P.x, &P.y, &P.z, &P.ta, &P.tb
addYX2, subYX2, dt2 := &Q.addYX, &Q.subYX, &Q.dt2
a, b, c, d, e, f, g, h := Px, Py, &fp.Elt{}, Pz, Pta, Px, Py, Ptb
fp.Mul(c, Pta, Ptb) // t1 = ta*tb
fp.Sub(h, Py, Px) // y1-x1
fp.Add(b, Py, Px) // y1+x1
fp.Mul(a, h, subYX2) // A = (y1-x1)*(y2-x2)
fp.Mul(b, b, addYX2) // B = (y1+x1)*(y2+x2)
fp.Mul(c, c, dt2) // C = 2*D*t1*t2
fp.Sub(e, b, a) // E = B-A
fp.Add(h, b, a) // H = B+A
fp.Sub(f, d, c) // F = D-C
fp.Add(g, d, c) // G = D+C
fp.Mul(Pz, f, g) // Z = F * G
fp.Mul(Px, e, f) // X = E * F
fp.Mul(Py, g, h) // Y = G * H, T = E * H
}
func (P *preTwistPointAffine) neg() {
P.addYX, P.subYX = P.subYX, P.addYX
fp.Neg(&P.dt2, &P.dt2)
}
func (P *preTwistPointAffine) cneg(b int) {
t := &fp.Elt{}
fp.Cswap(&P.addYX, &P.subYX, uint(b))
fp.Neg(t, &P.dt2)
fp.Cmov(&P.dt2, t, uint(b))
}
func (P *preTwistPointAffine) cmov(Q *preTwistPointAffine, b uint) {
fp.Cmov(&P.addYX, &Q.addYX, b)
fp.Cmov(&P.subYX, &Q.subYX, b)
fp.Cmov(&P.dt2, &Q.dt2, b)
}
// mixAdd calculates P= P+Q, where Q is a precomputed point with Z_Q != 1.
func (P *twistPoint) mixAdd(Q *preTwistPointProy) {
fp.Mul(&P.z, &P.z, &Q.z2) // D = 2*z1*z2
P.coreAddition(&Q.preTwistPointAffine)
}
// oddMultiples calculates T[i] = (2*i-1)P for 0 < i < len(T).
func (P *twistPoint) oddMultiples(T []preTwistPointProy) {
if n := len(T); n > 0 {
T[0].FromTwistPoint(P)
_2P := *P
_2P.Double()
R := &preTwistPointProy{}
R.FromTwistPoint(&_2P)
for i := 1; i < n; i++ {
P.mixAdd(R)
T[i].FromTwistPoint(P)
}
}
}
// cmov conditionally moves Q into P if b=1.
func (P *preTwistPointProy) cmov(Q *preTwistPointProy, b uint) {
P.preTwistPointAffine.cmov(&Q.preTwistPointAffine, b)
fp.Cmov(&P.z2, &Q.z2, b)
}
// FromTwistPoint precomputes some coordinates of Q for missed addition.
func (P *preTwistPointProy) FromTwistPoint(Q *twistPoint) {
fp.Add(&P.addYX, &Q.y, &Q.x) // addYX = X + Y
fp.Sub(&P.subYX, &Q.y, &Q.x) // subYX = Y - X
fp.Mul(&P.dt2, &Q.ta, &Q.tb) // T = ta*tb
fp.Mul(&P.dt2, &P.dt2, &paramDTwist) // D*T
fp.Add(&P.dt2, &P.dt2, &P.dt2) // dt2 = 2*D*T
fp.Add(&P.z2, &Q.z, &Q.z) // z2 = 2*Z
}

View File

@ -0,0 +1,216 @@
package goldilocks
import fp "github.com/cloudflare/circl/math/fp448"
var tabFixMult = [fxV][fx2w1]preTwistPointAffine{
{
{
addYX: fp.Elt{0x65, 0x4a, 0xdd, 0xdf, 0xb4, 0x79, 0x60, 0xc8, 0xa1, 0x70, 0xb4, 0x3a, 0x1e, 0x0c, 0x9b, 0x19, 0xe5, 0x48, 0x3f, 0xd7, 0x44, 0x18, 0x18, 0x14, 0x14, 0x27, 0x45, 0xd0, 0x2b, 0x24, 0xd5, 0x93, 0xc3, 0x74, 0x4c, 0x50, 0x70, 0x43, 0x26, 0x05, 0x08, 0x24, 0xca, 0x78, 0x30, 0xc1, 0x06, 0x8d, 0xd4, 0x86, 0x42, 0xf0, 0x14, 0xde, 0x08, 0x05},
subYX: fp.Elt{0x64, 0x4a, 0xdd, 0xdf, 0xb4, 0x79, 0x60, 0xc8, 0xa1, 0x70, 0xb4, 0x3a, 0x1e, 0x0c, 0x9b, 0x19, 0xe5, 0x48, 0x3f, 0xd7, 0x44, 0x18, 0x18, 0x14, 0x14, 0x27, 0x45, 0xd0, 0x2d, 0x24, 0xd5, 0x93, 0xc3, 0x74, 0x4c, 0x50, 0x70, 0x43, 0x26, 0x05, 0x08, 0x24, 0xca, 0x78, 0x30, 0xc1, 0x06, 0x8d, 0xd4, 0x86, 0x42, 0xf0, 0x14, 0xde, 0x08, 0x05},
dt2: fp.Elt{0x1a, 0x33, 0xea, 0x64, 0x45, 0x1c, 0xdf, 0x17, 0x1d, 0x16, 0x34, 0x28, 0xd6, 0x61, 0x19, 0x67, 0x79, 0xb4, 0x13, 0xcf, 0x3e, 0x7c, 0x0e, 0x72, 0xda, 0xf1, 0x5f, 0xda, 0xe6, 0xcf, 0x42, 0xd3, 0xb6, 0x17, 0xc2, 0x68, 0x13, 0x2d, 0xd9, 0x60, 0x3e, 0xae, 0xf0, 0x5b, 0x96, 0xf0, 0xcd, 0xaf, 0xea, 0xb7, 0x0d, 0x59, 0x16, 0xa7, 0xff, 0x55},
},
{
addYX: fp.Elt{0xca, 0xd8, 0x7d, 0x86, 0x1a, 0xef, 0xad, 0x11, 0xe3, 0x27, 0x41, 0x7e, 0x7f, 0x3e, 0xa9, 0xd2, 0xb5, 0x4e, 0x50, 0xe0, 0x77, 0x91, 0xc2, 0x13, 0x52, 0x73, 0x41, 0x09, 0xa6, 0x57, 0x9a, 0xc8, 0xa8, 0x90, 0x9d, 0x26, 0x14, 0xbb, 0xa1, 0x2a, 0xf7, 0x45, 0x43, 0x4e, 0xea, 0x35, 0x62, 0xe1, 0x08, 0x85, 0x46, 0xb8, 0x24, 0x05, 0x2d, 0xab},
subYX: fp.Elt{0x9b, 0xe6, 0xd3, 0xe5, 0xfe, 0x50, 0x36, 0x3c, 0x3c, 0x6d, 0x74, 0x1d, 0x74, 0xc0, 0xde, 0x5b, 0x45, 0x27, 0xe5, 0x12, 0xee, 0x63, 0x35, 0x6b, 0x13, 0xe2, 0x41, 0x6b, 0x3a, 0x05, 0x2b, 0xb1, 0x89, 0x26, 0xb6, 0xc6, 0xd1, 0x84, 0xff, 0x0e, 0x9b, 0xa3, 0xfb, 0x21, 0x36, 0x6b, 0x01, 0xf7, 0x9f, 0x7c, 0xeb, 0xf5, 0x18, 0x7a, 0x2a, 0x70},
dt2: fp.Elt{0x09, 0xad, 0x99, 0x1a, 0x38, 0xd3, 0xdf, 0x22, 0x37, 0x32, 0x61, 0x8b, 0xf3, 0x19, 0x48, 0x08, 0xe8, 0x49, 0xb6, 0x4a, 0xa7, 0xed, 0xa4, 0xa2, 0xee, 0x86, 0xd7, 0x31, 0x5e, 0xce, 0x95, 0x76, 0x86, 0x42, 0x1c, 0x9d, 0x07, 0x14, 0x8c, 0x34, 0x18, 0x9c, 0x6d, 0x3a, 0xdf, 0xa9, 0xe8, 0x36, 0x7e, 0xe4, 0x95, 0xbe, 0xb5, 0x09, 0xf8, 0x9c},
},
{
addYX: fp.Elt{0x51, 0xdb, 0x49, 0xa8, 0x9f, 0xe3, 0xd7, 0xec, 0x0d, 0x0f, 0x49, 0xe8, 0xb6, 0xc5, 0x0f, 0x5a, 0x1c, 0xce, 0x54, 0x0d, 0xb1, 0x8d, 0x5b, 0xbf, 0xf4, 0xaa, 0x34, 0x77, 0xc4, 0x5d, 0x59, 0xb6, 0xc5, 0x0e, 0x5a, 0xd8, 0x5b, 0x30, 0xc2, 0x1d, 0xec, 0x85, 0x1c, 0x42, 0xbe, 0x24, 0x2e, 0x50, 0x55, 0x44, 0xb2, 0x3a, 0x01, 0xaa, 0x98, 0xfb},
subYX: fp.Elt{0xe7, 0x29, 0xb7, 0xd0, 0xaa, 0x4f, 0x32, 0x53, 0x56, 0xde, 0xbc, 0xd1, 0x92, 0x5d, 0x19, 0xbe, 0xa3, 0xe3, 0x75, 0x48, 0xe0, 0x7a, 0x1b, 0x54, 0x7a, 0xb7, 0x41, 0x77, 0x84, 0x38, 0xdd, 0x14, 0x9f, 0xca, 0x3f, 0xa3, 0xc8, 0xa7, 0x04, 0x70, 0xf1, 0x4d, 0x3d, 0xb3, 0x84, 0x79, 0xcb, 0xdb, 0xe4, 0xc5, 0x42, 0x9b, 0x57, 0x19, 0xf1, 0x2d},
dt2: fp.Elt{0x20, 0xb4, 0x94, 0x9e, 0xdf, 0x31, 0x44, 0x0b, 0xc9, 0x7b, 0x75, 0x40, 0x9d, 0xd1, 0x96, 0x39, 0x70, 0x71, 0x15, 0xc8, 0x93, 0xd5, 0xc5, 0xe5, 0xba, 0xfe, 0xee, 0x08, 0x6a, 0x98, 0x0a, 0x1b, 0xb2, 0xaa, 0x3a, 0xf4, 0xa4, 0x79, 0xf9, 0x8e, 0x4d, 0x65, 0x10, 0x9b, 0x3a, 0x6e, 0x7c, 0x87, 0x94, 0x92, 0x11, 0x65, 0xbf, 0x1a, 0x09, 0xde},
},
{
