terraform-provider-gitea/vendor/github.com/ProtonMail/go-crypto/openpgp/write.go
dependabot[bot] 910ccdb092
Bump github.com/hashicorp/terraform-plugin-sdk/v2 from 2.26.1 to 2.27.0
Bumps [github.com/hashicorp/terraform-plugin-sdk/v2](https://github.com/hashicorp/terraform-plugin-sdk) from 2.26.1 to 2.27.0.
- [Release notes](https://github.com/hashicorp/terraform-plugin-sdk/releases)
- [Changelog](https://github.com/hashicorp/terraform-plugin-sdk/blob/main/CHANGELOG.md)
- [Commits](https://github.com/hashicorp/terraform-plugin-sdk/compare/v2.26.1...v2.27.0)

---
updated-dependencies:
- dependency-name: github.com/hashicorp/terraform-plugin-sdk/v2
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-03 20:21:30 +00:00

584 lines
20 KiB
Go

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package openpgp
import (
"crypto"
"hash"
"io"
"strconv"
"time"
"github.com/ProtonMail/go-crypto/openpgp/armor"
"github.com/ProtonMail/go-crypto/openpgp/errors"
"github.com/ProtonMail/go-crypto/openpgp/internal/algorithm"
"github.com/ProtonMail/go-crypto/openpgp/packet"
)
// DetachSign signs message with the private key from signer (which must
// already have been decrypted) and writes the signature to w.
// If config is nil, sensible defaults will be used.
func DetachSign(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) error {
return detachSign(w, signer, message, packet.SigTypeBinary, config)
}
// ArmoredDetachSign signs message with the private key from signer (which
// must already have been decrypted) and writes an armored signature to w.
// If config is nil, sensible defaults will be used.
func ArmoredDetachSign(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) (err error) {
return armoredDetachSign(w, signer, message, packet.SigTypeBinary, config)
}
// DetachSignText signs message (after canonicalising the line endings) with
// the private key from signer (which must already have been decrypted) and
// writes the signature to w.
// If config is nil, sensible defaults will be used.
func DetachSignText(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) error {
return detachSign(w, signer, message, packet.SigTypeText, config)
}
// ArmoredDetachSignText signs message (after canonicalising the line endings)
// with the private key from signer (which must already have been decrypted)
// and writes an armored signature to w.
// If config is nil, sensible defaults will be used.
func ArmoredDetachSignText(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) error {
return armoredDetachSign(w, signer, message, packet.SigTypeText, config)
}
func armoredDetachSign(w io.Writer, signer *Entity, message io.Reader, sigType packet.SignatureType, config *packet.Config) (err error) {
out, err := armor.Encode(w, SignatureType, nil)
if err != nil {
return
}
err = detachSign(out, signer, message, sigType, config)
if err != nil {
return
}
return out.Close()
}
func detachSign(w io.Writer, signer *Entity, message io.Reader, sigType packet.SignatureType, config *packet.Config) (err error) {
signingKey, ok := signer.SigningKeyById(config.Now(), config.SigningKey())
if !ok {
return errors.InvalidArgumentError("no valid signing keys")
}
if signingKey.PrivateKey == nil {
return errors.InvalidArgumentError("signing key doesn't have a private key")
}
if signingKey.PrivateKey.Encrypted {
return errors.InvalidArgumentError("signing key is encrypted")
}
if _, ok := algorithm.HashToHashId(config.Hash()); !ok {
return errors.InvalidArgumentError("invalid hash function")
}
sig := createSignaturePacket(signingKey.PublicKey, sigType, config)
h, wrappedHash, err := hashForSignature(sig.Hash, sig.SigType)
if err != nil {
return
}
if _, err = io.Copy(wrappedHash, message); err != nil {
return err
}
err = sig.Sign(h, signingKey.PrivateKey, config)
if err != nil {
return
}
return sig.Serialize(w)
}
// FileHints contains metadata about encrypted files. This metadata is, itself,
// encrypted.
type FileHints struct {
// IsBinary can be set to hint that the contents are binary data.
