// Copyright (c) HashiCorp, Inc. // SPDX-License-Identifier: MPL-2.0 package terraform import ( "fmt" "reflect" "sort" "strconv" "strings" "github.com/hashicorp/go-cty/cty" "github.com/mitchellh/copystructure" "github.com/mitchellh/reflectwalk" "github.com/hashicorp/terraform-plugin-sdk/v2/internal/configs/configschema" "github.com/hashicorp/terraform-plugin-sdk/v2/internal/configs/hcl2shim" ) // InstanceInfo is used to hold information about the instance and/or // resource being modified. type InstanceInfo struct { // Id is a unique name to represent this instance. This is not related // to InstanceState.ID in any way. Id string // ModulePath is the complete path of the module containing this // instance. ModulePath []string // Type is the resource type of this instance Type string } // ResourceConfig is a legacy type that was formerly used to represent // interpolatable configuration blocks. It is now only used to shim to old // APIs that still use this type, via NewResourceConfigShimmed. type ResourceConfig struct { ComputedKeys []string Raw map[string]interface{} Config map[string]interface{} } // NewResourceConfigRaw constructs a ResourceConfig whose content is exactly // the given value. // // The given value may contain hcl2shim.UnknownVariableValue to signal that // something is computed, but it must not contain unprocessed interpolation // sequences as we might've seen in Terraform v0.11 and prior. func NewResourceConfigRaw(raw map[string]interface{}) *ResourceConfig { v := hcl2shim.HCL2ValueFromConfigValue(raw) // This is a little weird but we round-trip the value through the hcl2shim // package here for two reasons: firstly, because that reduces the risk // of it including something unlike what NewResourceConfigShimmed would // produce, and secondly because it creates a copy of "raw" just in case // something is relying on the fact that in the old world the raw and // config maps were always distinct, and thus you could in principle mutate // one without affecting the other. (I sure hope nobody was doing that, though!) cfg := hcl2shim.ConfigValueFromHCL2(v).(map[string]interface{}) return &ResourceConfig{ Raw: raw, Config: cfg, ComputedKeys: newResourceConfigShimmedComputedKeys(v, ""), } } // NewResourceConfigShimmed wraps a cty.Value of object type in a legacy // ResourceConfig object, so that it can be passed to older APIs that expect // this wrapping. // // The returned ResourceConfig is already interpolated and cannot be // re-interpolated. It is, therefore, useful only to functions that expect // an already-populated ResourceConfig which they then treat as read-only. // // If the given value is not of an object type that conforms to the given // schema then this function will panic. func NewResourceConfigShimmed(val cty.Value, schema *configschema.Block) *ResourceConfig { if !val.Type().IsObjectType() { panic(fmt.Errorf("NewResourceConfigShimmed given %#v; an object type is required", val.Type())) } ret := &ResourceConfig{} legacyVal := hcl2shim.ConfigValueFromHCL2Block(val, schema) if legacyVal != nil { ret.Config = legacyVal // Now we need to walk through our structure and find any unknown values, // producing the separate list ComputedKeys to represent these. We use the // schema here so that we can preserve the expected invariant // that an attribute is always either wholly known or wholly unknown, while // a child block can be partially unknown. ret.ComputedKeys = newResourceConfigShimmedComputedKeys(val, "") } else { ret.Config = make(map[string]interface{}) } ret.Raw = ret.Config return ret } // Record the any config values in ComputedKeys. This field had been unused in // helper/schema, but in the new protocol we're using this so that the SDK can // now handle having an unknown collection. The legacy diff code doesn't // properly handle the unknown, because it can't be expressed in the same way // between the config and diff. func newResourceConfigShimmedComputedKeys(val cty.Value, path string) []string { var ret []string ty := val.Type() if val.IsNull() { return ret } if !val.IsKnown() { // we shouldn't have an entirely unknown resource, but prevent empty // strings just in case if len(path) > 0 { ret = append(ret, path) } return ret } if path != "" { path += "." } switch { case ty.IsListType(), ty.IsTupleType(), ty.IsSetType(): i := 0 for it := val.ElementIterator(); it.Next(); i++ { _, subVal := it.Element() keys := newResourceConfigShimmedComputedKeys(subVal, fmt.Sprintf("%s%d", path, i)) ret = append(ret, keys...) } case ty.IsMapType(), ty.IsObjectType(): for it := val.ElementIterator(); it.Next(); { subK, subVal := it.Element() keys := newResourceConfigShimmedComputedKeys(subVal, fmt.Sprintf("%s%s", path, subK.AsString())) ret = append(ret, keys...) } } return ret } // DeepCopy performs a deep copy of the configuration. This makes it safe // to modify any of the structures that are part of the resource config without // affecting the original configuration. func (c *ResourceConfig) DeepCopy() *ResourceConfig { // DeepCopying a nil should return a nil to avoid panics if c == nil { return nil } // Copy, this will copy all the exported attributes copiedConfig, err := copystructure.Config{Lock: true}.Copy(c) if err != nil { panic(err) } // Force the type result := copiedConfig.