addYX: fp.Elt{0xf3, 0x84, 0x76, 0x77, 0xa5, 0x6b, 0x27, 0x3b, 0x83, 0x3d, 0xdf, 0xa0, 0xeb, 0x32, 0x6d, 0x58, 0x81, 0x57, 0x64, 0xc2, 0x21, 0x7c, 0x9b, 0xea, 0xe6, 0xb0, 0x93, 0xf9, 0xe7, 0xc3, 0xed, 0x5a, 0x8e, 0xe2, 0xb4, 0x72, 0x76, 0x66, 0x0f, 0x22, 0x29, 0x94, 0x3e, 0x63, 0x48, 0x5e, 0x80, 0xcb, 0xac, 0xfa, 0x95, 0xb6, 0x4b, 0xc4, 0x95, 0x33},
subYX: fp.Elt{0x0c, 0x55, 0xd1, 0x5e, 0x5f, 0xbf, 0xbf, 0xe2, 0x4c, 0xfc, 0x37, 0x4a, 0xc4, 0xb1, 0xf4, 0x83, 0x61, 0x93, 0x60, 0x8e, 0x9f, 0x31, 0xf0, 0xa0, 0x41, 0xff, 0x1d, 0xe2, 0x7f, 0xca, 0x40, 0xd6, 0x88, 0xe8, 0x91, 0x61, 0xe2, 0x11, 0x18, 0x83, 0xf3, 0x25, 0x2f, 0x3f, 0x49, 0x40, 0xd4, 0x83, 0xe2, 0xd7, 0x74, 0x6a, 0x16, 0x86, 0x4e, 0xab},
dt2: fp.Elt{0xdd, 0x58, 0x65, 0xd8, 0x9f, 0xdd, 0x70, 0x7f, 0x0f, 0xec, 0xbd, 0x5c, 0x5c, 0x9b, 0x7e, 0x1b, 0x9f, 0x79, 0x36, 0x1f, 0xfd, 0x79, 0x10, 0x1c, 0x52, 0xf3, 0x22, 0xa4, 0x1f, 0x71, 0x6e, 0x63, 0x14, 0xf4, 0xa7, 0x3e, 0xbe, 0xad, 0x43, 0x30, 0x38, 0x8c, 0x29, 0xc6, 0xcf, 0x50, 0x75, 0x21, 0xe5, 0x78, 0xfd, 0xb0, 0x9a, 0xc4, 0x6d, 0xd4},
},
},
{
{
addYX: fp.Elt{0x7a, 0xa1, 0x38, 0xa6, 0xfd, 0x0e, 0x96, 0xd5, 0x26, 0x76, 0x86, 0x70, 0x80, 0x30, 0xa6, 0x67, 0xeb, 0xf4, 0x39, 0xdb, 0x22, 0xf5, 0x9f, 0x98, 0xe4, 0xb5, 0x3a, 0x0c, 0x59, 0xbf, 0x85, 0xc6, 0xf0, 0x0b, 0x1c, 0x41, 0x38, 0x09, 0x01, 0xdb, 0xd6, 0x3c, 0xb7, 0xf1, 0x08, 0x6b, 0x4b, 0x9e, 0x63, 0x53, 0x83, 0xd3, 0xab, 0xa3, 0x72, 0x0d},
subYX: fp.Elt{0x84, 0x68, 0x25, 0xe8, 0xe9, 0x8f, 0x91, 0xbf, 0xf7, 0xa4, 0x30, 0xae, 0xea, 0x9f, 0xdd, 0x56, 0x64, 0x09, 0xc9, 0x54, 0x68, 0x4e, 0x33, 0xc5, 0x6f, 0x7b, 0x2d, 0x52, 0x2e, 0x42, 0xbe, 0xbe, 0xf5, 0x64, 0xbf, 0x77, 0x54, 0xdf, 0xb0, 0x10, 0xd2, 0x16, 0x5d, 0xce, 0xaf, 0x9f, 0xfb, 0xa3, 0x63, 0x50, 0xcb, 0xc0, 0xd0, 0x88, 0x44, 0xa3},
dt2: fp.Elt{0xc3, 0x8b, 0xa5, 0xf1, 0x44, 0xe4, 0x41, 0xcd, 0x75, 0xe3, 0x17, 0x69, 0x5b, 0xb9, 0xbb, 0xee, 0x82, 0xbb, 0xce, 0x57, 0xdf, 0x2a, 0x9c, 0x12, 0xab, 0x66, 0x08, 0x68, 0x05, 0x1b, 0x87, 0xee, 0x5d, 0x1e, 0x18, 0x14, 0x22, 0x4b, 0x99, 0x61, 0x75, 0x28, 0xe7, 0x65, 0x1c, 0x36, 0xb6, 0x18, 0x09, 0xa8, 0xdf, 0xef, 0x30, 0x35, 0xbc, 0x58},
},
{
addYX: fp.Elt{0xc5, 0xd3, 0x0e, 0x6f, 0xaf, 0x06, 0x69, 0xc4, 0x07, 0x9e, 0x58, 0x6e, 0x3f, 0x49, 0xd9, 0x0a, 0x3c, 0x2c, 0x37, 0xcd, 0x27, 0x4d, 0x87, 0x91, 0x7a, 0xb0, 0x28, 0xad, 0x2f, 0x68, 0x92, 0x05, 0x97, 0xf1, 0x30, 0x5f, 0x4c, 0x10, 0x20, 0x30, 0xd3, 0x08, 0x3f, 0xc1, 0xc6, 0xb7, 0xb5, 0xd1, 0x71, 0x7b, 0xa8, 0x0a, 0xd8, 0xf5, 0x17, 0xcf},
subYX: fp.Elt{0x64, 0xd4, 0x8f, 0x91, 0x40, 0xab, 0x6e, 0x1a, 0x62, 0x83, 0xdc, 0xd7, 0x30, 0x1a, 0x4a, 0x2a, 0x4c, 0x54, 0x86, 0x19, 0x81, 0x5d, 0x04, 0x52, 0xa3, 0xca, 0x82, 0x38, 0xdc, 0x1e, 0xf0, 0x7a, 0x78, 0x76, 0x49, 0x4f, 0x71, 0xc4, 0x74, 0x2f, 0xf0, 0x5b, 0x2e, 0x5e, 0xac, 0xef, 0x17, 0xe4, 0x8e, 0x6e, 0xed, 0x43, 0x23, 0x61, 0x99, 0x49},
dt2: fp.Elt{0x64, 0x90, 0x72, 0x76, 0xf8, 0x2c, 0x7d, 0x57, 0xf9, 0x30, 0x5e, 0x7a, 0x10, 0x74, 0x19, 0x39, 0xd9, 0xaf, 0x0a, 0xf1, 0x43, 0xed, 0x88, 0x9c, 0x8b, 0xdc, 0x9b, 0x1c, 0x90, 0xe7, 0xf7, 0xa3, 0xa5, 0x0d, 0xc6, 0xbc, 0x30, 0xfb, 0x91, 0x1a, 0x51, 0xba, 0x2d, 0xbe, 0x89, 0xdf, 0x1d, 0xdc, 0x53, 0xa8, 0x82, 0x8a, 0xd3, 0x8d, 0x16, 0x68},
},
{
addYX: fp.Elt{0xef, 0x5c, 0xe3, 0x74, 0xbf, 0x13, 0x4a, 0xbf, 0x66, 0x73, 0x64, 0xb7, 0xd4, 0xce, 0x98, 0x82, 0x05, 0xfa, 0x98, 0x0c, 0x0a, 0xae, 0xe5, 0x6b, 0x9f, 0xac, 0xbb, 0x6e, 0x1f, 0xcf, 0xff, 0xa6, 0x71, 0x9a, 0xa8, 0x7a, 0x9e, 0x64, 0x1f, 0x20, 0x4a, 0x61, 0xa2, 0xd6, 0x50, 0xe3, 0xba, 0x81, 0x0c, 0x50, 0x59, 0x69, 0x59, 0x15, 0x55, 0xdb},
subYX: fp.Elt{0xe8, 0x77, 0x4d, 0xe8, 0x66, 0x3d, 0xc1, 0x00, 0x3c, 0xf2, 0x25, 0x00, 0xdc, 0xb2, 0xe5, 0x9b, 0x12, 0x89, 0xf3, 0xd6, 0xea, 0x85, 0x60, 0xfe, 0x67, 0x91, 0xfd, 0x04, 0x7c, 0xe0, 0xf1, 0x86, 0x06, 0x11, 0x66, 0xee, 0xd4, 0xd5, 0xbe, 0x3b, 0x0f, 0xe3, 0x59, 0xb3, 0x4f, 0x00, 0xb6, 0xce, 0x80, 0xc1, 0x61, 0xf7, 0xaf, 0x04, 0x6a, 0x3c},
dt2: fp.Elt{0x00, 0xd7, 0x32, 0x93, 0x67, 0x70, 0x6f, 0xd7, 0x69, 0xab, 0xb1, 0xd3, 0xdc, 0xd6, 0xa8, 0xdd, 0x35, 0x25, 0xca, 0xd3, 0x8a, 0x6d, 0xce, 0xfb, 0xfd, 0x2b, 0x83, 0xf0, 0xd4, 0xac, 0x66, 0xfb, 0x72, 0x87, 0x7e, 0x55, 0xb7, 0x91, 0x58, 0x10, 0xc3, 0x11, 0x7e, 0x15, 0xfe, 0x7c, 0x55, 0x90, 0xa3, 0x9e, 0xed, 0x9a, 0x7f, 0xa7, 0xb7, 0xeb},
},
{
addYX: fp.Elt{0x25, 0x0f, 0xc2, 0x09, 0x9c, 0x10, 0xc8, 0x7c, 0x93, 0xa7, 0xbe, 0xe9, 0x26, 0x25, 0x7c, 0x21, 0xfe, 0xe7, 0x5f, 0x3c, 0x02, 0x83, 0xa7, 0x9e, 0xdf, 0xc0, 0x94, 0x2b, 0x7d, 0x1a, 0xd0, 0x1d, 0xcc, 0x2e, 0x7d, 0xd4, 0x85, 0xe7, 0xc1, 0x15, 0x66, 0xd6, 0xd6, 0x32, 0xb8, 0xf7, 0x63, 0xaa, 0x3b, 0xa5, 0xea, 0x49, 0xad, 0x88, 0x9b, 0x66},
subYX: fp.Elt{0x09, 0x97, 0x79, 0x36, 0x41, 0x56, 0x9b, 0xdf, 0x15, 0xd8, 0x43, 0x28, 0x17, 0x5b, 0x96, 0xc9, 0xcf, 0x39, 0x1f, 0x13, 0xf7, 0x4d, 0x1d, 0x1f, 0xda, 0x51, 0x56, 0xe7, 0x0a, 0x5a, 0x65, 0xb6, 0x2a, 0x87, 0x49, 0x86, 0xc2, 0x2b, 0xcd, 0xfe, 0x07, 0xf6, 0x4c, 0xe2, 0x1d, 0x9b, 0xd8, 0x82, 0x09, 0x5b, 0x11, 0x10, 0x62, 0x56, 0x89, 0xbd},
dt2: fp.Elt{0xd9, 0x15, 0x73, 0xf2, 0x96, 0x35, 0x53, 0xb0, 0xe7, 0xa8, 0x0b, 0x93, 0x35, 0x0b, 0x3a, 0x00, 0xf5, 0x18, 0xb1, 0xc3, 0x12, 0x3f, 0x91, 0x17, 0xc1, 0x4c, 0x15, 0x5a, 0x86, 0x92, 0x11, 0xbd, 0x44, 0x40, 0x5a, 0x7b, 0x15, 0x89, 0xba, 0xc1, 0xc1, 0xbc, 0x43, 0x45, 0xe6, 0x52, 0x02, 0x73, 0x0a, 0xd0, 0x2a, 0x19, 0xda, 0x47, 0xa8, 0xff},
},
},
}
// tabVerif contains the odd multiples of P. The entry T[i] = (2i+1)P, where
// P = phi(G) and G is the generator of the Goldilocks curve, and phi is a
// 4-degree isogeny.