IsBinary bool
// FileName hints at the name of the file that should be written. It's
// truncated to 255 bytes if longer. It may be empty to suggest that the
// file should not be written to disk. It may be equal to "_CONSOLE" to
// suggest the data should not be written to disk.
FileName string
// ModTime contains the modification time of the file, or the zero time if not applicable.
ModTime time.Time
}
// SymmetricallyEncrypt acts like gpg -c: it encrypts a file with a passphrase.
// The resulting WriteCloser must be closed after the contents of the file have
// been written.
// If config is nil, sensible defaults will be used.
func SymmetricallyEncrypt(ciphertext io.Writer, passphrase []byte, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) {
if hints == nil {
hints = &FileHints{}
}
key, err := packet.SerializeSymmetricKeyEncrypted(ciphertext, passphrase, config)
if err != nil {
return
}
var w io.WriteCloser
cipherSuite := packet.CipherSuite{
Cipher: config.Cipher(),
Mode: config.AEAD().Mode(),
}
w, err = packet.SerializeSymmetricallyEncrypted(ciphertext, config.Cipher(), config.AEAD() != nil, cipherSuite, key, config)
if err != nil {
return
}
literalData := w
if algo := config.Compression(); algo != packet.CompressionNone {
var compConfig *packet.CompressionConfig
if config != nil {
compConfig = config.CompressionConfig
}
literalData, err = packet.SerializeCompressed(w, algo, compConfig)
if err != nil {
return
}
}
var epochSeconds uint32
if !hints.ModTime.IsZero() {
epochSeconds = uint32(hints.ModTime.Unix())
}
return packet.SerializeLiteral(literalData, hints.IsBinary, hints.FileName, epochSeconds)
}
// intersectPreferences mutates and returns a prefix of a that contains only
// the values in the intersection of a and b. The order of a is preserved.
func intersectPreferences(a []uint8, b []uint8) (intersection []uint8) {
var j int
for _, v := range a {
for _, v2 := range b {
if v == v2 {
a[j] = v
j++
break
}
}
}
return a[:j]
}
// intersectPreferences mutates and returns a prefix of a that contains only
// the values in the intersection of a and b. The order of a is preserved.
func intersectCipherSuites(a [][2]uint8, b [][2]uint8) (intersection [][2]uint8) {
var j int
for _, v := range a {
for _, v2 := range b {
if v[0] == v2[0] && v[1] == v2[1] {
a[j] = v
j++
break
}
}
}
return a[:j]
}
func hashToHashId(h crypto.Hash) uint8 {
v, ok := algorithm.HashToHashId(h)
if !ok {
panic("tried to convert unknown hash")
}
return v
}
// EncryptText encrypts a message to a number of recipients and, optionally,
// signs it. Optional information is contained in 'hints', also encrypted, that
// aids the recipients in processing the message. The resulting WriteCloser
// must be closed after the contents of the file have been written. If config
// is nil, sensible defaults will be used. The signing is done in text mode.
func EncryptText(ciphertext io.Writer, to []*Entity, signed *Entity, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) {
return encrypt(ciphertext, ciphertext, to, signed, hints, packet.SigTypeText, config)
}
// Encrypt encrypts a message to a number of recipients and, optionally, signs
// it. hints contains optional information, that is also encrypted, that aids
// the recipients in processing the message. The resulting WriteCloser must
// be closed after the contents of the file have been written.
// If config is nil, sensible defaults will be used.
func Encrypt(ciphertext io.Writer, to []*Entity, signed *Entity, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) {
return encrypt(ciphertext, ciphertext, to, signed, hints, packet.SigTypeBinary, config)
}
// EncryptSplit encrypts a message to a number of recipients and, optionally, signs
// it. hints contains optional information, that is also encrypted, that aids
// the recipients in processing the message. The resulting WriteCloser must
// be closed after the contents of the file have been written.
// If config is nil, sensible defaults will be used.
func EncryptSplit(keyWriter io.Writer, dataWriter io.Writer, to []*Entity, signed *Entity, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) {
return encrypt(keyWriter, dataWriter, to, signed, hints, packet.SigTypeBinary, config)
}
// EncryptTextSplit encrypts a message to a number of recipients and, optionally, signs
// it. hints contains optional information, that is also encrypted, that aids
// the recipients in processing the message. The resulting WriteCloser must
// be closed after the contents of the file have been written.