(*ResourceConfig) return result } // Equal checks the equality of two resource configs. func (c *ResourceConfig) Equal(c2 *ResourceConfig) bool { // If either are nil, then they're only equal if they're both nil if c == nil || c2 == nil { return c == c2 } // Sort the computed keys so they're deterministic sort.Strings(c.ComputedKeys) sort.Strings(c2.ComputedKeys) // Two resource configs if their exported properties are equal. // We don't compare "raw" because it is never used again after // initialization and for all intents and purposes they are equal // if the exported properties are equal. check := [][2]interface{}{ {c.ComputedKeys, c2.ComputedKeys}, {c.Raw, c2.Raw}, {c.Config, c2.Config}, } for _, pair := range check { if !reflect.DeepEqual(pair[0], pair[1]) { return false } } return true } // Get looks up a configuration value by key and returns the value. // // The second return value is true if the get was successful. Get will // return the raw value if the key is computed, so you should pair this // with IsComputed. func (c *ResourceConfig) Get(k string) (interface{}, bool) { // We aim to get a value from the configuration. If it is computed, // then we return the pure raw value. source := c.Config if c.IsComputed(k) { source = c.Raw } return c.get(k, source) } // GetRaw looks up a configuration value by key and returns the value, // from the raw, uninterpolated config. // // The second return value is true if the get was successful. Get will // not succeed if the value is being computed. func (c *ResourceConfig) GetRaw(k string) (interface{}, bool) { return c.get(k, c.Raw) } // IsComputed returns whether the given key is computed or not. func (c *ResourceConfig) IsComputed(k string) bool { // The next thing we do is check the config if we get a computed // value out of it. v, ok := c.get(k, c.Config) if !ok { return false } // If value is nil, then it isn't computed if v == nil { return false } // Test if the value contains an unknown value var w unknownCheckWalker if err := reflectwalk.Walk(v, &w); err != nil { panic(err) } return w.Unknown } func (c *ResourceConfig) get( k string, raw map[string]interface{}) (interface{}, bool) { parts := strings.Split(k, ".") if len(parts) == 1 && parts[0] == "" { parts = nil } var current interface{} = raw var previous interface{} = nil for i, part := range parts { if current == nil { return nil, false } cv := reflect.ValueOf(current) switch cv.Kind() { case reflect.Map: previous = current v := cv.MapIndex(reflect.ValueOf(part)) if !v.IsValid() { if i > 0 && i != (len(parts)-1) { tryKey := strings.Join(parts[i:], ".") v := cv.MapIndex(reflect.ValueOf(tryKey)) if !v.IsValid() { return nil, false } return v.Interface(), true } return nil, false } current = v.Interface() case reflect.Slice: previous = current if part == "#" { // If any value in a list is computed, this whole thing // is computed and we can't read any part of it. for i := 0; i < cv.Len(); i++ { if v := cv.Index(i).Interface(); v == hcl2shim.UnknownVariableValue { return v, true } } current = cv.Len() } else { i, err := strconv.ParseInt(part, 0, 0) if err != nil { return nil, false } if int(i) < 0 || int(i) >= cv.Len() { return nil, false } current = cv.Index(int(i)).Interface() } case reflect.String: // This happens when map keys contain "." and have a common // prefix so were split as path components above. actualKey := strings.Join(parts[i-1:], ".") if prevMap, ok := previous.(map[string]interface{}); ok { v, ok := prevMap[actualKey] return v, ok } return nil, false default: panic(fmt.Sprintf("Unknown kind: %s", cv.Kind())) } } return current, true } // unknownCheckWalker type unknownCheckWalker struct { Unknown bool } // TODO: investigate why deleting this causes odd runtime test failures // must be some kind of interface implementation func (w *unknownCheckWalker) Primitive(v reflect.Value) error { if v.Interface() == hcl2shim.UnknownVariableValue { w.Unknown = true } return nil }