var tabVerif = [1 << (omegaFix - 2)]preTwistPointAffine{
{ /* 1P*/
addYX: fp.Elt{0x65, 0x4a, 0xdd, 0xdf, 0xb4, 0x79, 0x60, 0xc8, 0xa1, 0x70, 0xb4, 0x3a, 0x1e, 0x0c, 0x9b, 0x19, 0xe5, 0x48, 0x3f, 0xd7, 0x44, 0x18, 0x18, 0x14, 0x14, 0x27, 0x45, 0xd0, 0x2b, 0x24, 0xd5, 0x93, 0xc3, 0x74, 0x4c, 0x50, 0x70, 0x43, 0x26, 0x05, 0x08, 0x24, 0xca, 0x78, 0x30, 0xc1, 0x06, 0x8d, 0xd4, 0x86, 0x42, 0xf0, 0x14, 0xde, 0x08, 0x05},
subYX: fp.Elt{0x64, 0x4a, 0xdd, 0xdf, 0xb4, 0x79, 0x60, 0xc8, 0xa1, 0x70, 0xb4, 0x3a, 0x1e, 0x0c, 0x9b, 0x19, 0xe5, 0x48, 0x3f, 0xd7, 0x44, 0x18, 0x18, 0x14, 0x14, 0x27, 0x45, 0xd0, 0x2d, 0x24, 0xd5, 0x93, 0xc3, 0x74, 0x4c, 0x50, 0x70, 0x43, 0x26, 0x05, 0x08, 0x24, 0xca, 0x78, 0x30, 0xc1, 0x06, 0x8d, 0xd4, 0x86, 0x42, 0xf0, 0x14, 0xde, 0x08, 0x05},
dt2: fp.Elt{0x1a, 0x33, 0xea, 0x64, 0x45, 0x1c, 0xdf, 0x17, 0x1d, 0x16, 0x34, 0x28, 0xd6, 0x61, 0x19, 0x67, 0x79, 0xb4, 0x13, 0xcf, 0x3e, 0x7c, 0x0e, 0x72, 0xda, 0xf1, 0x5f, 0xda, 0xe6, 0xcf, 0x42, 0xd3, 0xb6, 0x17, 0xc2, 0x68, 0x13, 0x2d, 0xd9, 0x60, 0x3e, 0xae, 0xf0, 0x5b, 0x96, 0xf0, 0xcd, 0xaf, 0xea, 0xb7, 0x0d, 0x59, 0x16, 0xa7, 0xff, 0x55},
},
{ /* 3P*/
addYX: fp.Elt{0xd1, 0xe9, 0xa8, 0x33, 0x20, 0x76, 0x18, 0x08, 0x45, 0x2a, 0xc9, 0x67, 0x2a, 0xc3, 0x15, 0x24, 0xf9, 0x74, 0x21, 0x30, 0x99, 0x59, 0x8b, 0xb2, 0xf0, 0xa4, 0x07, 0xe2, 0x6a, 0x36, 0x8d, 0xd9, 0xd2, 0x4a, 0x7f, 0x73, 0x50, 0x39, 0x3d, 0xaa, 0xa7, 0x51, 0x73, 0x0d, 0x2b, 0x8b, 0x96, 0x47, 0xac, 0x3c, 0x5d, 0xaa, 0x39, 0x9c, 0xcf, 0xd5},
subYX: fp.Elt{0x6b, 0x11, 0x5d, 0x1a, 0xf9, 0x41, 0x9d, 0xc5, 0x30, 0x3e, 0xad, 0x25, 0x2c, 0x04, 0x45, 0xea, 0xcc, 0x67, 0x07, 0x85, 0xe9, 0xda, 0x0e, 0xb5, 0x40, 0xb7, 0x32, 0xb4, 0x49, 0xdd, 0xff, 0xaa, 0xfc, 0xbb, 0x19, 0xca, 0x8b, 0x79, 0x2b, 0x8f, 0x8d, 0x00, 0x33, 0xc2, 0xad, 0xe9, 0xd3, 0x12, 0xa8, 0xaa, 0x87, 0x62, 0xad, 0x2d, 0xff, 0xa4},
dt2: fp.Elt{0xb0, 0xaf, 0x3b, 0xea, 0xf0, 0x42, 0x0b, 0x5e, 0x88, 0xd3, 0x98, 0x08, 0x87, 0x59, 0x72, 0x0a, 0xc2, 0xdf, 0xcb, 0x7f, 0x59, 0xb5, 0x4c, 0x63, 0x68, 0xe8, 0x41, 0x38, 0x67, 0x4f, 0xe9, 0xc6, 0xb2, 0x6b, 0x08, 0xa7, 0xf7, 0x0e, 0xcd, 0xea, 0xca, 0x3d, 0xaf, 0x8e, 0xda, 0x4b, 0x2e, 0xd2, 0x88, 0x64, 0x8d, 0xc5, 0x5f, 0x76, 0x0f, 0x3d},
},
{ /* 5P*/
addYX: fp.Elt{0xe5, 0x65, 0xc9, 0xe2, 0x75, 0xf0, 0x7d, 0x1a, 0xba, 0xa4, 0x40, 0x4b, 0x93, 0x12, 0xa2, 0x80, 0x95, 0x0d, 0x03, 0x93, 0xe8, 0xa5, 0x4d, 0xe2, 0x3d, 0x81, 0xf5, 0xce, 0xd4, 0x2d, 0x25, 0x59, 0x16, 0x5c, 0xe7, 0xda, 0xc7, 0x45, 0xd2, 0x7e, 0x2c, 0x38, 0xd4, 0x37, 0x64, 0xb2, 0xc2, 0x28, 0xc5, 0x72, 0x16, 0x32, 0x45, 0x36, 0x6f, 0x9f},
subYX: fp.Elt{0x09, 0xf4, 0x7e, 0xbd, 0x89, 0xdb, 0x19, 0x58, 0xe1, 0x08, 0x00, 0x8a, 0xf4, 0x5f, 0x2a, 0x32, 0x40, 0xf0, 0x2c, 0x3f, 0x5d, 0xe4, 0xfc, 0x89, 0x11, 0x24, 0xb4, 0x2f, 0x97, 0xad, 0xac, 0x8f, 0x19, 0xab, 0xfa, 0x12, 0xe5, 0xf9, 0x50, 0x4e, 0x50, 0x6f, 0x32, 0x30, 0x88, 0xa6, 0xe5, 0x48, 0x28, 0xa2, 0x1b, 0x9f, 0xcd, 0xe2, 0x43, 0x38},
dt2: fp.Elt{0xa9, 0xcc, 0x53, 0x39, 0x86, 0x02, 0x60, 0x75, 0x34, 0x99, 0x57, 0xbd, 0xfc, 0x5a, 0x8e, 0xce, 0x5e, 0x98, 0x22, 0xd0, 0xa5, 0x24, 0xff, 0x90, 0x28, 0x9f, 0x58, 0xf3, 0x39, 0xe9, 0xba, 0x36, 0x23, 0xfb, 0x7f, 0x41, 0xcc, 0x2b, 0x5a, 0x25, 0x3f, 0x4c, 0x2a, 0xf1, 0x52, 0x6f, 0x2f, 0x07, 0xe3, 0x88, 0x81, 0x77, 0xdd, 0x7c, 0x88, 0x82},
},
{ /* 7P*/
addYX: fp.Elt{0xf7, 0xee, 0x88, 0xfd, 0x3a, 0xbf, 0x7e, 0x28, 0x39, 0x23, 0x79, 0xe6, 0x5c, 0x56, 0xcb, 0xb5, 0x48, 0x6a, 0x80, 0x6d, 0x37, 0x60, 0x6c, 0x10, 0x35, 0x49, 0x4b, 0x46, 0x60, 0xd4, 0x79, 0xd4, 0x53, 0xd3, 0x67, 0x88, 0xd0, 0x41, 0xd5, 0x43, 0x85, 0xc8, 0x71, 0xe3, 0x1c, 0xb6, 0xda, 0x22, 0x64, 0x8f, 0x80, 0xac, 0xad, 0x7d, 0xd5, 0x82},
subYX: fp.Elt{0x92, 0x40, 0xc1, 0x83, 0x21, 0x9b, 0xd5, 0x7d, 0x3f, 0x29, 0xb6, 0x26, 0xef, 0x12, 0xb9, 0x27, 0x39, 0x42, 0x37, 0x97, 0x09, 0x9a, 0x08, 0xe1, 0x68, 0xb6, 0x7a, 0x3f, 0x9f, 0x45, 0xf8, 0x37, 0x19, 0x83, 0x97, 0xe6, 0x73, 0x30, 0x32, 0x35, 0xcf, 0xae, 0x5c, 0x12, 0x68, 0xdf, 0x6e, 0x2b, 0xde, 0x83, 0xa0, 0x44, 0x74, 0x2e, 0x4a, 0xe9},
dt2: fp.Elt{0xcb, 0x22, 0x0a, 0xda, 0x6b, 0xc1, 0x8a, 0x29, 0xa1, 0xac, 0x8b, 0x5b, 0x8b, 0x32, 0x20, 0xf2, 0x21, 0xae, 0x0c, 0x43, 0xc4, 0xd7, 0x19, 0x37, 0x3d, 0x79, 0x25, 0x98, 0x6c, 0x9c, 0x22, 0x31, 0x2a, 0x55, 0x9f, 0xda, 0x5e, 0xa8, 0x13, 0xdb, 0x8e, 0x2e, 0x16, 0x39, 0xf4, 0x91, 0x6f, 0xec, 0x71, 0x71, 0xc9, 0x10, 0xf2, 0xa4, 0x8f, 0x11},
},
{ /* 9P*/
addYX: fp.Elt{0x85, 0xdd, 0x37, 0x62, 0x74, 0x8e, 0x33, 0x5b, 0x25, 0x12, 0x1b, 0xe7, 0xdf, 0x47, 0xe5, 0x12, 0xfd, 0x3a, 0x3a, 0xf5, 0x5d, 0x4c, 0xa2, 0x29, 0x3c, 0x5c, 0x2f, 0xee, 0x18, 0x19, 0x0a, 0x2b, 0xef, 0x67, 0x50, 0x7a, 0x0d, 0x29, 0xae, 0x55, 0x82, 0xcd, 0xd6, 0x41, 0x90, 0xb4, 0x13, 0x31, 0x5d, 0x11, 0xb8, 0xaa, 0x12, 0x86, 0x08, 0xac},
subYX: fp.Elt{0xcc, 0x37, 0x8d, 0x83, 0x5f, 0xfd, 0xde, 0xd5, 0xf7, 0xf1, 0xae, 0x0a, 0xa7, 0x0b, 0xeb, 0x6d, 0x19, 0x8a, 0xb6, 0x1a, 0x59, 0xd8, 0xff, 0x3c, 0xbc, 0xbc, 0xef, 0x9c, 0xda, 0x7b, 0x75, 0x12, 0xaf, 0x80, 0x8f, 0x2c, 0x3c, 0xaa, 0x0b, 0x17, 0x86, 0x36, 0x78, 0x18, 0xc8, 0x8a, 0xf6, 0xb8, 0x2c, 0x2f, 0x57, 0x2c, 0x62, 0x57, 0xf6, 0x90},
dt2: fp.Elt{0x83, 0xbc, 0xa2, 0x07, 0xa5, 0x38, 0x96, 0xea, 0xfe, 0x11, 0x46, 0x1d, 0x3b, 0xcd, 0x42, 0xc5, 0xee, 0x67, 0x04, 0x72, 0x08, 0xd8, 0xd9, 0x96, 0x07, 0xf7, 0xac, 0xc3, 0x64, 0xf1, 0x98, 0x2c, 0x55, 0xd7, 0x7d, 0xc8, 0x6c, 0xbd, 0x2c, 0xff, 0x15, 0xd6, 0x6e, 0xb8, 0x17, 0x8e, 0xa8, 0x27, 0x66, 0xb1, 0x73, 0x79, 0x96, 0xff, 0x29, 0x10},
},
{ /* 11P*/
addYX: fp.Elt{0x76, 0xcb, 0x9b, 0x0c, 0x5b, 0xfe, 0xe1, 0x2a, 0xdd, 0x6f, 0x6c, 0xdd, 0x6f, 0xb4, 0xc0, 0xc2, 0x1b, 0x4b, 0x38, 0xe8, 0x66, 0x8c, 0x1e, 0x31, 0x63, 0xb9, 0x94, 0xcd, 0xc3, 0x8c, 0x44, 0x25, 0x7b, 0xd5, 0x39, 0x80, 0xfc, 0x01, 0xaa, 0xf7, 0x2a, 0x61, 0x8a, 0x25, 0xd2, 0x5f, 0xc5, 0x66, 0x38, 0xa4, 0x17, 0xcf, 0x3e, 0x11, 0x0f, 0xa3},
subYX: fp.Elt{0xe0, 0xb6, 0xd1, 0x9c, 0x71, 0x49, 0x2e, 0x7b, 0xde, 0x00, 0xda, 0x6b, 0xf1, 0xec, 0xe6, 0x7a, 0x15, 0x38, 0x71, 0xe9, 0x7b, 0xdb, 0xf8, 0x98, 0xc0, 0x91, 0x2e, 0x53, 0xee, 0x92, 0x87, 0x25, 0xc9, 0xb0, 0xbb, 0x33, 0x15, 0x46, 0x7f, 0xfd, 0x4f, 0x8b, 0x77, 0x05, 0x96, 0xb6, 0xe2, 0x08, 0xdb, 0x0d, 0x09, 0xee, 0x5b, 0xd1, 0x2a, 0x63},
