terraform-provider-gitea/vendor/github.com/zclconf/go-cty/cty/function/function.go
dependabot[bot] 84c9110a24
Bump github.com/hashicorp/terraform-plugin-sdk/v2 from 2.24.1 to 2.26.0
Bumps [github.com/hashicorp/terraform-plugin-sdk/v2](https://github.com/hashicorp/terraform-plugin-sdk) from 2.24.1 to 2.26.0.
- [Release notes](https://github.com/hashicorp/terraform-plugin-sdk/releases)
- [Changelog](https://github.com/hashicorp/terraform-plugin-sdk/blob/main/CHANGELOG.md)
- [Commits](https://github.com/hashicorp/terraform-plugin-sdk/compare/v2.24.1...v2.26.0)

---
updated-dependencies:
- dependency-name: github.com/hashicorp/terraform-plugin-sdk/v2
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-20 20:25:53 +00:00

451 lines
15 KiB
Go

package function
import (
"fmt"
"github.com/zclconf/go-cty/cty"
)
// Function represents a function. This is the main type in this package.
type Function struct {
spec *Spec
}
// Spec is the specification of a function, used to instantiate
// a new Function.
type Spec struct {
// Description is an optional description for the function specification.
Description string
// Params is a description of the positional parameters for the function.
// The standard checking logic rejects any calls that do not provide
// arguments conforming to this definition, freeing the function
// implementer from dealing with such inconsistencies.
Params []Parameter
// VarParam is an optional specification of additional "varargs" the
// function accepts. If this is non-nil then callers may provide an
// arbitrary number of additional arguments (after those matching with
// the fixed parameters in Params) that conform to the given specification,
// which will appear as additional values in the slices of values
// provided to the type and implementation functions.
VarParam *Parameter
// Type is the TypeFunc that decides the return type of the function
// given its arguments, which may be Unknown. See the documentation
// of TypeFunc for more information.
//
// Use StaticReturnType if the function's return type does not vary
// depending on its arguments.
Type TypeFunc
// RefineResult is an optional callback for describing additional
// refinements for the result value beyond what can be described using
// a type constraint.
//
// A refinement callback should always return the same builder it was
// given, typically after modifying it using the methods of
// [cty.RefinementBuilder].
//
// Any refinements described by this callback must hold for the entire
// range of results from the function. For refinements that only apply
// to certain results, use direct refinement within [Impl] instead.
RefineResult func(*cty.RefinementBuilder) *cty.RefinementBuilder
// Impl is the ImplFunc that implements the function's behavior.
//
// Functions are expected to behave as pure functions, and not create
// any visible side-effects.
//
// If a TypeFunc is also provided, the value returned from Impl *must*
// conform to the type it returns, or a call to the function will panic.
Impl ImplFunc
}
// New creates a new function with the given specification.
//
// After passing a Spec to this function, the caller must no longer read from
// or mutate it.
func New(spec *Spec) Function {
f := Function{
spec: spec,
}
return f
}
// TypeFunc is a callback type for determining the return type of a function
// given its arguments.
//
// Any of the values passed to this function may be unknown, even if the
// parameters are not configured to accept unknowns.
//
// If any of the given values are *not* unknown, the TypeFunc may use the
// values for pre-validation and for choosing the return type. For example,
// a hypothetical JSON-unmarshalling function could return
// cty.DynamicPseudoType if the given JSON string is unknown, but return
// a concrete type based on the JSON structure if the JSON string is already
// known.
type TypeFunc func(args []cty.Value) (cty.Type, error)
// ImplFunc is a callback type for the main implementation of a function.
//
// "args" are the values for the arguments, and this slice will always be at
// least as long as the argument definition slice for the function.
//
// "retType" is the type returned from the Type callback, included as a
// convenience to avoid the need to re-compute the return type for generic
// functions whose return type is a function of the arguments.
type ImplFunc func(args []cty.Value, retType cty.Type) (cty.Value, error)
// StaticReturnType returns a TypeFunc that always returns the given type.
//
// This is provided as a convenience for defining a function whose return
// type does not depend on the argument types.
func StaticReturnType(ty cty.Type) TypeFunc {
return func([]cty.Value) (cty.Type, error) {
return ty, nil
}
}
// ReturnType returns the return type of a function given a set of candidate
// argument types, or returns an error if the given types are unacceptable.