// If config is nil, sensible defaults will be used.
func EncryptTextSplit(keyWriter io.Writer, dataWriter io.Writer, to []*Entity, signed *Entity, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) {
return encrypt(keyWriter, dataWriter, to, signed, hints, packet.SigTypeText, config)
}
// writeAndSign writes the data as a payload package and, optionally, signs
// it. hints contains optional information, that is also encrypted,
// that aids the recipients in processing the message. The resulting
// WriteCloser must be closed after the contents of the file have been
// written. If config is nil, sensible defaults will be used.
func writeAndSign(payload io.WriteCloser, candidateHashes []uint8, signed *Entity, hints *FileHints, sigType packet.SignatureType, config *packet.Config) (plaintext io.WriteCloser, err error) {
var signer *packet.PrivateKey
if signed != nil {
signKey, ok := signed.SigningKeyById(config.Now(), config.SigningKey())
if !ok {
return nil, errors.InvalidArgumentError("no valid signing keys")
}
signer = signKey.PrivateKey
if signer == nil {
return nil, errors.InvalidArgumentError("no private key in signing key")
}
if signer.Encrypted {
return nil, errors.InvalidArgumentError("signing key must be decrypted")
}
}
var hash crypto.Hash
for _, hashId := range candidateHashes {
if h, ok := algorithm.HashIdToHash(hashId); ok && h.Available() {
hash = h
break
}
}
// If the hash specified by config is a candidate, we'll use that.
if configuredHash := config.Hash(); configuredHash.Available() {
for _, hashId := range candidateHashes {
if h, ok := algorithm.HashIdToHash(hashId); ok && h == configuredHash {
hash = h
break
}
}
}
if hash == 0 {
hashId := candidateHashes[0]
name, ok := algorithm.HashIdToString(hashId)
if !ok {
name = "#" + strconv.Itoa(int(hashId))
}
return nil, errors.InvalidArgumentError("cannot encrypt because no candidate hash functions are compiled in. (Wanted " + name + " in this case.)")
}
if signer != nil {
ops := &packet.OnePassSignature{
SigType: sigType,
Hash: hash,
PubKeyAlgo: signer.PubKeyAlgo,
KeyId: signer.KeyId,
IsLast: true,
}
if err := ops.Serialize(payload); err != nil {
return nil, err
}
}
if hints == nil {
hints = &FileHints{}
}
w := payload
if signer != nil {
// If we need to write a signature packet after the literal
// data then we need to stop literalData from closing
// encryptedData.
w = noOpCloser{w}
}
var epochSeconds uint32
if !hints.ModTime.IsZero() {
epochSeconds = uint32(hints.ModTime.Unix())
}
literalData, err := packet.SerializeLiteral(w, hints.IsBinary, hints.FileName, epochSeconds)
if err != nil {
return nil, err
}
if signer != nil {
h, wrappedHash, err := hashForSignature(hash, sigType)
if err != nil {
return nil, err
}
metadata := &packet.LiteralData{
Format: 't',
FileName: hints.FileName,
Time: epochSeconds,
}
if hints.IsBinary {
metadata.Format = 'b'
}
return signatureWriter{payload, literalData, hash, wrappedHash, h, signer, sigType, config, metadata}, nil
}
return literalData, nil
}
// encrypt encrypts a message to a number of recipients and, optionally, signs
// it. hints contains optional information, that is also encrypted, that aids
// the recipients in processing the message. The resulting WriteCloser must
// be closed after the contents of the file have been written.