dt2: fp.Elt{0x8f, 0x7b, 0x57, 0x8c, 0xbf, 0x06, 0x0d, 0x43, 0x21, 0x92, 0x94, 0x2d, 0x6a, 0x38, 0x07, 0x0f, 0xa0, 0xf1, 0xe3, 0xd8, 0x2a, 0xbf, 0x46, 0xc6, 0x9e, 0x1f, 0x8f, 0x2b, 0x46, 0x84, 0x0b, 0x74, 0xed, 0xff, 0xf8, 0xa5, 0x94, 0xae, 0xf1, 0x67, 0xb1, 0x9b, 0xdd, 0x4a, 0xd0, 0xdb, 0xc2, 0xb5, 0x58, 0x49, 0x0c, 0xa9, 0x1d, 0x7d, 0xa9, 0xd3},
},
{ /* 13P*/
addYX: fp.Elt{0x73, 0x84, 0x2e, 0x31, 0x1f, 0xdc, 0xed, 0x9f, 0x74, 0xfa, 0xe0, 0x35, 0xb1, 0x85, 0x6a, 0x8d, 0x86, 0xd0, 0xff, 0xd6, 0x08, 0x43, 0x73, 0x1a, 0xd5, 0xf8, 0x43, 0xd4, 0xb3, 0xe5, 0x3f, 0xa8, 0x84, 0x17, 0x59, 0x65, 0x4e, 0xe6, 0xee, 0x54, 0x9c, 0xda, 0x5e, 0x7e, 0x98, 0x29, 0x6d, 0x73, 0x34, 0x1f, 0x99, 0x80, 0x54, 0x54, 0x81, 0x0b},
subYX: fp.Elt{0xb1, 0xe5, 0xbb, 0x80, 0x22, 0x9c, 0x81, 0x6d, 0xaf, 0x27, 0x65, 0x6f, 0x7e, 0x9c, 0xb6, 0x8d, 0x35, 0x5c, 0x2e, 0x20, 0x48, 0x7a, 0x28, 0xf0, 0x97, 0xfe, 0xb7, 0x71, 0xce, 0xd6, 0xad, 0x3a, 0x81, 0xf6, 0x74, 0x5e, 0xf3, 0xfd, 0x1b, 0xd4, 0x1e, 0x7c, 0xc2, 0xb7, 0xc8, 0xa6, 0xc9, 0x89, 0x03, 0x47, 0xec, 0x24, 0xd6, 0x0e, 0xec, 0x9c},
dt2: fp.Elt{0x91, 0x0a, 0x43, 0x34, 0x20, 0xc2, 0x64, 0xf7, 0x4e, 0x48, 0xc8, 0xd2, 0x95, 0x83, 0xd1, 0xa4, 0xfb, 0x4e, 0x41, 0x3b, 0x0d, 0xd5, 0x07, 0xd9, 0xf1, 0x13, 0x16, 0x78, 0x54, 0x57, 0xd0, 0xf1, 0x4f, 0x20, 0xac, 0xcf, 0x9c, 0x3b, 0x33, 0x0b, 0x99, 0x54, 0xc3, 0x7f, 0x3e, 0x57, 0x26, 0x86, 0xd5, 0xa5, 0x2b, 0x8d, 0xe3, 0x19, 0x36, 0xf7},
},
{ /* 15P*/
addYX: fp.Elt{0x23, 0x69, 0x47, 0x14, 0xf9, 0x9a, 0x50, 0xff, 0x64, 0xd1, 0x50, 0x35, 0xc3, 0x11, 0xd3, 0x19, 0xcf, 0x87, 0xda, 0x30, 0x0b, 0x50, 0xda, 0xc0, 0xe0, 0x25, 0x00, 0xe5, 0x68, 0x93, 0x04, 0xc2, 0xaf, 0xbd, 0x2f, 0x36, 0x5f, 0x47, 0x96, 0x10, 0xa8, 0xbd, 0xe4, 0x88, 0xac, 0x80, 0x52, 0x61, 0x73, 0xe9, 0x63, 0xdd, 0x99, 0xad, 0x20, 0x5b},
subYX: fp.Elt{0x1b, 0x5e, 0xa2, 0x2a, 0x25, 0x0f, 0x86, 0xc0, 0xb1, 0x2e, 0x0c, 0x13, 0x40, 0x8d, 0xf0, 0xe6, 0x00, 0x55, 0x08, 0xc5, 0x7d, 0xf4, 0xc9, 0x31, 0x25, 0x3a, 0x99, 0x69, 0xdd, 0x67, 0x63, 0x9a, 0xd6, 0x89, 0x2e, 0xa1, 0x19, 0xca, 0x2c, 0xd9, 0x59, 0x5f, 0x5d, 0xc3, 0x6e, 0x62, 0x36, 0x12, 0x59, 0x15, 0xe1, 0xdc, 0xa4, 0xad, 0xc9, 0xd0},
dt2: fp.Elt{0xbc, 0xea, 0xfc, 0xaf, 0x66, 0x23, 0xb7, 0x39, 0x6b, 0x2a, 0x96, 0xa8, 0x54, 0x43, 0xe9, 0xaa, 0x32, 0x40, 0x63, 0x92, 0x5e, 0xdf, 0x35, 0xc2, 0x9f, 0x24, 0x0c, 0xed, 0xfc, 0xde, 0x73, 0x8f, 0xa7, 0xd5, 0xa3, 0x2b, 0x18, 0x1f, 0xb0, 0xf8, 0xeb, 0x55, 0xd9, 0xc3, 0xfd, 0x28, 0x7c, 0x4f, 0xce, 0x0d, 0xf7, 0xae, 0xc2, 0x83, 0xc3, 0x78},
},
{ /* 17P*/
addYX: fp.Elt{0x71, 0xe6, 0x60, 0x93, 0x37, 0xdb, 0x01, 0xa5, 0x4c, 0xba, 0xe8, 0x8e, 0xd5, 0xf9, 0xd3, 0x98, 0xe5, 0xeb, 0xab, 0x3a, 0x15, 0x8b, 0x35, 0x60, 0xbe, 0xe5, 0x9c, 0x2d, 0x10, 0x9b, 0x2e, 0xcf, 0x65, 0x64, 0xea, 0x8f, 0x72, 0xce, 0xf5, 0x18, 0xe5, 0xe2, 0xf0, 0x0e, 0xae, 0x04, 0xec, 0xa0, 0x20, 0x65, 0x63, 0x07, 0xb1, 0x9f, 0x03, 0x97},
subYX: fp.Elt{0x9e, 0x41, 0x64, 0x30, 0x95, 0x7f, 0x3a, 0x89, 0x7b, 0x0a, 0x79, 0x59, 0x23, 0x9a, 0x3b, 0xfe, 0xa4, 0x13, 0x08, 0xb2, 0x2e, 0x04, 0x50, 0x10, 0x30, 0xcd, 0x2e, 0xa4, 0x91, 0x71, 0x50, 0x36, 0x4a, 0x02, 0xf4, 0x8d, 0xa3, 0x36, 0x1b, 0xf4, 0x52, 0xba, 0x15, 0x04, 0x8b, 0x80, 0x25, 0xd9, 0xae, 0x67, 0x20, 0xd9, 0x88, 0x8f, 0x97, 0xa6},
dt2: fp.Elt{0xb5, 0xe7, 0x46, 0xbd, 0x55, 0x23, 0xa0, 0x68, 0xc0, 0x12, 0xd9, 0xf1, 0x0a, 0x75, 0xe2, 0xda, 0xf4, 0x6b, 0xca, 0x14, 0xe4, 0x9f, 0x0f, 0xb5, 0x3c, 0xa6, 0xa5, 0xa2, 0x63, 0x94, 0xd1, 0x1c, 0x39, 0x58, 0x57, 0x02, 0x27, 0x98, 0xb6, 0x47, 0xc6, 0x61, 0x4b, 0x5c, 0xab, 0x6f, 0x2d, 0xab, 0xe3, 0xc1, 0x69, 0xf9, 0x12, 0xb0, 0xc8, 0xd5},
},
{ /* 19P*/
addYX: fp.Elt{0x19, 0x7d, 0xd5, 0xac, 0x79, 0xa2, 0x82, 0x9b, 0x28, 0x31, 0x22, 0xc0, 0x73, 0x02, 0x76, 0x17, 0x10, 0x70, 0x79, 0x57, 0xc9, 0x84, 0x62, 0x8e, 0x04, 0x04, 0x61, 0x67, 0x08, 0x48, 0xb4, 0x4b, 0xde, 0x53, 0x8c, 0xff, 0x36, 0x1b, 0x62, 0x86, 0x5d, 0xe1, 0x9b, 0xb1, 0xe5, 0xe8, 0x44, 0x64, 0xa1, 0x68, 0x3f, 0xa8, 0x45, 0x52, 0x91, 0xed},
subYX: fp.Elt{0x42, 0x1a, 0x36, 0x1f, 0x90, 0x15, 0x24, 0x8d, 0x24, 0x80, 0xe6, 0xfe, 0x1e, 0xf0, 0xad, 0xaf, 0x6a, 0x93, 0xf0, 0xa6, 0x0d, 0x5d, 0xea, 0xf6, 0x62, 0x96, 0x7a, 0x05, 0x76, 0x85, 0x74, 0x32, 0xc7, 0xc8, 0x64, 0x53, 0x62, 0xe7, 0x54, 0x84, 0xe0, 0x40, 0x66, 0x19, 0x70, 0x40, 0x95, 0x35, 0x68, 0x64, 0x43, 0xcd, 0xba, 0x29, 0x32, 0xa8},
dt2: fp.Elt{0x3e, 0xf6, 0xd6, 0xe4, 0x99, 0xeb, 0x20, 0x66, 0x08, 0x2e, 0x26, 0x64, 0xd7, 0x76, 0xf3, 0xb4, 0xc5, 0xa4, 0x35, 0x92, 0xd2, 0x99, 0x70, 0x5a, 0x1a, 0xe9, 0xe9, 0x3d, 0x3b, 0xe1, 0xcd, 0x0e, 0xee, 0x24, 0x13, 0x03, 0x22, 0xd6, 0xd6, 0x72, 0x08, 0x2b, 0xde, 0xfd, 0x93, 0xed, 0x0c, 0x7f, 0x5e, 0x31, 0x22, 0x4d, 0x80, 0x78, 0xc0, 0x48},
},
{ /* 21P*/
addYX: fp.Elt{0x8f, 0x72, 0xd2, 0x9e, 0xc4, 0xcd, 0x2c, 0xbf, 0xa8, 0xd3, 0x24, 0x62, 0x28, 0xee, 0x39, 0x0a, 0x19, 0x3a, 0x58, 0xff, 0x21, 0x2e, 0x69, 0x6c, 0x6e, 0x18, 0xd0, 0xcd, 0x61, 0xc1, 0x18, 0x02, 0x5a, 0xe9, 0xe3, 0xef, 0x1f, 0x8e, 0x10, 0xe8, 0x90, 0x2b, 0x48, 0xcd, 0xee, 0x38, 0xbd, 0x3a, 0xca, 0xbc, 0x2d, 0xe2, 0x3a, 0x03, 0x71, 0x02},
subYX: fp.Elt{0xf8, 0xa4, 0x32, 0x26, 0x66, 0xaf, 0x3b, 0x53, 0xe7, 0xb0, 0x91, 0x92, 0xf5, 0x3c, 0x74, 0xce, 0xf2, 0xdd, 0x68, 0xa9, 0xf4, 0xcd, 0x5f, 0x60, 0xab, 0x71, 0xdf, 0xcd, 0x5c, 0x5d, 0x51, 0x72, 0x3a, 0x96, 0xea, 0xd6, 0xde, 0x54, 0x8e, 0x55, 0x4c, 0x08, 0x4c, 0x60, 0xdd, 0x34, 0xa9, 0x6f, 0xf3, 0x04, 0x02, 0xa8, 0xa6, 0x4e, 0x4d, 0x62},
dt2: fp.Elt{0x76, 0x4a, 0xae, 0x38, 0x62, 0x69, 0x72, 0xdc, 0xe8, 0x43, 0xbe, 0x1d, 0x61, 0xde, 0x31, 0xc3, 0x42, 0x8f, 0x33, 0x9d, 0xca, 0xc7, 0x9c, 0xec, 0x6a, 0xe2, 0xaa, 0x01, 0x49, 0x78, 0x8d, 0x72, 0x4f, 0x38, 0xea, 0x52, 0xc2, 0xd3, 0xc9, 0x39, 0x71, 0xba, 0xb9, 0x09, 0x9b, 0xa3, 0x7f, 0x45, 0x43, 0x65, 0x36, 0x29, 0xca, 0xe7, 0x5c, 0x5f},
},
{ /* 23P*/