//
// If the caller already knows values for at least some of the arguments
// it can be better to call ReturnTypeForValues, since certain functions may
// determine their return types from their values and return DynamicVal if
// the values are unknown.
func (f Function) ReturnType(argTypes []cty.Type) (cty.Type, error) {
vals := make([]cty.Value, len(argTypes))
for i, ty := range argTypes {
vals[i] = cty.UnknownVal(ty)
}
return f.ReturnTypeForValues(vals)
}
func (f Function) returnTypeForValues(args []cty.Value) (ty cty.Type, dynTypedArgs bool, err error) {
var posArgs []cty.Value
var varArgs []cty.Value
if f.spec.VarParam == nil {
if len(args) != len(f.spec.Params) {
return cty.Type{}, false, fmt.Errorf(
"wrong number of arguments (%d required; %d given)",
len(f.spec.Params), len(args),
)
}
posArgs = args
varArgs = nil
} else {
if len(args) < len(f.spec.Params) {
return cty.Type{}, false, fmt.Errorf(
"wrong number of arguments (at least %d required; %d given)",
len(f.spec.Params), len(args),
)
}
posArgs = args[0:len(f.spec.Params)]
varArgs = args[len(f.spec.Params):]
}
for i, spec := range f.spec.Params {
val := posArgs[i]
if val.ContainsMarked() && !spec.AllowMarked {
// During type checking we just unmark values and discard their
// marks, under the assumption that during actual execution of
// the function we'll do similarly and then re-apply the marks
// afterwards. Note that this does mean that a function that
// inspects values (rather than just types) in its Type
// implementation can potentially fail to take into account marks,
// unless it specifically opts in to seeing them.
unmarked, _ := val.UnmarkDeep()
newArgs := make([]cty.Value, len(args))
copy(newArgs, args)
newArgs[i] = unmarked
args = newArgs
}
if val.IsNull() && !spec.AllowNull {
return cty.Type{}, false, NewArgErrorf(i, "argument must not be null")
}
// AllowUnknown is ignored for type-checking, since we expect to be
// able to type check with unknown values. We *do* still need to deal
// with DynamicPseudoType here though, since the Type function might
// not be ready to deal with that.
if val.Type() == cty.DynamicPseudoType {
if !spec.AllowDynamicType {
return cty.DynamicPseudoType, true, nil
}
} else if errs := val.Type().TestConformance(spec.Type); errs != nil {
// For now we'll just return the first error in the set, since
// we don't have a good way to return the whole list here.
// Would be good to do something better at some point...
return cty.Type{}, false, NewArgError(i, errs[0])
}
}
if varArgs != nil {
spec := f.spec.VarParam
for i, val := range varArgs {
realI := i + len(posArgs)
if val.ContainsMarked() && !spec.AllowMarked {
// See the similar block in the loop above for what's going on here.
unmarked, _ := val.UnmarkDeep()
newArgs := make([]cty.Value, len(args))
copy(newArgs, args)
newArgs[realI] = unmarked
args = newArgs
}
if val.IsNull() && !spec.AllowNull {
return cty.Type{}, false, NewArgErrorf(realI, "argument must not be null")
}
if val.Type() == cty.DynamicPseudoType {
if !spec.AllowDynamicType {
return cty.DynamicPseudoType, true, nil
}
} else if errs := val.Type().TestConformance(spec.Type); errs != nil {
// For now we'll just return the first error in the set, since
// we don't have a good way to return the whole list here.
// Would be good to do something better at some point...
return cty.Type{}, false, NewArgError(i, errs[0])
}
}
}
// Intercept any panics from the function and return them as normal errors,
// so a calling language runtime doesn't need to deal with panics.
defer func() {
if r := recover(); r != nil {
ty = cty.NilType
err = errorForPanic(r)
}
}()
ty, err = f.spec.Type(args)
return ty, false, err
}
// ReturnTypeForValues is similar to ReturnType but can be used if the caller
// already knows the values of some or all of the arguments, in which case
// the function may be able to determine a more definite result if its
// return type depends on the argument *values*.
//
// For any arguments whose values are not known, pass an Unknown value of
// the appropriate type.
func (f Function) ReturnTypeForValues(args []cty.Value) (ty cty.Type, err error) {
ty, _, err = f.returnTypeForValues(args)
return ty, err
}
// Call actually calls the function with the given arguments, which must
// conform to the function's parameter specification or an error will be
// returned.
func (f Function) Call(args []cty.Value) (val cty.Value, err error) {
expectedType, dynTypeArgs, err := f.returnTypeForValues(args)
if err != nil {
return cty.NilVal, err
}
if dynTypeArgs {
// returnTypeForValues sets this if any argument was inexactly typed
// and the corresponding parameter did not indicate it could deal with
// that. In that case we also avoid calling the implementation function
// because it will also typically not be ready to deal with that case.
return cty.UnknownVal(expectedType), nil
}
if refineResult := f.spec.RefineResult; refineResult != nil {
// If this function has a refinement callback then we'll refine
// our result value in the same way regardless of how we return.