// If config is nil, sensible defaults will be used.
func encrypt(keyWriter io.Writer, dataWriter io.Writer, to []*Entity, signed *Entity, hints *FileHints, sigType packet.SignatureType, config *packet.Config) (plaintext io.WriteCloser, err error) {
if len(to) == 0 {
return nil, errors.InvalidArgumentError("no encryption recipient provided")
}
// These are the possible ciphers that we'll use for the message.
candidateCiphers := []uint8{
uint8(packet.CipherAES256),
uint8(packet.CipherAES128),
}
// These are the possible hash functions that we'll use for the signature.
candidateHashes := []uint8{
hashToHashId(crypto.SHA256),
hashToHashId(crypto.SHA384),
hashToHashId(crypto.SHA512),
hashToHashId(crypto.SHA3_256),
hashToHashId(crypto.SHA3_512),
}
// Prefer GCM if everyone supports it
candidateCipherSuites := [][2]uint8{
{uint8(packet.CipherAES256), uint8(packet.AEADModeGCM)},
{uint8(packet.CipherAES256), uint8(packet.AEADModeEAX)},
{uint8(packet.CipherAES256), uint8(packet.AEADModeOCB)},
{uint8(packet.CipherAES128), uint8(packet.AEADModeGCM)},
{uint8(packet.CipherAES128), uint8(packet.AEADModeEAX)},
{uint8(packet.CipherAES128), uint8(packet.AEADModeOCB)},
}
candidateCompression := []uint8{
uint8(packet.CompressionNone),
uint8(packet.CompressionZIP),
uint8(packet.CompressionZLIB),
}
encryptKeys := make([]Key, len(to))
// AEAD is used only if config enables it and every key supports it
aeadSupported := config.AEAD() != nil
for i := range to {
var ok bool
encryptKeys[i], ok = to[i].EncryptionKey(config.Now())
if !ok {
return nil, errors.InvalidArgumentError("cannot encrypt a message to key id " + strconv.FormatUint(to[i].PrimaryKey.KeyId, 16) + " because it has no valid encryption keys")
}
sig := to[i].PrimaryIdentity().SelfSignature
if sig.SEIPDv2 == false {
aeadSupported = false
}
candidateCiphers = intersectPreferences(candidateCiphers, sig.PreferredSymmetric)
candidateHashes = intersectPreferences(candidateHashes, sig.PreferredHash)
candidateCipherSuites = intersectCipherSuites(candidateCipherSuites, sig.PreferredCipherSuites)
candidateCompression = intersectPreferences(candidateCompression, sig.PreferredCompression)
}
// In the event that the intersection of supported algorithms is empty we use the ones
// labelled as MUST that every implementation supports.
if len(candidateCiphers) == 0 {
// https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-07.html#section-9.3
candidateCiphers = []uint8{uint8(packet.CipherAES128)}
}
if len(candidateHashes) == 0 {
// https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-07.html#hash-algos
candidateHashes = []uint8{hashToHashId(crypto.SHA256)}
}
if len(candidateCipherSuites) == 0 {
// https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-07.html#section-9.6
candidateCipherSuites = [][2]uint8{{uint8(packet.CipherAES128), uint8(packet.AEADModeOCB)}}
}
cipher := packet.CipherFunction(candidateCiphers[0])
aeadCipherSuite := packet.CipherSuite{
Cipher: packet.CipherFunction(candidateCipherSuites[0][0]),
Mode: packet.AEADMode(candidateCipherSuites[0][1]),
}
// If the cipher specified by config is a candidate, we'll use that.
configuredCipher := config.Cipher()
for _, c := range candidateCiphers {
cipherFunc := packet.CipherFunction(c)
if cipherFunc == configuredCipher {
cipher = cipherFunc
break
}
}
symKey := make([]byte, cipher.KeySize())
if _, err := io.ReadFull(config.Random(), symKey); err != nil {
return nil, err
}
for _, key := range encryptKeys {
if err := packet.SerializeEncryptedKey(keyWriter, key.PublicKey, cipher, symKey, config); err != nil {
return nil, err
}
}
var payload io.WriteCloser
payload, err = packet.SerializeSymmetricallyEncrypted(dataWriter, cipher, aeadSupported, aeadCipherSuite, symKey, config)
if err != nil {
return
}
payload, err = handleCompression(payload, candidateCompression, config)
if err != nil {
return nil, err
}
return writeAndSign(payload, candidateHashes, signed, hints, sigType, config)
}
// Sign signs a message. The resulting WriteCloser must be closed after the
// contents of the file have been written. hints contains optional information
// that aids the recipients in processing the message.