addYX: fp.Elt{0x89, 0x42, 0x35, 0x48, 0x6d, 0x74, 0xe5, 0x1f, 0xc3, 0xdd, 0x28, 0x5b, 0x84, 0x41, 0x33, 0x9f, 0x42, 0xf3, 0x1d, 0x5d, 0x15, 0x6d, 0x76, 0x33, 0x36, 0xaf, 0xe9, 0xdd, 0xfa, 0x63, 0x4f, 0x7a, 0x9c, 0xeb, 0x1c, 0x4f, 0x34, 0x65, 0x07, 0x54, 0xbb, 0x4c, 0x8b, 0x62, 0x9d, 0xd0, 0x06, 0x99, 0xb3, 0xe9, 0xda, 0x85, 0x19, 0xb0, 0x3d, 0x3c},
subYX: fp.Elt{0xbb, 0x99, 0xf6, 0xbf, 0xaf, 0x2c, 0x22, 0x0d, 0x7a, 0xaa, 0x98, 0x6f, 0x01, 0x82, 0x99, 0xcf, 0x88, 0xbd, 0x0e, 0x3a, 0x89, 0xe0, 0x9c, 0x8c, 0x17, 0x20, 0xc4, 0xe0, 0xcf, 0x43, 0x7a, 0xef, 0x0d, 0x9f, 0x87, 0xd4, 0xfb, 0xf2, 0x96, 0xb8, 0x03, 0xe8, 0xcb, 0x5c, 0xec, 0x65, 0x5f, 0x49, 0xa4, 0x7c, 0x85, 0xb4, 0xf6, 0xc7, 0xdb, 0xa3},
dt2: fp.Elt{0x11, 0xf3, 0x32, 0xa3, 0xa7, 0xb2, 0x7d, 0x51, 0x82, 0x44, 0xeb, 0xa2, 0x7d, 0x72, 0xcb, 0xc6, 0xf6, 0xc7, 0xb2, 0x38, 0x0e, 0x0f, 0x4f, 0x29, 0x00, 0xe4, 0x5b, 0x94, 0x46, 0x86, 0x66, 0xa1, 0x83, 0xb3, 0xeb, 0x15, 0xb6, 0x31, 0x50, 0x28, 0xeb, 0xed, 0x0d, 0x32, 0x39, 0xe9, 0x23, 0x81, 0x99, 0x3e, 0xff, 0x17, 0x4c, 0x11, 0x43, 0xd1},
},
{ /* 25P*/
addYX: fp.Elt{0xce, 0xe7, 0xf8, 0x94, 0x8f, 0x96, 0xf8, 0x96, 0xe6, 0x72, 0x20, 0x44, 0x2c, 0xa7, 0xfc, 0xba, 0xc8, 0xe1, 0xbb, 0xc9, 0x16, 0x85, 0xcd, 0x0b, 0xe5, 0xb5, 0x5a, 0x7f, 0x51, 0x43, 0x63, 0x8b, 0x23, 0x8e, 0x1d, 0x31, 0xff, 0x46, 0x02, 0x66, 0xcc, 0x9e, 0x4d, 0xa2, 0xca, 0xe2, 0xc7, 0xfd, 0x22, 0xb1, 0xdb, 0xdf, 0x6f, 0xe6, 0xa5, 0x82},
subYX: fp.Elt{0xd0, 0xf5, 0x65, 0x40, 0xec, 0x8e, 0x65, 0x42, 0x78, 0xc1, 0x65, 0xe4, 0x10, 0xc8, 0x0b, 0x1b, 0xdd, 0x96, 0x68, 0xce, 0xee, 0x45, 0x55, 0xd8, 0x6e, 0xd3, 0xe6, 0x77, 0x19, 0xae, 0xc2, 0x8d, 0x8d, 0x3e, 0x14, 0x3f, 0x6d, 0x00, 0x2f, 0x9b, 0xd1, 0x26, 0x60, 0x28, 0x0f, 0x3a, 0x47, 0xb3, 0xe6, 0x68, 0x28, 0x24, 0x25, 0xca, 0xc8, 0x06},
dt2: fp.Elt{0x54, 0xbb, 0x60, 0x92, 0xdb, 0x8f, 0x0f, 0x38, 0xe0, 0xe6, 0xe4, 0xc9, 0xcc, 0x14, 0x62, 0x01, 0xc4, 0x2b, 0x0f, 0xcf, 0xed, 0x7d, 0x8e, 0xa4, 0xd9, 0x73, 0x0b, 0xba, 0x0c, 0xaf, 0x0c, 0xf9, 0xe2, 0xeb, 0x29, 0x2a, 0x53, 0xdf, 0x2c, 0x5a, 0xfa, 0x8f, 0xc1, 0x01, 0xd7, 0xb1, 0x45, 0x73, 0x92, 0x32, 0x83, 0x85, 0x12, 0x74, 0x89, 0x44},
},
{ /* 27P*/
addYX: fp.Elt{0x0b, 0x73, 0x3c, 0xc2, 0xb1, 0x2e, 0xe1, 0xa7, 0xf5, 0xc9, 0x7a, 0xfb, 0x3d, 0x2d, 0xac, 0x59, 0xdb, 0xfa, 0x36, 0x11, 0xd1, 0x13, 0x04, 0x51, 0x1d, 0xab, 0x9b, 0x6b, 0x93, 0xfe, 0xda, 0xb0, 0x8e, 0xb4, 0x79, 0x11, 0x21, 0x0f, 0x65, 0xb9, 0xbb, 0x79, 0x96, 0x2a, 0xfd, 0x30, 0xe0, 0xb4, 0x2d, 0x9a, 0x55, 0x25, 0x5d, 0xd4, 0xad, 0x2a},
subYX: fp.Elt{0x9e, 0xc5, 0x04, 0xfe, 0xec, 0x3c, 0x64, 0x1c, 0xed, 0x95, 0xed, 0xae, 0xaf, 0x5c, 0x6e, 0x08, 0x9e, 0x02, 0x29, 0x59, 0x7e, 0x5f, 0xc4, 0x9a, 0xd5, 0x32, 0x72, 0x86, 0xe1, 0x4e, 0x3c, 0xce, 0x99, 0x69, 0x3b, 0xc4, 0xdd, 0x4d, 0xb7, 0xbb, 0xda, 0x3b, 0x1a, 0x99, 0xaa, 0x62, 0x15, 0xc1, 0xf0, 0xb6, 0x6c, 0xec, 0x56, 0xc1, 0xff, 0x0c},
dt2: fp.Elt{0x2f, 0xf1, 0x3f, 0x7a, 0x2d, 0x56, 0x19, 0x7f, 0xea, 0xbe, 0x59, 0x2e, 0x13, 0x67, 0x81, 0xfb, 0xdb, 0xc8, 0xa3, 0x1d, 0xd5, 0xe9, 0x13, 0x8b, 0x29, 0xdf, 0xcf, 0x9f, 0xe7, 0xd9, 0x0b, 0x70, 0xd3, 0x15, 0x57, 0x4a, 0xe9, 0x50, 0x12, 0x1b, 0x81, 0x4b, 0x98, 0x98, 0xa8, 0x31, 0x1d, 0x27, 0x47, 0x38, 0xed, 0x57, 0x99, 0x26, 0xb2, 0xee},
},
{ /* 29P*/
addYX: fp.Elt{0x1c, 0xb2, 0xb2, 0x67, 0x3b, 0x8b, 0x3d, 0x5a, 0x30, 0x7e, 0x38, 0x7e, 0x3c, 0x3d, 0x28, 0x56, 0x59, 0xd8, 0x87, 0x53, 0x8b, 0xe6, 0x6c, 0x5d, 0xe5, 0x0a, 0x33, 0x10, 0xce, 0xa2, 0x17, 0x0d, 0xe8, 0x76, 0xee, 0x68, 0xa8, 0x72, 0x54, 0xbd, 0xa6, 0x24, 0x94, 0x6e, 0x77, 0xc7, 0x53, 0xb7, 0x89, 0x1c, 0x7a, 0xe9, 0x78, 0x9a, 0x74, 0x5f},
subYX: fp.Elt{0x76, 0x96, 0x1c, 0xcf, 0x08, 0x55, 0xd8, 0x1e, 0x0d, 0xa3, 0x59, 0x95, 0x32, 0xf4, 0xc2, 0x8e, 0x84, 0x5e, 0x4b, 0x04, 0xda, 0x71, 0xc9, 0x78, 0x52, 0xde, 0x14, 0xb4, 0x31, 0xf4, 0xd4, 0xb8, 0x58, 0xc5, 0x20, 0xe8, 0xdd, 0x15, 0xb5, 0xee, 0xea, 0x61, 0xe0, 0xf5, 0xd6, 0xae, 0x55, 0x59, 0x05, 0x3e, 0xaf, 0x74, 0xac, 0x1f, 0x17, 0x82},
dt2: fp.Elt{0x59, 0x24, 0xcd, 0xfc, 0x11, 0x7e, 0x85, 0x18, 0x3d, 0x69, 0xf7, 0x71, 0x31, 0x66, 0x98, 0x42, 0x95, 0x00, 0x8c, 0xb2, 0xae, 0x39, 0x7e, 0x85, 0xd6, 0xb0, 0x02, 0xec, 0xce, 0xfc, 0x25, 0xb2, 0xe3, 0x99, 0x8e, 0x5b, 0x61, 0x96, 0x2e, 0x6d, 0x96, 0x57, 0x71, 0xa5, 0x93, 0x41, 0x0e, 0x6f, 0xfd, 0x0a, 0xbf, 0xa9, 0xf7, 0x56, 0xa9, 0x3e},
},
{ /* 31P*/
addYX: fp.Elt{0xa2, 0x2e, 0x0c, 0x17, 0x4d, 0xcc, 0x85, 0x2c, 0x18, 0xa0, 0xd2, 0x08, 0xba, 0x11, 0xfa, 0x47, 0x71, 0x86, 0xaf, 0x36, 0x6a, 0xd7, 0xfe, 0xb9, 0xb0, 0x2f, 0x89, 0x98, 0x49, 0x69, 0xf8, 0x6a, 0xad, 0x27, 0x5e, 0x0a, 0x22, 0x60, 0x5e, 0x5d, 0xca, 0x06, 0x51, 0x27, 0x99, 0x29, 0x85, 0x68, 0x98, 0xe1, 0xc4, 0x21, 0x50, 0xa0, 0xe9, 0xc1},
subYX: fp.Elt{0x4d, 0x70, 0xee, 0x91, 0x92, 0x3f, 0xb7, 0xd3, 0x1d, 0xdb, 0x8d, 0x6e, 0x16, 0xf5, 0x65, 0x7d, 0x5f, 0xb5, 0x6c, 0x59, 0x26, 0x70, 0x4b, 0xf2, 0xfc, 0xe7, 0xdf, 0x86, 0xfe, 0xa5, 0xa7, 0xa6, 0x5d, 0xfb, 0x06, 0xe9, 0xf9, 0xcc, 0xc0, 0x37, 0xcc, 0xd8, 0x09, 0x04, 0xd2, 0xa5, 0x1d, 0xd7, 0xb7, 0xce, 0x92, 0xac, 0x3c, 0xad, 0xfb, 0xae},
dt2: fp.Elt{0x17, 0xa3, 0x9a, 0xc7, 0x86, 0x2a, 0x51, 0xf7, 0x96, 0x79, 0x49, 0x22, 0x2e, 0x5a, 0x01, 0x5c, 0xb5, 0x95, 0xd4, 0xe8, 0xcb, 0x00, 0xca, 0x2d, 0x55, 0xb6, 0x34, 0x36, 0x0b, 0x65, 0x46, 0xf0, 0x49, 0xfc, 0x87, 0x86, 0xe5, 0xc3, 0x15, 0xdb, 0x32, 0xcd, 0xf2, 0xd3, 0x82, 0x4c, 0xe6, 0x61, 0x8a, 0xaf, 0xd4, 0x9e, 0x0f, 0x5a, 0xf2, 0x81},
},
{ /* 33P*/
addYX: fp.Elt{0x88, 0x10, 0xc0, 0xcb, 0xf5, 0x77, 0xae, 0xa5, 0xbe, 0xf6, 0xcd, 0x2e, 0x8b, 0x7e, 0xbd, 0x79, 0x62, 0x4a, 0xeb, 0x69, 0xc3, 0x28, 0xaa, 0x72, 0x87, 0xa9, 0x25, 0x87, 0x46, 0xea, 0x0e, 0x62, 0xa3, 0x6a, 0x1a, 0xe2, 0xba, 0xdc, 0x81, 0x10, 0x33, 0x01, 0xf6, 0x16, 0x89, 0x80, 0xc6, 0xcd, 0xdb, 0xdc, 0xba, 0x0e, 0x09, 0x4a, 0x35, 0x4a},
subYX: fp.Elt{0x86, 0xb2, 0x2b, 0xd0, 0xb8, 0x4a, 0x6d, 0x66, 0x7b, 0x32, 0xdf, 0x3b, 0x1a, 0x19, 0x1f, 0x63, 0xee, 0x1f, 0x3d, 0x1c, 0x5c, 0x14, 0x60, 0x5b, 0x72, 0x49, 0x07, 0xb1, 0x0d, 0x72, 0xc6, 0x35, 0xf0, 0xbc, 0x5e, 0xda, 0x80, 0x6b, 0x64, 0x5b, 0xe5, 0x34, 0x54, 0x39, 0xdd, 0xe6, 0x3c, 0xcb, 0xe5, 0x29, 0x32, 0x06, 0xc6, 0xb1, 0x96, 0x34},