// It's the function author's responsibility to ensure that the
// refinements they specify are valid for the full range of possible
// return values from the function. If not, this will panic when
// detecting an inconsistency.
defer func() {
if val != cty.NilVal {
if val.IsKnown() || val.Type() != cty.DynamicPseudoType {
val = val.RefineWith(refineResult)
}
}
}()
}
// Type checking already dealt with most situations relating to our
// parameter specification, but we still need to deal with unknown
// values and marked values.
posArgs := args[:len(f.spec.Params)]
varArgs := args[len(f.spec.Params):]
var resultMarks []cty.ValueMarks
for i, spec := range f.spec.Params {
val := posArgs[i]
if !val.IsKnown() && !spec.AllowUnknown {
return cty.UnknownVal(expectedType), nil
}
if !spec.AllowMarked {
unwrappedVal, marks := val.UnmarkDeep()
if len(marks) > 0 {
// In order to avoid additional overhead on applications that
// are not using marked values, we copy the given args only
// if we encounter a marked value we need to unmark. However,
// as a consequence we end up doing redundant copying if multiple
// marked values need to be unwrapped. That seems okay because
// argument lists are generally small.
newArgs := make([]cty.Value, len(args))
copy(newArgs, args)
newArgs[i] = unwrappedVal
resultMarks = append(resultMarks, marks)
args = newArgs
}
}
}
if f.spec.VarParam != nil {
spec := f.spec.VarParam
for i, val := range varArgs {
if !val.IsKnown() && !spec.AllowUnknown {
return cty.UnknownVal(expectedType), nil
}
if !spec.AllowMarked {
unwrappedVal, marks := val.UnmarkDeep()
if len(marks) > 0 {
newArgs := make([]cty.Value, len(args))
copy(newArgs, args)
newArgs[len(posArgs)+i] = unwrappedVal
resultMarks = append(resultMarks, marks)
args = newArgs
}
}
}
}
var retVal cty.Value
{
// Intercept any panics from the function and return them as normal errors,
// so a calling language runtime doesn't need to deal with panics.
defer func() {
if r := recover(); r != nil {
val = cty.NilVal
err = errorForPanic(r)
}
}()
retVal, err = f.spec.Impl(args, expectedType)
if err != nil {
return cty.NilVal, err
}
if len(resultMarks) > 0 {
retVal = retVal.WithMarks(resultMarks...)
}
}
// Returned value must conform to what the Type function expected, to
// protect callers from having to deal with inconsistencies.
if errs := retVal.Type().TestConformance(expectedType); errs != nil {
panic(fmt.Errorf(
"returned value %#v does not conform to expected return type %#v: %s",
retVal, expectedType, errs[0],
))
}
return retVal, nil
}
// ProxyFunc the type returned by the method Function.Proxy.
type ProxyFunc func(args ...cty.Value) (cty.Value, error)
// Proxy returns a function that can be called with cty.Value arguments
// to run the function. This is provided as a convenience for when using
// a function directly within Go code.
func (f Function) Proxy() ProxyFunc {
return func(args ...cty.Value) (cty.Value, error) {
return f.Call(args)
}
}
// Params returns information about the function's fixed positional parameters.
// This does not include information about any variadic arguments accepted;
// for that, call VarParam.
func (f Function) Params() []Parameter {
new := make([]Parameter, len(f.spec.Params))
copy(new, f.spec.Params)
return new
}
// VarParam returns information about the variadic arguments the function
// expects, or nil if the function is not variadic.
func (f Function) VarParam() *Parameter {
if f.spec.VarParam == nil {
return nil
}
ret := *f.spec.VarParam
return &ret
}
// Description returns a human-readable description of the function.
func (f Function) Description() string {
return f.spec.Description
}
// WithNewDescriptions returns a new function that has the same signature
// and implementation as the receiver but has the function description and
// the parameter descriptions replaced with those given in the arguments.
//
// All descriptions may be given as an empty string to specify that there
// should be no description at all.
//
// The paramDescs argument must match the number of parameters
// the reciever expects, or this function will panic. If the function has a
// VarParam then that counts as one parameter for the sake of this rule. The
// given descriptions will be assigned in order starting with the positional
// arguments in their declared order, followed by the variadic parameter if
// any.
//
// As a special case, WithNewDescriptions will accept a paramDescs which
// does not cover the reciever's variadic parameter (if any), so that it's
// possible to add a variadic parameter to a function which didn't previously
// have one without that being a breaking change for an existing caller using
// WithNewDescriptions against that function. In this case the base description
// of the variadic parameter will be preserved.
func (f Function) WithNewDescriptions(funcDesc string, paramDescs []string) Function {
retSpec := *f.spec // shallow copy of the reciever
retSpec.Description = funcDesc
retSpec.Params = make([]Parameter, len(f.spec.Params))
copy(retSpec.Params, f.spec.Params) // shallow copy of positional parameters
if f.spec.VarParam != nil {
retVarParam := *f.spec.VarParam // shallow copy of variadic parameter
retSpec.VarParam = &retVarParam
}
if retSpec.VarParam != nil {
if with, without := len(retSpec.Params)+1, len(retSpec.Params); len(paramDescs) != with && len(paramDescs) != without {
panic(fmt.Sprintf("paramDescs must have length of either %d or %d", with, without))
}
} else {
if want := len(retSpec.Params); len(paramDescs) != want {
panic(fmt.Sprintf("paramDescs must have length %d", want))
}
}
posParamDescs := paramDescs[:len(retSpec.Params)]
varParamDescs := paramDescs[len(retSpec.Params):] // guaranteed to be zero or one elements because of the rules above
for i, desc := range posParamDescs {
retSpec.Params[i].Description = desc
}
for _, desc := range varParamDescs {
retSpec.VarParam.Description = desc
}
return New(&retSpec)
}