// If config is nil, sensible defaults will be used.
func Sign(output io.Writer, signed *Entity, hints *FileHints, config *packet.Config) (input io.WriteCloser, err error) {
if signed == nil {
return nil, errors.InvalidArgumentError("no signer provided")
}
// These are the possible hash functions that we'll use for the signature.
candidateHashes := []uint8{
hashToHashId(crypto.SHA256),
hashToHashId(crypto.SHA384),
hashToHashId(crypto.SHA512),
hashToHashId(crypto.SHA3_256),
hashToHashId(crypto.SHA3_512),
}
defaultHashes := candidateHashes[0:1]
preferredHashes := signed.PrimaryIdentity().SelfSignature.PreferredHash
if len(preferredHashes) == 0 {
preferredHashes = defaultHashes
}
candidateHashes = intersectPreferences(candidateHashes, preferredHashes)
if len(candidateHashes) == 0 {
return nil, errors.InvalidArgumentError("cannot sign because signing key shares no common algorithms with candidate hashes")
}
return writeAndSign(noOpCloser{output}, candidateHashes, signed, hints, packet.SigTypeBinary, config)
}
// signatureWriter hashes the contents of a message while passing it along to
// literalData. When closed, it closes literalData, writes a signature packet
// to encryptedData and then also closes encryptedData.
type signatureWriter struct {
encryptedData io.WriteCloser
literalData io.WriteCloser
hashType crypto.Hash
wrappedHash hash.Hash
h hash.Hash
signer *packet.PrivateKey
sigType packet.SignatureType
config *packet.Config
metadata *packet.LiteralData // V5 signatures protect document metadata
}
func (s signatureWriter) Write(data []byte) (int, error) {
s.wrappedHash.Write(data)
switch s.sigType {
case packet.SigTypeBinary:
return s.literalData.Write(data)
case packet.SigTypeText:
flag := 0
return writeCanonical(s.literalData, data, &flag)
}
return 0, errors.UnsupportedError("unsupported signature type: " + strconv.Itoa(int(s.sigType)))
}
func (s signatureWriter) Close() error {
sig := createSignaturePacket(&s.signer.PublicKey, s.sigType, s.config)
sig.Hash = s.hashType
sig.Metadata = s.metadata
if err := sig.Sign(s.h, s.signer, s.config); err != nil {
return err
}
if err := s.literalData.Close(); err != nil {
return err
}
if err := sig.Serialize(s.encryptedData); err != nil {
return err
}
return s.encryptedData.Close()
}
func createSignaturePacket(signer *packet.PublicKey, sigType packet.SignatureType, config *packet.Config) *packet.Signature {
sigLifetimeSecs := config.SigLifetime()
return &packet.Signature{
Version: signer.Version,
SigType: sigType,
PubKeyAlgo: signer.PubKeyAlgo,
Hash: config.Hash(),
CreationTime: config.Now(),
IssuerKeyId: &signer.KeyId,
IssuerFingerprint: signer.Fingerprint,
Notations: config.Notations(),
SigLifetimeSecs: &sigLifetimeSecs,
}
}
// noOpCloser is like an ioutil.NopCloser, but for an io.Writer.
// TODO: we have two of these in OpenPGP packages alone. This probably needs
// to be promoted somewhere more common.
type noOpCloser struct {
w io.Writer
}
func (c noOpCloser) Write(data []byte) (n int, err error) {
return c.w.Write(data)
}
func (c noOpCloser) Close() error {
return nil
}
func handleCompression(compressed io.WriteCloser, candidateCompression []uint8, config *packet.Config) (data io.WriteCloser, err error) {
data = compressed
confAlgo := config.Compression()
if confAlgo == packet.CompressionNone {
return
}
// Set algorithm labelled as MUST as fallback
// https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-07.html#section-9.4
finalAlgo := packet.CompressionNone
// if compression specified by config available we will use it
for _, c := range candidateCompression {
if uint8(confAlgo) == c {
finalAlgo = confAlgo
break
}
}
if finalAlgo != packet.CompressionNone {
var compConfig *packet.CompressionConfig
if config != nil {
compConfig = config.CompressionConfig
}
data, err = packet.SerializeCompressed(compressed, finalAlgo, compConfig)
if err != nil {
return
}
}
return data, nil
}