dt2: fp.Elt{0x85, 0x86, 0xf5, 0x84, 0x86, 0xe6, 0x77, 0x8a, 0x71, 0x85, 0x0c, 0x4f, 0x81, 0x5b, 0x29, 0x06, 0xb5, 0x2e, 0x26, 0x71, 0x07, 0x78, 0x07, 0xae, 0xbc, 0x95, 0x46, 0xc3, 0x65, 0xac, 0xe3, 0x76, 0x51, 0x7d, 0xd4, 0x85, 0x31, 0xe3, 0x43, 0xf3, 0x1b, 0x7c, 0xf7, 0x6b, 0x2c, 0xf8, 0x1c, 0xbb, 0x8d, 0xca, 0xab, 0x4b, 0xba, 0x7f, 0xa4, 0xe2},
},
{ /* 35P*/
addYX: fp.Elt{0x1a, 0xee, 0xe7, 0xa4, 0x8a, 0x9d, 0x53, 0x80, 0xc6, 0xb8, 0x4e, 0xdc, 0x89, 0xe0, 0xc4, 0x2b, 0x60, 0x52, 0x6f, 0xec, 0x81, 0xd2, 0x55, 0x6b, 0x1b, 0x6f, 0x17, 0x67, 0x8e, 0x42, 0x26, 0x4c, 0x65, 0x23, 0x29, 0xc6, 0x7b, 0xcd, 0x9f, 0xad, 0x4b, 0x42, 0xd3, 0x0c, 0x75, 0xc3, 0x8a, 0xf5, 0xbe, 0x9e, 0x55, 0xf7, 0x47, 0x5d, 0xbd, 0x3a},
subYX: fp.Elt{0x0d, 0xa8, 0x3b, 0xf9, 0xc7, 0x7e, 0xc6, 0x86, 0x94, 0xc0, 0x01, 0xff, 0x27, 0xce, 0x43, 0xac, 0xe5, 0xe1, 0xd2, 0x8d, 0xc1, 0x22, 0x31, 0xbe, 0xe1, 0xaf, 0xf9, 0x4a, 0x78, 0xa1, 0x0c, 0xaa, 0xd4, 0x80, 0xe4, 0x09, 0x8d, 0xfb, 0x1d, 0x52, 0xc8, 0x60, 0x2d, 0xf2, 0xa2, 0x89, 0x02, 0x56, 0x3d, 0x56, 0x27, 0x85, 0xc7, 0xf0, 0x2b, 0x9a},
dt2: fp.Elt{0x62, 0x7c, 0xc7, 0x6b, 0x2c, 0x9d, 0x0a, 0x7c, 0xe5, 0x50, 0x3c, 0xe6, 0x87, 0x1c, 0x82, 0x30, 0x67, 0x3c, 0x39, 0xb6, 0xa0, 0x31, 0xfb, 0x03, 0x7b, 0xa1, 0x58, 0xdf, 0x12, 0x76, 0x5d, 0x5d, 0x0a, 0x8f, 0x9b, 0x37, 0x32, 0xc3, 0x60, 0x33, 0xea, 0x9f, 0x0a, 0x99, 0xfa, 0x20, 0xd0, 0x33, 0x21, 0xc3, 0x94, 0xd4, 0x86, 0x49, 0x7c, 0x4e},
},
{ /* 37P*/
addYX: fp.Elt{0xc7, 0x0c, 0x71, 0xfe, 0x55, 0xd1, 0x95, 0x8f, 0x43, 0xbb, 0x6b, 0x74, 0x30, 0xbd, 0xe8, 0x6f, 0x1c, 0x1b, 0x06, 0x62, 0xf5, 0xfc, 0x65, 0xa0, 0xeb, 0x81, 0x12, 0xc9, 0x64, 0x66, 0x61, 0xde, 0xf3, 0x6d, 0xd4, 0xae, 0x8e, 0xb1, 0x72, 0xe0, 0xcd, 0x37, 0x01, 0x28, 0x52, 0xd7, 0x39, 0x46, 0x0c, 0x55, 0xcf, 0x47, 0x70, 0xef, 0xa1, 0x17},
subYX: fp.Elt{0x8d, 0x58, 0xde, 0x83, 0x88, 0x16, 0x0e, 0x12, 0x42, 0x03, 0x50, 0x60, 0x4b, 0xdf, 0xbf, 0x95, 0xcc, 0x7d, 0x18, 0x17, 0x7e, 0x31, 0x5d, 0x8a, 0x66, 0xc1, 0xcf, 0x14, 0xea, 0xf4, 0xf4, 0xe5, 0x63, 0x2d, 0x32, 0x86, 0x9b, 0xed, 0x1f, 0x4f, 0x03, 0xaf, 0x33, 0x92, 0xcb, 0xaf, 0x9c, 0x05, 0x0d, 0x47, 0x1b, 0x42, 0xba, 0x13, 0x22, 0x98},
dt2: fp.Elt{0xb5, 0x48, 0xeb, 0x7d, 0x3d, 0x10, 0x9f, 0x59, 0xde, 0xf8, 0x1c, 0x4f, 0x7d, 0x9d, 0x40, 0x4d, 0x9e, 0x13, 0x24, 0xb5, 0x21, 0x09, 0xb7, 0xee, 0x98, 0x5c, 0x56, 0xbc, 0x5e, 0x2b, 0x78, 0x38, 0x06, 0xac, 0xe3, 0xe0, 0xfa, 0x2e, 0xde, 0x4f, 0xd2, 0xb3, 0xfb, 0x2d, 0x71, 0x84, 0xd1, 0x9d, 0x12, 0x5b, 0x35, 0xc8, 0x03, 0x68, 0x67, 0xc7},
},
{ /* 39P*/
addYX: fp.Elt{0xb6, 0x65, 0xfb, 0xa7, 0x06, 0x35, 0xbb, 0xe0, 0x31, 0x8d, 0x91, 0x40, 0x98, 0xab, 0x30, 0xe4, 0xca, 0x12, 0x59, 0x89, 0xed, 0x65, 0x5d, 0x7f, 0xae, 0x69, 0xa0, 0xa4, 0xfa, 0x78, 0xb4, 0xf7, 0xed, 0xae, 0x86, 0x78, 0x79, 0x64, 0x24, 0xa6, 0xd4, 0xe1, 0xf6, 0xd3, 0xa0, 0x89, 0xba, 0x20, 0xf4, 0x54, 0x0d, 0x8f, 0xdb, 0x1a, 0x79, 0xdb},
subYX: fp.Elt{0xe1, 0x82, 0x0c, 0x4d, 0xde, 0x9f, 0x40, 0xf0, 0xc1, 0xbd, 0x8b, 0xd3, 0x24, 0x03, 0xcd, 0xf2, 0x92, 0x7d, 0xe2, 0x68, 0x7f, 0xf1, 0xbe, 0x69, 0xde, 0x34, 0x67, 0x4c, 0x85, 0x3b, 0xec, 0x98, 0xcc, 0x4d, 0x3e, 0xc0, 0x96, 0x27, 0xe6, 0x75, 0xfc, 0xdf, 0x37, 0xc0, 0x1e, 0x27, 0xe0, 0xf6, 0xc2, 0xbd, 0xbc, 0x3d, 0x9b, 0x39, 0xdc, 0xe2},
dt2: fp.Elt{0xd8, 0x29, 0xa7, 0x39, 0xe3, 0x9f, 0x2f, 0x0e, 0x4b, 0x24, 0x21, 0x70, 0xef, 0xfd, 0x91, 0xea, 0xbf, 0xe1, 0x72, 0x90, 0xcc, 0xc9, 0x84, 0x0e, 0xad, 0xd5, 0xe6, 0xbb, 0xc5, 0x99, 0x7f, 0xa4, 0xf0, 0x2e, 0xcc, 0x95, 0x64, 0x27, 0x19, 0xd8, 0x4c, 0x27, 0x0d, 0xff, 0xb6, 0x29, 0xe2, 0x6c, 0xfa, 0xbb, 0x4d, 0x9c, 0xbb, 0xaf, 0xa5, 0xec},
},
{ /* 41P*/
addYX: fp.Elt{0xd6, 0x33, 0x3f, 0x9f, 0xcf, 0xfd, 0x4c, 0xd1, 0xfe, 0xe5, 0xeb, 0x64, 0x27, 0xae, 0x7a, 0xa2, 0x82, 0x50, 0x6d, 0xaa, 0xe3, 0x5d, 0xe2, 0x48, 0x60, 0xb3, 0x76, 0x04, 0xd9, 0x19, 0xa7, 0xa1, 0x73, 0x8d, 0x38, 0xa9, 0xaf, 0x45, 0xb5, 0xb2, 0x62, 0x9b, 0xf1, 0x35, 0x7b, 0x84, 0x66, 0xeb, 0x06, 0xef, 0xf1, 0xb2, 0x2d, 0x6a, 0x61, 0x15},
subYX: fp.Elt{0x86, 0x50, 0x42, 0xf7, 0xda, 0x59, 0xb2, 0xcf, 0x0d, 0x3d, 0xee, 0x8e, 0x53, 0x5d, 0xf7, 0x9e, 0x6a, 0x26, 0x2d, 0xc7, 0x8c, 0x8e, 0x18, 0x50, 0x6d, 0xb7, 0x51, 0x4c, 0xa7, 0x52, 0x6e, 0x0e, 0x0a, 0x16, 0x74, 0xb2, 0x81, 0x8b, 0x56, 0x27, 0x22, 0x84, 0xf4, 0x56, 0xc5, 0x06, 0xe1, 0x8b, 0xca, 0x2d, 0xdb, 0x9a, 0xf6, 0x10, 0x9c, 0x51},
dt2: fp.Elt{0x1f, 0x16, 0xa2, 0x78, 0x96, 0x1b, 0x85, 0x9c, 0x76, 0x49, 0xd4, 0x0f, 0xac, 0xb0, 0xf4, 0xd0, 0x06, 0x2c, 0x7e, 0x6d, 0x6e, 0x8e, 0xc7, 0x9f, 0x18, 0xad, 0xfc, 0x88, 0x0c, 0x0c, 0x09, 0x05, 0x05, 0xa0, 0x79, 0x72, 0x32, 0x72, 0x87, 0x0f, 0x49, 0x87, 0x0c, 0xb4, 0x12, 0xc2, 0x09, 0xf8, 0x9f, 0x30, 0x72, 0xa9, 0x47, 0x13, 0x93, 0x49},
},
{ /* 43P*/
addYX: fp.Elt{0xcc, 0xb1, 0x4c, 0xd3, 0xc0, 0x9e, 0x9e, 0x4d, 0x6d, 0x28, 0x0b, 0xa5, 0x94, 0xa7, 0x2e, 0xc2, 0xc7, 0xaf, 0x29, 0x73, 0xc9, 0x68, 0xea, 0x0f, 0x34, 0x37, 0x8d, 0x96, 0x8f, 0x3a, 0x3d, 0x73, 0x1e, 0x6d, 0x9f, 0xcf, 0x8d, 0x83, 0xb5, 0x71, 0xb9, 0xe1, 0x4b, 0x67, 0x71, 0xea, 0xcf, 0x56, 0xe5, 0xeb, 0x72, 0x15, 0x2f, 0x9e, 0xa8, 0xaa},
subYX: fp.Elt{0xf4, 0x3e, 0x85, 0x1c, 0x1a, 0xef, 0x50, 0xd1, 0xb4, 0x20, 0xb2, 0x60, 0x05, 0x98, 0xfe, 0x47, 0x3b, 0xc1, 0x76, 0xca, 0x2c, 0x4e, 0x5a, 0x42, 0xa3, 0xf7, 0x20, 0xaa, 0x57, 0x39, 0xee, 0x34, 0x1f, 0xe1, 0x68, 0xd3, 0x7e, 0x06, 0xc4, 0x6c, 0xc7, 0x76, 0x2b, 0xe4, 0x1c, 0x48, 0x44, 0xe6, 0xe5, 0x44, 0x24, 0x8d, 0xb3, 0xb6, 0x88, 0x32},
dt2: fp.Elt{0x18, 0xa7, 0xba, 0xd0, 0x44, 0x6f, 0x33, 0x31, 0x00, 0xf8, 0xf6, 0x12, 0xe3, 0xc5, 0xc7, 0xb5, 0x91, 0x9c, 0x91, 0xb5, 0x75, 0x18, 0x18, 0x8a, 0xab, 0xed, 0x24, 0x11, 0x2e, 0xce, 0x5a, 0x0f, 0x94, 0x5f, 0x2e, 0xca, 0xd3, 0x80, 0xea, 0xe5, 0x34, 0x96, 0x67, 0x8b, 0x6a, 0x26, 0x5e, 0xc8, 0x9d, 0x2c, 0x5e, 0x6c, 0xa2, 0x0c, 0xbf, 0xf0},
},
{ /* 45P*/
addYX: fp.Elt{0xb3, 0xbf, 0xa3, 0x85, 0xee, 0xf6, 0x58, 0x02, 0x78, 0xc4, 0x30, 0xd6, 0x57, 0x59, 0x8c, 0x88, 0x08, 0x7c, 0xbc, 0xbe, 0x0a, 0x74, 0xa9, 0xde, 0x69, 0xe7, 0x41, 0xd8, 0xbf, 0x66, 0x8d, 0x3d, 0x28, 0x00, 0x8c, 0x47, 0x65, 0x34, 0xfe, 0x86, 0x9e, 0x6a, 0xf2, 0x41, 0x6a, 0x94, 0xc4, 0x88, 0x75, 0x23, 0x0d, 0x52, 0x69, 0xee, 0x07, 0x89},
subYX: fp.Elt{0x22, 0x3c, 0xa1, 0x70, 0x58, 0x97, 0x93, 0xbe, 0x59, 0xa8, 0x0b, 0x8a, 0x46, 0x2a, 0x38, 0x1e, 0x08, 0x6b, 0x61, 0x9f, 0xf2, 0x4a, 0x8b, 0x80, 0x68, 0x6e, 0xc8, 0x92, 0x60, 0xf3, 0xc9, 0x89, 0xb2, 0x6d, 0x63, 0xb0, 0xeb, 0x83, 0x15, 0x63, 0x0e, 0x64, 0xbb, 0xb8, 0xfe, 0xb4, 0x81, 0x90, 0x01, 0x28, 0x10, 0xb9, 0x74, 0x6e, 0xde, 0xa4},
dt2: fp.Elt{0x1a, 0x23, 0x45, 0xa8, 0x6f, 0x4e, 0xa7, 0x4a, 0x0c, 0xeb, 0xb0, 0x43, 0xf9, 0xef, 0x99, 0x60, 0x5b, 0xdb, 0x66, 0xc0, 0x86, 0x71, 0x43, 0xb1, 0x22, 0x7b, 0x1c, 0xe7, 0x8d, 0x09, 0x1d, 0x83, 0x76, 0x9c, 0xd3, 0x5a, 0xdd, 0x42, 0xd9, 0x2f, 0x2d, 0xba, 0x7a, 0xc2, 0xd9, 0x6b, 0xd4, 0x7a, 0xf1, 0xd5, 0x5f, 0x6b, 0x85, 0xbf, 0x0b, 0xf1},
},
{ /* 47P*/
addYX: fp.Elt{0xb2, 0x83, 0xfa, 0x1f, 0xd2, 0xce, 0xb6, 0xf2, 0x2d, 0xea, 0x1b, 0xe5, 0x29, 0xa5, 0x72, 0xf9, 0x25, 0x48, 0x4e, 0xf2, 0x50, 0x1b, 0x39, 0xda, 0x34, 0xc5, 0x16, 0x13, 0xb4, 0x0c, 0xa1, 0x00, 0x79, 0x7a, 0xf5, 0x8b, 0xf3, 0x70, 0x14, 0xb6, 0xfc, 0x9a, 0x47, 0x68, 0x1e, 0x42, 0x70, 0x64, 0x2a, 0x84, 0x3e, 0x3d, 0x20, 0x58, 0xf9, 0x6a},
subYX: fp.Elt{0xd9, 0xee, 0xc0, 0xc4, 0xf5, 0xc2, 0x86, 0xaf, 0x45, 0xd2, 0xd2, 0x87, 0x1b, 0x64, 0xd5, 0xe0, 0x8c, 0x44, 0x00, 0x4f, 0x43, 0x89, 0x04, 0x48, 0x4a, 0x0b, 0xca, 0x94, 0x06, 0x2f, 0x23, 0x5b, 0x6c, 0x8d, 0x44, 0x66, 0x53, 0xf5, 0x5a, 0x20, 0x72, 0x28, 0x58, 0x84, 0xcc, 0x73, 0x22, 0x5e, 0xd1, 0x0b, 0x56, 0x5e, 0x6a, 0xa3, 0x11, 0x91},
dt2: fp.Elt{0x6e, 0x9f, 0x88, 0xa8, 0x68, 0x2f, 0x12, 0x37, 0x88, 0xfc, 0x92, 0x8f, 0x24, 0xeb, 0x5b, 0x2a, 0x2a, 0xd0, 0x14, 0x40, 0x4c, 0xa9, 0xa4, 0x03, 0x0c, 0x45, 0x48, 0x13, 0xe8, 0xa6, 0x37, 0xab, 0xc0, 0x06, 0x38, 0x6c, 0x96, 0x73, 0x40, 0x6c, 0xc6, 0xea, 0x56, 0xc6, 0xe9, 0x1a, 0x69, 0xeb, 0x7a, 0xd1, 0x33, 0x69, 0x58, 0x2b, 0xea, 0x2f},
},
{ /* 49P*/
addYX: fp.Elt{0x58, 0xa8, 0x05, 0x41, 0x00, 0x9d, 0xaa, 0xd9, 0x98, 0xcf, 0xb9, 0x41, 0xb5, 0x4a, 0x8d, 0xe2, 0xe7, 0xc0, 0x72, 0xef, 0xc8, 0x28, 0x6b, 0x68, 0x9d, 0xc9, 0xdf, 0x05, 0x8b, 0xd0, 0x04, 0x74, 0x79, 0x45, 0x52, 0x05, 0xa3, 0x6e, 0x35, 0x3a, 0xe3, 0xef, 0xb2, 0xdc, 0x08, 0x6f, 0x4e, 0x76, 0x85, 0x67, 0xba, 0x23, 0x8f, 0xdd, 0xaf, 0x09},
subYX: fp.Elt{0xb4, 0x38, 0xc8, 0xff, 0x4f, 0x65, 0x2a, 0x7e, 0xad, 0xb1, 0xc6, 0xb9, 0x3d, 0xd6, 0xf7, 0x14, 0xcf, 0xf6, 0x98, 0x75, 0xbb, 0x47, 0x83, 0x90, 0xe7, 0xe1, 0xf6, 0x14, 0x99, 0x7e, 0xfa, 0xe4, 0x77, 0x24, 0xe3, 0xe7, 0xf0, 0x1e, 0xdb, 0x27, 0x4e, 0x16, 0x04, 0xf2, 0x08, 0x52, 0xfc, 0xec, 0x55, 0xdb, 0x2e, 0x67, 0xe1, 0x94, 0x32, 0x89},
dt2: fp.Elt{0x00, 0xad, 0x03, 0x35, 0x1a, 0xb1, 0x88, 0xf0, 0xc9, 0x11, 0xe4, 0x12, 0x52, 0x61, 0xfd, 0x8a, 0x1b, 0x6a, 0x0a, 0x4c, 0x42, 0x46, 0x22, 0x0e, 0xa5, 0xf9, 0xe2, 0x50, 0xf2, 0xb2, 0x1f, 0x20, 0x78, 0x10, 0xf6, 0xbf, 0x7f, 0x0c, 0x9c, 0xad, 0x40, 0x8b, 0x82, 0xd4, 0xba, 0x69, 0x09, 0xac, 0x4b, 0x6d, 0xc4, 0x49, 0x17, 0x81, 0x57, 0x3b},
},
{ /* 51P*/
addYX: fp.Elt{0x0d, 0xfe, 0xb4, 0x35, 0x11, 0xbd, 0x1d, 0x6b, 0xc2, 0xc5, 0x3b, 0xd2, 0x23, 0x2c, 0x72, 0xe3, 0x48, 0xb1, 0x48, 0x73, 0xfb, 0xa3, 0x21, 0x6e, 0xc0, 0x09, 0x69, 0xac, 0xe1, 0x60, 0xbc, 0x24, 0x03, 0x99, 0x63, 0x0a, 0x00, 0xf0, 0x75, 0xf6, 0x92, 0xc5, 0xd6, 0xdb, 0x51, 0xd4, 0x7d, 0xe6, 0xf4, 0x11, 0x79, 0xd7, 0xc3, 0xaf, 0x48, 0xd0},
subYX: fp.Elt{0xf4, 0x4f, 0xaf, 0x31, 0xe3, 0x10, 0x89, 0x95, 0xf0, 0x8a, 0xf6, 0x31, 0x9f, 0x48, 0x02, 0xba, 0x42, 0x2b, 0x3c, 0x22, 0x8b, 0xcc, 0x12, 0x98, 0x6e, 0x7a, 0x64, 0x3a, 0xc4, 0xca, 0x32, 0x2a, 0x72, 0xf8, 0x2c, 0xcf, 0x78, 0x5e, 0x7a, 0x75, 0x6e, 0x72, 0x46, 0x48, 0x62, 0x28, 0xac, 0x58, 0x1a, 0xc6, 0x59, 0x88, 0x2a, 0x44, 0x9e, 0x83},
dt2: fp.Elt{0xb3, 0xde, 0x36, 0xfd, 0xeb, 0x1b, 0xd4, 0x24, 0x1b, 0x08, 0x8c, 0xfe, 0xa9, 0x41, 0xa1, 0x64, 0xf2, 0x6d, 0xdb, 0xf9, 0x94, 0xae, 0x86, 0x71, 0xab, 0x10, 0xbf, 0xa3, 0xb2, 0xa0, 0xdf, 0x10, 0x8c, 0x74, 0xce, 0xb3, 0xfc, 0xdb, 0xba, 0x15, 0xf6, 0x91, 0x7a, 0x9c, 0x36, 0x1e, 0x45, 0x07, 0x3c, 0xec, 0x1a, 0x61, 0x26, 0x93, 0xe3, 0x50},
},
{ /* 53P*/
addYX: fp.Elt{0xc5, 0x50, 0xc5, 0x83, 0xb0, 0xbd, 0xd9, 0xf6, 0x6d, 0x15, 0x5e, 0xc1, 0x1a, 0x33, 0xa0, 0xce, 0x13, 0x70, 0x3b, 0xe1, 0x31, 0xc6, 0xc4, 0x02, 0xec, 0x8c, 0xd5, 0x9c, 0x97, 0xd3, 0x12, 0xc4, 0xa2, 0xf9, 0xd5, 0xfb, 0x22, 0x69, 0x94, 0x09, 0x2f, 0x59, 0xce, 0xdb, 0xf2, 0xf2, 0x00, 0xe0, 0xa9, 0x08, 0x44, 0x2e, 0x8b, 0x6b, 0xf5, 0xb3},
subYX: fp.Elt{0x90, 0xdd, 0xec, 0xa2, 0x65, 0xb7, 0x61, 0xbc, 0xaa, 0x70, 0xa2, 0x15, 0xd8, 0xb0, 0xf8, 0x8e, 0x23, 0x3d, 0x9f, 0x46, 0xa3, 0x29, 0x20, 0xd1, 0xa1, 0x15, 0x81, 0xc6, 0xb6, 0xde, 0xbe, 0x60, 0x63, 0x24, 0xac, 0x15, 0xfb, 0xeb, 0xd3, 0xea, 0x57, 0x13, 0x86, 0x38, 0x1e, 0x22, 0xf4, 0x8c, 0x5d, 0xaf, 0x1b, 0x27, 0x21, 0x4f, 0xa3, 0x63},
dt2: fp.Elt{0x07, 0x15, 0x87, 0xc4, 0xfd, 0xa1, 0x97, 0x7a, 0x07, 0x1f, 0x56, 0xcc, 0xe3, 0x6a, 0x01, 0x90, 0xce, 0xf9, 0xfa, 0x50, 0xb2, 0xe0, 0x87, 0x8b, 0x6c, 0x63, 0x6c, 0xf6, 0x2a, 0x09, 0xef, 0xef, 0xd2, 0x31, 0x40, 0x25, 0xf6, 0x84, 0xcb, 0xe0, 0xc4, 0x23, 0xc1, 0xcb, 0xe2, 0x02, 0x83, 0x2d, 0xed, 0x74, 0x74, 0x8b, 0xf8, 0x7c, 0x81, 0x18},
},
{ /* 55P*/
addYX: fp.Elt{0x9e, 0xe5, 0x59, 0x95, 0x63, 0x2e, 0xac, 0x8b, 0x03, 0x3c, 0xc1, 0x8e, 0xe1, 0x5b, 0x56, 0x3c, 0x16, 0x41, 0xe4, 0xc2, 0x60, 0x0c, 0x6d, 0x65, 0x9f, 0xfc, 0x27, 0x68, 0x43, 0x44, 0x05, 0x12, 0x6c, 0xda, 0x04, 0xef, 0xcf, 0xcf, 0xdc, 0x0a, 0x1a, 0x7f, 0x12, 0xd3, 0xeb, 0x02, 0xb6, 0x04, 0xca, 0xd6, 0xcb, 0xf0, 0x22, 0xba, 0x35, 0x6d},
subYX: fp.Elt{0x09, 0x6d, 0xf9, 0x64, 0x4c, 0xe6, 0x41, 0xff, 0x01, 0x4d, 0xce, 0x1e, 0xfa, 0x38, 0xa2, 0x25, 0x62, 0xff, 0x03, 0x39, 0x18, 0x91, 0xbb, 0x9d, 0xce, 0x02, 0xf0, 0xf1, 0x3c, 0x55, 0x18, 0xa9, 0xab, 0x4d, 0xd2, 0x35, 0xfd, 0x8d, 0xa9, 0xb2, 0xad, 0xb7, 0x06, 0x6e, 0xc6, 0x69, 0x49, 0xd6, 0x98, 0x98, 0x0b, 0x22, 0x81, 0x6b, 0xbd, 0xa0},
dt2: fp.Elt{0x22, 0xf4, 0x85, 0x5d, 0x2b, 0xf1, 0x55, 0xa5, 0xd6, 0x27, 0x86, 0x57, 0x12, 0x1f, 0x16, 0x0a, 0x5a, 0x9b, 0xf2, 0x38, 0xb6, 0x28, 0xd8, 0x99, 0x0c, 0x89, 0x1d, 0x7f, 0xca, 0x21, 0x17, 0x1a, 0x0b, 0x02, 0x5f, 0x77, 0x2f, 0x73, 0x30, 0x7c, 0xc8, 0xd7, 0x2b, 0xcc, 0xe7, 0xf3, 0x21, 0xac, 0x53, 0xa7, 0x11, 0x5d, 0xd8, 0x1d, 0x9b, 0xf5},
},
{ /* 57P*/
addYX: fp.Elt{0x94, 0x63, 0x5d, 0xef, 0xfd, 0x6d, 0x25, 0x4e, 0x6d, 0x29, 0x03, 0xed, 0x24, 0x28, 0x27, 0x57, 0x47, 0x3e, 0x6a, 0x1a, 0xfe, 0x37, 0xee, 0x5f, 0x83, 0x29, 0x14, 0xfd, 0x78, 0x25, 0x8a, 0xe1, 0x02, 0x38, 0xd8, 0xca, 0x65, 0x55, 0x40, 0x7d, 0x48, 0x2c, 0x7c, 0x7e, 0x60, 0xb6, 0x0c, 0x6d, 0xf7, 0xe8, 0xb3, 0x62, 0x53, 0xd6, 0x9c, 0x2b},
subYX: fp.Elt{0x47, 0x25, 0x70, 0x62, 0xf5, 0x65, 0x93, 0x62, 0x08, 0xac, 0x59, 0x66, 0xdb, 0x08, 0xd9, 0x1a, 0x19, 0xaf, 0xf4, 0xef, 0x02, 0xa2, 0x78, 0xa9, 0x55, 0x1c, 0xfa, 0x08, 0x11, 0xcb, 0xa3, 0x71, 0x74, 0xb1, 0x62, 0xe7, 0xc7, 0xf3, 0x5a, 0xb5, 0x8b, 0xd4, 0xf6, 0x10, 0x57, 0x79, 0x72, 0x2f, 0x13, 0x86, 0x7b, 0x44, 0x5f, 0x48, 0xfd, 0x88},
dt2: fp.Elt{0x10, 0x02, 0xcd, 0x05, 0x9a, 0xc3, 0x32, 0x6d, 0x10, 0x3a, 0x74, 0xba, 0x06, 0xc4, 0x3b, 0x34, 0xbc, 0x36, 0xed, 0xa3, 0xba, 0x9a, 0xdb, 0x6d, 0xd4, 0x69, 0x99, 0x97, 0xd0, 0xe4, 0xdd, 0xf5, 0xd4, 0x7c, 0xd3, 0x4e, 0xab, 0xd1, 0x3b, 0xbb, 0xe9, 0xc7, 0x6a, 0x94, 0x25, 0x61, 0xf0, 0x06, 0xc5, 0x12, 0xa8, 0x86, 0xe5, 0x35, 0x46, 0xeb},
},
{ /* 59P*/
addYX: fp.Elt{0x9e, 0x95, 0x11, 0xc6, 0xc7, 0xe8, 0xee, 0x5a, 0x26, 0xa0, 0x72, 0x72, 0x59, 0x91, 0x59, 0x16, 0x49, 0x99, 0x7e, 0xbb, 0xd7, 0x15, 0xb4, 0xf2, 0x40, 0xf9, 0x5a, 0x4d, 0xc8, 0xa0, 0xe2, 0x34, 0x7b, 0x34, 0xf3, 0x99, 0xbf, 0xa9, 0xf3, 0x79, 0xc1, 0x1a, 0x0c, 0xf4, 0x86, 0x74, 0x4e, 0xcb, 0xbc, 0x90, 0xad, 0xb6, 0x51, 0x6d, 0xaa, 0x33},
subYX: fp.Elt{0x9f, 0xd1, 0xc5, 0xa2, 0x6c, 0x24, 0x88, 0x15, 0x71, 0x68, 0xf6, 0x07, 0x45, 0x02, 0xc4, 0x73, 0x7e, 0x75, 0x87, 0xca, 0x7c, 0xf0, 0x92, 0x00, 0x75, 0xd6, 0x5a, 0xdd, 0xe0, 0x64, 0x16, 0x9d, 0x62, 0x80, 0x33, 0x9f, 0xf4, 0x8e, 0x1a, 0x15, 0x1c, 0xd3, 0x0f, 0x4d, 0x4f, 0x62, 0x2d, 0xd7, 0xa5, 0x77, 0xe3, 0xea, 0xf0, 0xfb, 0x1a, 0xdb},
dt2: fp.Elt{0x6a, 0xa2, 0xb1, 0xaa, 0xfb, 0x5a, 0x32, 0x4e, 0xff, 0x47, 0x06, 0xd5, 0x9a, 0x4f, 0xce, 0x83, 0x5b, 0x82, 0x34, 0x3e, 0x47, 0xb8, 0xf8, 0xe9, 0x7c, 0x67, 0x69, 0x8d, 0x9c, 0xb7, 0xde, 0x57, 0xf4, 0x88, 0x41, 0x56, 0x0c, 0x87, 0x1e, 0xc9, 0x2f, 0x54, 0xbf, 0x5c, 0x68, 0x2c, 0xd9, 0xc4, 0xef, 0x53, 0x73, 0x1e, 0xa6, 0x38, 0x02, 0x10},
},
{ /* 61P*/
addYX: fp.Elt{0x08, 0x80, 0x4a, 0xc9, 0xb7, 0xa8, 0x88, 0xd9, 0xfc, 0x6a, 0xc0, 0x3e, 0xc2, 0x33, 0x4d, 0x2b, 0x2a, 0xa3, 0x6d, 0x72, 0x3e, 0xdc, 0x34, 0x68, 0x08, 0xbf, 0x27, 0xef, 0xf4, 0xff, 0xe2, 0x0c, 0x31, 0x0c, 0xa2, 0x0a, 0x1f, 0x65, 0xc1, 0x4c, 0x61, 0xd3, 0x1b, 0xbc, 0x25, 0xb1, 0xd0, 0xd4, 0x89, 0xb2, 0x53, 0xfb, 0x43, 0xa5, 0xaf, 0x04},
subYX: fp.Elt{0xe3, 0xe1, 0x37, 0xad, 0x58, 0xa9, 0x55, 0x81, 0xee, 0x64, 0x21, 0xb9, 0xf5, 0x4c, 0x35, 0xea, 0x4a, 0xd3, 0x26, 0xaa, 0x90, 0xd4, 0x60, 0x46, 0x09, 0x4b, 0x4a, 0x62, 0xf9, 0xcd, 0xe1, 0xee, 0xbb, 0xc2, 0x09, 0x0b, 0xb0, 0x96, 0x8e, 0x43, 0x77, 0xaf, 0x25, 0x20, 0x5e, 0x47, 0xe4, 0x1d, 0x50, 0x69, 0x74, 0x08, 0xd7, 0xb9, 0x90, 0x13},
dt2: fp.Elt{0x51, 0x91, 0x95, 0x64, 0x03, 0x16, 0xfd, 0x6e, 0x26, 0x94, 0x6b, 0x61, 0xe7, 0xd9, 0xe0, 0x4a, 0x6d, 0x7c, 0xfa, 0xc0, 0xe2, 0x43, 0x23, 0x53, 0x70, 0xf5, 0x6f, 0x73, 0x8b, 0x81, 0xb0, 0x0c, 0xee, 0x2e, 0x46, 0xf2, 0x8d, 0xa6, 0xfb, 0xb5, 0x1c, 0x33, 0xbf, 0x90, 0x59, 0xc9, 0x7c, 0xb8, 0x6f, 0xad, 0x75, 0x02, 0x90, 0x8e, 0x59, 0x75},
},
{ /* 63P*/
addYX: fp.Elt{0x36, 0x4d, 0x77, 0x04, 0xb8, 0x7d, 0x4a, 0xd1, 0xc5, 0xbb, 0x7b, 0x50, 0x5f, 0x8d, 0x9d, 0x62, 0x0f, 0x66, 0x71, 0xec, 0x87, 0xc5, 0x80, 0x82, 0xc8, 0xf4, 0x6a, 0x94, 0x92, 0x5b, 0xb0, 0x16, 0x9b, 0xb2, 0xc9, 0x6f, 0x2b, 0x2d, 0xee, 0x95, 0x73, 0x2e, 0xc2, 0x1b, 0xc5, 0x55, 0x36, 0x86, 0x24, 0xf8, 0x20, 0x05, 0x0d, 0x93, 0xd7, 0x76},
subYX: fp.Elt{0x7f, 0x01, 0xeb, 0x2e, 0x48, 0x4d, 0x1d, 0xf1, 0x06, 0x7e, 0x7c, 0x2a, 0x43, 0xbf, 0x28, 0xac, 0xe9, 0x58, 0x13, 0xc8, 0xbf, 0x8e, 0xc0, 0xef, 0xe8, 0x4f, 0x46, 0x8a, 0xe7, 0xc0, 0xf6, 0x0f, 0x0a, 0x03, 0x48, 0x91, 0x55, 0x39, 0x2a, 0xe3, 0xdc, 0xf6, 0x22, 0x9d, 0x4d, 0x71, 0x55, 0x68, 0x25, 0x6e, 0x95, 0x52, 0xee, 0x4c, 0xd9, 0x01},
dt2: fp.Elt{0xac, 0x33, 0x3f, 0x7c, 0x27, 0x35, 0x15, 0x91, 0x33, 0x8d, 0xf9, 0xc4, 0xf4, 0xf3, 0x90, 0x09, 0x75, 0x69, 0x62, 0x9f, 0x61, 0x35, 0x83, 0x92, 0x04, 0xef, 0x96, 0x38, 0x80, 0x9e, 0x88, 0xb3, 0x67, 0x95, 0xbe, 0x79, 0x3c, 0x35, 0xd8, 0xdc, 0xb2, 0x3e, 0x2d, 0xe6, 0x46, 0xbe, 0x81, 0xf3, 0x32, 0x0e, 0x37, 0x23, 0x75, 0x2a, 0x3d, 0xa0},
},
}

View File

@ -0,0 +1,62 @@
package goldilocks
import (
"crypto/subtle"
mlsb "github.com/cloudflare/circl/math/mlsbset"
)
const (
// MLSBRecoding parameters
fxT = 448
fxV = 2
fxW = 3
fx2w1 = 1 << (uint(fxW) - 1)
)
// ScalarBaseMult returns kG where G is the generator point.
func (e twistCurve) ScalarBaseMult(k *Scalar) *twistPoint {
m, err := mlsb.New(fxT, fxV, fxW)
if err != nil {
panic(err)
}
if m.IsExtended() {
panic("not extended")
}
var isZero int
if k.IsZero() {
isZero = 1
}
subtle.ConstantTimeCopy(isZero, k[:], order[:])
minusK := *k
isEven := 1 - int(k[0]&0x1)
minusK.Neg()
subtle.ConstantTimeCopy(isEven, k[:], minusK[:])
c, err := m.Encode(k[:])
if err != nil {
panic(err)
}
gP := c.Exp(groupMLSB{})
P := gP.(*twistPoint)
P.cneg(uint(isEven))
return P
}
type groupMLSB struct{}
func (e groupMLSB) ExtendedEltP() mlsb.EltP { return nil }
func (e groupMLSB) Sqr(x mlsb.EltG) { x.(*twistPoint).Double() }
func (e groupMLSB) Mul(x mlsb.EltG, y mlsb.EltP) { x.(*twistPoint).mixAddZ1(y.(*preTwistPointAffine)) }
func (e groupMLSB) Identity() mlsb.EltG { return twistCurve{}.Identity() }
func (e groupMLSB) NewEltP() mlsb.EltP { return &preTwistPointAffine{} }
func (e groupMLSB) Lookup(a mlsb.EltP, v uint, s, u int32) {
Tabj := &tabFixMult[v]
P := a.(*preTwistPointAffine)
for k := range Tabj {
P.cmov(&Tabj[k], uint(subtle.ConstantTimeEq(int32(k), u)))
}
P.cneg(int(s >> 31))
}